|
Third Edition

B

Covers:
_ SQL:2006 ANSI/ISO standard -
SQAL/XML - The latest RDBMS software

Andy Oppel
Robert Sheldon

http://www.it-ebooks.info/

SQL
A Beginner's Guide
Third Edition

Andy Oppel
Robert Sheldon

i

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

www.it-ebooks.info

http://dx.doi.org/10.1036/0071548645
http://www.it-ebooks.info/

The McGraw-Hill Companies

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-154865-3
The material in this eBook also appears in the print version of this title: 0-07-154864-5.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy
of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit,
distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work
for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO
THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUD-
ING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND
EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WAR-
RANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or
guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free.
Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the
work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the
work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential
or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such
damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

DOI: 10.1036/0071548645

www.it-ebooks.info

http://dx.doi.org/10.1036/0071548645
http://www.it-ebooks.info/

About the Authors

Andrew (Andy) J. Oppel is aproud graduate of the Boys' Latin School of Maryland and of
Transylvania University (Lexington, Kentucky) where he earned a BA in computer science

in 1974. Since then he has been continuously employed in awide variety of information
technology positions, including programmer, programmer/analyst, systems architect, project
manager, senior database administrator, database group manager, consultant, database designer,
data modeler, and data architect. In addition, he has been a part-time instructor with the
University of California (Berkeley) Extension for over 20 years, and received the Honored
Instructor Award for the year 2000. His teaching work included developing three courses for
UC Extension, “Concepts of Database Management Systems,” “Introduction to Relational
Database Management Systems,” and “ Data Modeling and Database Design.” He also earned
his Oracle 9i Database Associate certification in 2003. He is currently employed as a senior data
modeler for Blue Shield of California. Aside from computer systems, Andy enjoys music (guitar
and vocals), amateur radio (Pacific Division vice director, American Radio Relay League) and
soccer (referee instructor, U.S. Soccer).

Andy has designed and implemented hundreds of databases for awide range of applications,
including medica research, banking, insurance, apparel manufacturing, telecommunications,
wireless communications, and human resources. He is the author of Databases Demystified
(McGraw-Hill/Oshorne, 2004) and QL Demystified (M cGraw-Hill/Osborne, 2005). His database
product experience includes IMS, DB2, Sybase, Microsoft SQL Server, Microsoft Access,
MySQL, and Oracle (versions 7, 8, 8i, 9i, and 10g).

Robert Sheldon has worked as a consultant and technical writer for anumber of years.

As a consultant, he has managed the devel opment and maintenance of web-based and client-
server applications and the databases that supported those applications. He has designed and
implemented various Access and SQL Server databases and has used SQL to build databases,
create and modify database objects, query and modify data, and troubleshoot system- and
data-related problems. Robert has also written or cowritten eight books on various network
and server technologies, one of which received a Certificate of Merit from the Puget Sound
Chapter of the Society for Technical Communication. In addition, two of the books that
Robert has written focus exclusively on SQL Server design and implementation. Robert

has also written and edited a variety of other documentation related to SQL databases and
other computer technologies. His writing includes material outside the computer industry—
everything from news articles to ad copy to legal documentation—and he has received two
awards from the Colorado Press Association.

About the Technical Editor

James Seymour isagraduate of the University of North Carolinaat Chapel Hill with aBA in
history and political science and the University of Kentucky with aMA in history. He became
first involved with computer technology in 1965 with the mainframe environment at North
Carolina. Whilein the United States Army during the Vietnam War, he was on the small team
that worked with the mainframe setup at the Pentagon for various military strategic scenarios.
Since 1972, he has been involved in varied computer environments with the second point-of-sale

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

and inventory control project in the retail industry, analytical programs and database initiativesin
the insurance and benefits industries, loss control startups, and other inventory control and sales
tracking projects throughout many different industries.

From 1987 through 1995, James was an instructor of database management in the community
college system of the state of Kentucky. In this capacity, he created the first database management
and C programming courses in the state of Kentucky and hel ped both public and private entities
with urgent training needs, including the programming of guidance systems on cruise missiles for
Desert Storm.

Before 1985, he was a system administrator, network administrator, programmer, and
database administrator. Since 1985, James has been a senior database administrator working
primarily with DB2 and Oracle DBM Ss on multiple platformsincluding SQL Server
beginning with version 7.0. He is currently the senior database administrator and data
architect for a Fortune 100 company overseeing major projects in the United States, Canada,
and the United Kingdom.

www.it-ebooks.info

http://www.it-ebooks.info/

For more information about this title, click here

Contents

ACKNOWLEDGMENTS e Xi
INTRODUCTION oo Xi

PART| Relational Databases and SQL

1 Introduction to Relational Databasesand SQL ccoovviiiiiinnnn, 3
Understand Relational Datahases c.iiiiiiiiii e 4
TheRelational Model ... 5

Learn ADOUL SOL ... 15
The SQL EVOIULION .. . e 15
Typesof SQL SEatemMeNntS ...t 18

Types of EXECULION ... 19

SQL Standard versus Product Implementations coooiiiiiii 21

2 Working with the SQL Environment ..., 29
Understand the SQL Environment oiiiiiieii i 30
Understand SQL CatalOgs ... cvvvnetiie et 32
SO EIMAS ottt s 34

SChemMa OBJECES .o 35

Then What ISaDatabase? oveiii e 37

Name Objectsin an SQL EnViroOnment oooeuiiiii i 40
QuAlified NamMES ..o e 41

\'

www.it-ebooks.info

http://dx.doi.org/10.1036/0071548645
http://www.it-ebooks.info/

vi SQL: A Beginner's Guide

Create @ SChEMA ..o 42
Create aDatanasei 44

3 Creatingand AlteringTables 49
Create SQL TablES ..ottt 50
SPeCify ColUMN Dala TYPES ettt ettt e 54
SHHNG Data TYPES ottt et 55
NUMENC DA TYPES ettt et 57
DAlEtimME Dala TYPES .ottt ettt et e 58

INtErVal Dala TYPE oottt e 60

BOO0IEaN Data TYPE ..ttt 61

USING SQL Dal@ TYPES ettt ettt e et et 62

Create User-Defined TYPES oottt 63
Specify Column Default ValUES ... 64
Delete SQL TahleS ..ottt e e 69

4 Enforcing Datalntegritycoouieiiii e 73
Understand Integrity CONSIraintS oouuiii et eaean 74
Use NOT NULL CONSIrAINtS ...ttt et e e 76
Add UNIQUE CONSIIaiNtS ...vittieieee ettt e et et e ettt aaaes 77
Add PRIMARY KEY CONSIraiNtS ..ottt it 79
Add FOREIGN KEY CONSraiNtS . ..cvuuetii et ie e eiineeennns 83
TheMATCH Clalse ...t 88

The <referentia triggered action>Clause c.cooviiiiiiiii i, 89

Define CHECK CONSIAINIS ..t e ettt e e e et e e et e e eenaes 95
DEfiNING ASSEItIONS ..ottt ettt ettt e 97
Creating Domains and Domain ConstraintS c.ieviieiiieiiieinnannnnns 98

5 Creating SQL ViBWS oottt 103
Add ViewstotheDatahasecoooiiiii 104
Defining SQL VieWS oo 108

Create Updateable VIiewWs ... 114
Using the WITH CHECK OPTION ClaUSe ovvviiiiii i 116

Drop Viewsfromthe Databhasecoooiiiiiiiii e 117

6 Managing Database SeCurity oooeiiiiiii i 123
Understand the SQL Security Model ... 124
SOL SESSIONS .t vttt ettt et et 126
Accessing Database ObJECS ... ovvv i 128

Create and DElEte ROIES ... oo e 130
Grant and ReVOKe Privileges ... oo 131
RevOKING PrivIlEgES .. 135

Grant and ReVOKE ROIES ... oo e 137
ReVOKING ROIES . 138

www.it-ebooks.info

http://www.it-ebooks.info/

Contents vii

PART Il Data Access and Modification

7 QUErying SQL Data ...ovviiiii it 145
Use aSELECT Statement to Retrieve Data o.vvviiiiiiii i 146
The SELECT Clauseand FROM Clausecvviiiiiiiiiiiiiiiiiinaeennn, 147

Use the WHERE Clause to Define Search Conditions ..., 152
Defining the WHERE ClaUse ooiiiiiii ettt 156

Usethe GROUP BY Clauseto Group Query Results —coviviiiiiiiiniinns, 159
Use the HAVING Clause to Specify Group Search Conditions 164
Usethe ORDER BY Clauseto Sort Query Results coovviiiiiiiiiiiiiean 166

8 Modifying SQL Datavvviiiiii et 175
INSEIT SOL Dala ..ottt e e 176
Inserting Valuesfrom aSELECT Statement ooiiiiiiiiiiiiiiiiiaann.. 180

Update SQL Data ...ttt et 182
Updating Valuesfrom a SELECT Statement cooiiiiiiiiiiiaan... 185

DElEte SQL DalA ovvvi ettt et e ettt 186

Q USINg PrediCates oviiiiii e e e 193
Compare SQL Data ...t 194
Usingthe BETWEEN Predicateoiiiiiiiiiiiii i, 199

RetUrN NUIL ValUBS e 200
Return Similar ValuEs ... 203
Reference Additional Sourcesof Data ovveiiiieiii i 209
Usingthe IN Predicate e 209

Using the EXISTS Predicate oooiie e 213
Quantify Comparison PrediCateS ooutiiii e 216
Using the SOME and ANY PredicateScoviiiiiiieiiiiiiiiineannnnnn. 216
Usingthe ALL Predicate ... 218

10 Working with Functionsand Value EXpPressions covvvvnnnn. 225
USE SEt FUNCLIONS .ottt et 226
Using the COUNT FUNCHION .. .ouiiie e 227
Usingthe MAX and MIN FUNCLIONSot 229
Usingthe SUM FUNCLION ... oo e 231
UsSingthe AVG FUNCLION ..ot 232
USeValUE FUNCHIONS ...ttt e 232
Working with String Value FUNCtioNs ... 233
Working with Datetime Value FUNCtions ccoviiiiiii e 236
USEValUE EXPIESSIONS ..ttt ettt et et ettt e e e e e et eeans 238
Working with Numeric Value EXpressions coveiiiiiiiiiiiiiiienannnn. 238

Using the CASE ValUe EXPresSion ...ovuei e eeiieeieeann 241

Using the CAST ValUe EXPresSion ...ovuieinie e eiieeieeaanns 244

USE SPECIAl ValUBS ..ttt et e e e 245

www.it-ebooks.info

http://www.it-ebooks.info/

viii SQL: A Beginner's Guide

11 Accessing MultipleTables

Perform Basic Join Operations ccvu.es
Using Correlation Names
Creating Joins with More than Two Tables ...
Creatingthe CrossJoin coovvveenn.
Creatingthe Self-Join +

Join Tableswith Shared Column Names
Creating the Natural Join
Creating the Named Column Join =~

UsetheConditionJoin coovviiiiiiinann.
Creatingthelnner Join -cooeenn.
CreatingtheOuter Join cooeenn.

Perform Union Operations cocvvvevnnnn,

12 Using SubqueriestoAccess and M odify Data

Create Subqueries That Return Multiple Rows
Usingthe IN Predicate
Using the EXISTS Predicate
Using Quantified Comparison Predicates

Create Subqueries That Return OneValue

Work with Correlated Subqueries

Use Nested Subqueries ooviiiiiiiiiiannn.s

Use Subqueriesto Modify Data
Using Subqueriesto Insert Data
Using Subqueriesto Update Data
Using Subqueriesto Delete Data

PART . Advanced Data Access

13 Creating SQL-Invoked Routines

Understand SQL-Invoked Routines
SQL-Invoked Procedures and Functions
Working withthe Basic Syntax

Create SQL-Invoked Procedures
Invoking SQL-Invoked Procedures

Add Input Parametersto Your Procedures
Using Proceduresto Modify Data

Add Local Variablesto Your Procedures

Work with Control Statements
Create Compound Statements
Create Conditional Statements
Create Looping Statements

Add Output Parametersto Your Procedures

Create SQL-Invoked Functions

www.it-ebooks.info

http://www.it-ebooks.info/

14

15

16

17

Confents
Creating SQL TriggersS o.oirie it 329
Understand SOL TrHggErS ooveiit ettt et ettt et 330
Trigger EXeCUtion CONtEXE ... vunii et 331
(0= (3 I I o o = 333
Referencing Old and New Values ooiiiiiii i 334
Dropping SQL TriggerS ettt ettt e ettt et 335
(== (= 1S I o T = £ 336
Create UpPdate TrggE S oov ettt ettt e et et 338
(1= (] D= = T I 4 o 343
USING SQL CUMSOIS ottt ettt e e e e e et et 351
Understand SQL CUMSOIS . .oviteie et ettt ettt e e 352
Declaring and Opening SQL CUISOIS ...ttt eei e eeen e 353
DEClarE @ CUNSOr ettt e 355
Working with Optional Syntax Elements ..., 356
Creating aCursor Declarationoooeiiii e 360
Open and ClOSE @ CUISON ..ttt et ettt 363
Retrieve Datafrom aCUrSOroouii e 363
Use Positioned UPDATE and DELETE Statements coviveiiinieiiineennnnn.. 368
Using the Positioned UPDATE Statement ooiuiiiiiiiiiiiiiiaenn . 368
Using the Positioned DELETE Statement ...t 370
Managing SQL Transactions c.ooiiiiiiii i eiieiaeenn, 377
Understand SQL TransaCtionNS eeniei et eaeens 378
Set Transaction Properties 381
Specifying an Isolation Levelo 382
Specifying aDiagnostiCS Size ooii i 387
Creating aSET TRANSACTION Statement oooiiiiiiiiineannnnn. 388
Start @TranSaCtioN ...t 389
Set Constraint Deferability ... oo 390
Create Savepoints in aTranSaCtion iiiii i 392
Releasing @ Savepoint ... 394
Terminate aTranSaCtioNoouii ittt et 395
Committing aTranSaction oouu it 395
Rolling Back aTransaCtion couuiiii e 396
Accessing SQL Datafrom Your Host Program —oooivviinnnn... 403
INVOKE SQL DireCtly oo e e e 404
Embed SQL StatementsSin YOur Program —oiieiii ettt 406
Creating an Embedded SQL Statement ooiiiiiiii i 407
Using Host Variablesin Your SQL Statements oovviiiiiiiiininnennn.. 408
Retrieving SQL Data viiieii ettt 411
Error Handling .. .ovoe e 413

www.it-ebooks.info

X

http://www.it-ebooks.info/

X SQL: A Beginner’s Guide

Create SQL Client ModUIES ... e 417
Defining SQL Client Modules ... 418
Usean SQL Call-Level Interfacecooiiiiiii e 419
Allocating Handles 421
Executing SQL StAemMENS .. .oonii e 423
Working with Host Variables 424
Retrieving SQL Data oieei e 426

18 Workingwith XML Dataooiiiiiii e 433
Learnthe BasicS Of XML ..o e 434
Learn ABOUt SOL/ XML i e 437
The XML Data TYPe .ttt e 437
SQL/XML FUNCHIONS .ttt ettt e ettt 439
SQL/XML Mapping RUle ... e 441

PART IV Appendices

A Answersto SElf Test ... 449
B SQL:2006 KEYWOIrdS . ..ottt 491
SQL Reserved KEYWOrdS oo 492
SQL Nonreserved KeYWOrds iieeii et 494
C SQL CodeUsed in Try ThiSEXErCISES oovviiviiiiiiii i 497
SQL Code by Try TRISEXEICISE ..ot 498
TheINVENTORY Database ..ot 514
INOEX o e 519

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

There were many people involved in the development of SQL: A Beginner’s Guide,

Third Edition, many of whom | do not know by name. First, the editors and staff at
McGraw-Hill Professional provided countless hours of support for this project. | wish to
especially thank executive editor Jane K. Brownlow, acquisitions coordinator Jennifer Housh,
and Wilson Drozdowski who briefly filled in for Jennifer, as the individuals with whom | had
direct contact throughout the writing and editing process. Y our comments and suggestions,
aswell as quick and accurate answers to my many questions, made the writing tasks flow
without a hitch; your work behind the scenes kept the entire project moving smoothly. | also
wish to thank the copy editor and all the other editors, proofreaders, indexers, designers,
illustrators, and other participants whose names | do not know. My special thanks go to my
friend and former colleague Jim Seymour, the technical editor, for his attention to detail and
his helpful input throughout the editing process. And | wish to acknowledge the work of
Robert Sheldon, author of the first two editions, whose excellent writing made the revisions
required for this edition so much easier to accomplish. Finally, my thanks to my family for
their support and understanding as | fit the writing schedule into an already overly busy life.

—Andy Oppel

Introduction

Rel ational databases have become the most common data storage mechanism for modern
computer applications. Programming languages such as Java, C, and COBOL, and
scripting languages such as Perl, VBScript, and JavaScript must often access a data source
in order to retrieve or modify data. Many of these data sources are managed by arelational
database management system (RDBMYS), such as Oracle, Microsoft SQL Server, MySQL, and
DB2, that relies on the Structured Query Language (SQL) to create and alter database objects,
add data to and del ete data from the database, modify data that has been added to that database,
and of course, retrieve data stored in the database for display and processing.

SQL isthe most widely implemented language for relational databases. Much as
mathematics is the language of science, SQL is the language of relational databases. SQL not
only allows you to manage the data within the database, but al so manage the database itself.

X1

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

Xii

SQL: A Beginner's Guide

By using SQL statements, you can access an SQL database directly by using an interactive
client application or through an application programming language or scripting language.
Regardless of which method you use to access a data source, afoundation in how to write
SQL statementsis required in order to access relational data. SQL: A Beginner’s Guide,
Third Edition provides you with such afoundation. It describes the types of statements that
SQL supports and explains how they’ re used to manage databases and their data. By working
through this book, you'll build a strong foundation in basic SQL and gain a comprehensive
understanding of how to use SQL to access datain your relational database.

This third edition has been updated to include the provisions of the SO SQL:2006
standard, along with technical corrigenda published in 2007. Chapter 18 has been added
to cover SQL/XML, which was added to the SQL standard in 2006. In addition, the SQL
statements have been reformatted and all database object names folded to uppercase to
improve readability and transportability across the wide variety of commercially available
RDBMS products.

Who Should Read This Book

OL: A Beginner’s Guide is recommended for anyone trying to build afoundation in SQL
programming based on the |SO SQL :2006 standard. The book is designed specifically for
those who are new or relatively new to SQL; however, those of you who need arefresher in
SQL will also find this book beneficial. Whether you' re an experienced programmer, have had
some web development experience, are a database administrator, or are new to programming
and databases, SQL: A Beginner’s Guide provides a strong foundation that will be useful to
anyone wishing to learn more about SQL . In fact, any of the following individuals will find
this book helpful when trying to understand and use SQL:

The novice new to database design and SQL programming

The analyst or manager who wants to better understand how to implement and access SQL
databases

The database administrator who wants to learn more about programming

The technical support professional or testing/QA engineer who must perform ad hoc
gueries against an SQL data source

The web devel oper writing applications that must access SQL databases

The third-generation language (3GL) programmer embedding SQL within an application’s
source code

Any other individual who wants to learn how to write SQL code that can be used to create
and access databases within an RDBM S

Whichever category you might fit into, an important point to remember is that the book
is geared toward anyone wanting to learn standard SQL , not a product-specific version of
the language. The advantage of thisisthat you can take the skills learned in this book and

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction X

apply them to real-world situations, without being limited to product standards. Y ou will, of
course, till need to be aware of how the product you work in implements SQL, but with the
foundation provided by this book, you'll be able to move from one RDBMS to the next and
still have a basic understanding of how SQL is used. Asaresult, this book is a useful tool to
anyone new to SQL -based databases, regardless of the product used. SQL programmers need
only adapt their knowledge to the specific RDBMS.

What Content the Book Covers

OL: A Beginner’s Guideis divided into three parts. Part | introduces you to the basic concepts
of SQL and explains how to create objects within your database. Part 11 provides you with
afoundation in how to retrieve data from a database and modify (add, change, and delete)

the data that’ s stored in the database. Part 111 provides you with information about advanced
data access techniques that allow you to expand on what you learned in Part | and Part 1.

In addition to the three parts, SQL: A Beginner’s Guide contai ns appendixes that include
reference material for the information presented in the three parts.

Description of the Book’s Content
The following outline describes the contents of the book and shows how the book is broken
down into task-focused chapters.

Part |: Relational Databases and SQL

Chapter 1: Introduction to Relational Databases and SQL

This chapter introduces you to relational databases and the relational model, which forms the
basisfor SQL. You'll also be provided with a general overview of SQL and how it relates to
RDBMSs.

Chapter 2: Working with the SQL Environment

This chapter describes the components that make up the SQL environment. You'll aso be
introduced to the objects that make up a schema, and you'll learn how to create a schema
within your SQL environment. Y ou'll also be introduced to the concept of creating a database
object in an SQL implementation that supports the creation of database objects.

Chapter 3: Creating and Altering Tables

In this chapter, you'll learn how to create SQL tables, specify column data types, create
user-defined types, and specify column default values. You'll aso learn how to alter atable
definition and delete that definition from your database.

Chapter 4: Enforcing Data Integrity

This chapter explains how integrity constraints are used to enforce data integrity in your
SQL tables. The chapter includes information on table-related constraints, assertions, and
domain constraints. You will learn how to create NOT NULL, UNIQUE, PRIMARY KEY,
FOREIGN KEY, and CHECK constraints.

www.it-ebooks.info

http://www.it-ebooks.info/

Xiv SQL: A Beginner's Guide

Chapter 5: Creating SQL Views
In this chapter, you'll learn how to add views to your SQL database. You'll aso learn how to
create updateable views and how to drop views from the database.

Chapter 6: Managing Database Security

In this chapter, you'll beintroduced to the SQL security model and learn how authorization
identifiers are defined within the context of a session. You'll then learn how to create and
delete roles, grant and revoke privileges, and grant and revoke roles.

Part Il: Data Access and Modification

Part Il explains how to access and modify datain an SQL database. You'll aso learn how
to use predicates, functions, and value expressions to manage that data. In addition, Part I1
describes how to join tables and use subqueries to access data in multiple tables.

Chapter 7: Querying SQL Data

This chapter describes the basic components of the SELECT statement and how the statement
is used to retrieve data from an SQL database. Y ou' |l learn how to define each clause that can
be included in the SELECT statement and how those clauses are processed when querying a
database.

Chapter 8: Modifying SQL Data

In this chapter, you'll learn how to modify datain an SQL database. Specificaly, you'll learn
how to insert data, update data, and delete data. The chapter reviews each component of the
SQL statements that allow you to perform these data modifications.

Chapter 9: Using Predicates

In this chapter, you'll learn how to use predicates to compare SQL data, return null values,
return similar values, reference additional sources of data, and quantify comparison predicates.
The chapter describes the various types of predicates and shows you how they’re used to
retrieve specific data from an SQL database.

Chapter 10: Working with Functions and Value Expressions

This chapter explains how to use various types of functions and value expressionsin your
SQL statements. You'll learn how to use set functions, value functions, value expressions, and
special valuesin various clauses within an SQL statement.

Chapter 11: Accessing Multiple Tables

This chapter describes how to join tables in order to retrieve data from those tables. Y ou will
learn how to perform basic join operations, join tables with shared column names, use the
condition join, and perform union operations.

Chapter 12: Using Subqueries to Access and Modify Data

In this chapter, you'll learn how to create subqueries that return multiple rows and others
that return only one value. You'll aso learn how to use correlated subqueries and nested
subqueries. In addition, you'll learn how to use subqueries to modify data.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Part lll: Advanced Data Access

Part 111 introduces you to advanced data-access techniques such as SQL-invoked routines,
triggers, and cursors. You'll also learn how to manage transactions, how to access SQL data
from your host program, and how to incorporate XML datainto your database.

Chapter 13: Creating SQL-Invoked Routines

This chapter describes SQL -invoked procedures and functions and how you can create them
in your SQL database. You'll learn how to define input parameters, add local variables to your
routine, work with control statements, and use output parameters.

Chapter 14: Creating SQL Triggers

This chapter introduces you to SQL triggers and explains how to create insert, update, and
delete triggersin your SQL database. You'll learn how triggers are automatically invoked and
what types of actions they can take.

Chapter 15: Using SQL Cursors

In this chapter, you'll learn how SQL cursors are used to retrieve one row of data at atime
from aresult set. The chapter explains how to declare a cursor, open and close a cursor, and
retrieve datafrom a cursor. You'll aso learn how to use positioned UPDATE and DELETE
statements after you fetch arow through a cursor.

Chapter 16: Managing SQL Transactions

In this chapter, you'll learn how transactions are used to ensure the integrity of your SQL
data. The chapter describes how to set transaction properties, start a transaction, set constraint
deferability, create savepoints in a transaction, and terminate a transaction.

Chapter 17: Accessing SQL Data from Your Host Program

This chapter describes the four methods supported by the SQL standard for accessing an SQL
database. You'll learn how to invoke SQL directly from a client application, embed SQL
statements in a program, create SQL client modules, and use an SQL call-level interface to
access data.

Chapter 18: Working with XML Data

This chapter describes how XML data can be incorporated into an SQL database. You'll learn
the basics of XML, how to use the XML datatype to store XML in table column values, how
to write SQL/XML functions that can be used to return data from the database formatted as
XML, and the SQL/XML mapping rules that describe how SQL values are translated to XML
values and vice versa

Part IV: Appendices
The appendicesinclude reference material for the information presented in the first three parts.

Appendix A: Answers to Self Test
This appendix provides the answers to the Self Test questions listed at the end of each chapter.

Appendix B: SQL: 2006 Keywords
This appendix lists the reserved and nonreserved keywords as they are used in SQL statements
as defined in the SQL:2006 standard.

www.it-ebooks.info

XV

http://www.it-ebooks.info/

Xvi

SQL: A Beginner's Guide

Appendix C: SQL Code Used in Try This Exercises
Thisappendix listsall the SQL code used in the book’s Try This exercises, consolidated into one
place for easy reference. This code may also be downloaded from http://mww.mhprofessional .com.

Chapter Content

Asyou can see in the outline, SQL: A Beginner’s Guide is organized into chapters. Each
chapter focuses on a set of related tasks. The chapter contains the background information
you need to understand the various concepts related to those tasks, explains how to create
the necessary SQL statements to perform the tasks, and provides examples of how those
statements are created. In addition, each chapter contains additional elementsto help you
better understand the information covered in that chapter:

Ask the Expert Each chapter contains one or two Ask the Expert sections that provide
information on questions that might arise regarding the information presented in the chapter.

Self Test Each chapter ends with a Self Test, which is a set of questions that tests you
on the information and skills you learned in that chapter. The answersto the Self Test are
givenin Appendix A.

SQL Syntax
The syntax of an SQL statement refersto the structure and rules used for that statement, as
outlined in SQL:2006. Most chapters will include the syntax for one or more statements so that
you have an understanding of the basic elements contained in those statements. For example,
the following syntax represents the information you need when you definea CREATE TABLE
Statement:

<table definition> ::=

CREATE [{ GLOBAL | LOCAL } TEMPORARY] TABLE <table name>

(<table element>[{ , <tableelement>} ...])

[ON COMMIT { PRESERVE | DELETE } ROWS]

NOTE

Do not be concerned about the meaning of the SQL code at this time. This example is
meant only to show you how SQL statements are represented in this book.

Asyou can see, a statement’ s syntax can contain many elements. Notice that most of
the words used within the statement are shown in uppercase. The uppercase words are SQL
keywords that are used to formulate the SQL statement. (For a complete list of SQL:2006
keywords, see Appendix B.) Although SQL does not require that keywords be written in
uppercase, | use that convention in this book so that you can easily identify the keywords
within a statement. In addition to the keywords, the syntax for an SQL statement includes a
number of other elements that help define how a particular statement should be created:

Squarebrackets The square bracketsindicate that the syntax enclosed in those bracketsis
optional. For example, the ON COMMIT clauseinthe CREATE TABLE statement isoptiond.

www.it-ebooks.info

http://www.mhprofessional.com
http://www.it-ebooks.info/

Introduction

Anglebrackets The angle brackets enclose information that represents a placeholder.
When a statement is actually created, the placeholder is replaced by the appropriate SQL
elements or identifiers. For example, you should replace the <table name> placeholder
with aname for the table when you define a CREATE TABLE statement.

Curly brackets The curly brackets are used to group elements together. The bracketstell
you that you should first decide how to handle the contents within the brackets and then
determine how they fit into the statement. For example, the PRESERVE | DELETE set of
keywordsis enclosed by curly brackets. Y ou must first choose PRESERVE or DELETE
and then deal with the entire line of code. Asaresult, your clause can read ON COMMIT
PRESERVE ROWS, or it can read ON COMMIT DELETE ROWS.

Vertical bars The vertical bar can be read as “or,” which means that you should use
either the PRESERVE option or the DELETE option.

Threeperiods The three periodsindicate that you can repeat the clause as often as
necessary. For example, you can include as many table elements (represented by <table
element>) as necessary.

Colons/equalssign The ::= symbol (two consecutive colons plus an equals sign)
indicates that the placeholder to the left of the symbol is defined by the syntax following
the symbol. In the syntax example, the <table definition> placeholder equals the syntax
that makes up a CREATE TABLE statement.

By referring to the syntax, you should be able to construct an SQL statement that creates

database objects or modifies SQL data as necessary. However, in order to better demonstrate
how the syntax is applied, each chapter also contains examples of actual SQL statements.

Examples of SQL Statements
Each chapter provides examples of how SQL statements are implemented when accessing an
SQL database. For example, you might see an SQL statement similar to the following:

CREATE TABLE ARTI STS

(

ARTI ST_I D I NT,
ARTI ST_NAME VARCHAR(60) ,
ARTI ST_DOB DATE,

POSTER_| N_STOCK BOCLEAN);

Notice that the statement is written in special type to show that it is SQL code. Also notice that
keywords and object names are all uppercase. (Y ou don’'t need to be concerned about any other
details at this point.)

The examples used in the book are pure SQL, meaning they’ re based on the SQL :2006

standard. You'll find, however, that in some cases your SQL implementation does not support
an SQL statement in exactly the same way as it is defined in the standard. For this reason,

www.it-ebooks.info

xvii

http://www.it-ebooks.info/

xviii SQL: A Beginner's Guide

you might also need to refer to the documentation for a particular product to be sure that your
SQL statement conforms to that product’s implementation of SQL. Sometimes it might be
only aslight variation, but there might be times when the product statement is substantially
different from the standard SQL statement.

The examplesin each chapter are based on a database related to an inventory of compact
discs. However, the examples are not necessarily consistent in terms of the names used for
database objects and how those objects are defined. For example, two different chapters might
contain examples that reference atable named CD_INVENTORY . However, you cannot
assume that the tables used in the different examples are made up of the same columns or
contain the same content. Because each example focuses on a unique aspect of SQL, the tables
used in examples are defined in away specific to the needs of that example, asyou’ll see as
you get into the chapters. Thisis not the case for Try This exercises, which use a consistent
database structure throughout the book.

Try This Exercises

Each chapter contains one or two Try This exercises that allow you to apply the information
that you learned in the chapter. Each exercise is broken down into steps that walk you through
the process of completing a particular task. Many of the projects include related files that you
can download from our web site at http://www.osborne.com. The files usually include the
SQL statements used within the Try This exercise. In addition, a consolidation of the SQL
statementsisincluded in Appendix C.

The Try This exercises are based on the INVENTORY database. You'll create the
database, create the tables and other objectsin the database, add data to those tables, and then
manipulate that data. Because the projects build on one another, it is best that you complete
them in the order that they’re presented in the book. Thisis especially true for the chapters
in Part |, in which you create the database objects, and Chapter 7, in which you insert data
into the tables. However, if you do plan to skip around, you can refer to Appendix C, which
provides al the code necessary to create the database objects and popul ate the tables with data.

To complete most of the Try This exercises in this book, you'll need to have accessto an
RDBMS that allows you to enter and execute SQL statementsinteractively. If you' re accessing
an RDBMS over a network, check with the database administrator to make sure that you're
logging in with the credentials necessary to create a database and schema. Y ou might need
special permissionsto create these objects. Also verify whether there are any parameters
you should include when creating the database (for example, log file size), restrictions on
the names you can use, or restrictions of any other kind. Be sure to check the product’s
documentation before working with any database product.

www.it-ebooks.info

http://www.osborne.com
http://www.it-ebooks.info/

Part I

Relational Databases
and SQL

. IC ere 1or terms o
www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Introduction to
Relational Databases
and SQL

. ere 1or terms o
www.it-ebooks.info

http://www.it-ebooks.info/

4

SQL: A Beginner's Guide

Key Skills & Concepts

Understand Relational Databases
Learn About SQL
Use a Relational Database Management System

n 2006, the International Organization for Standardization (ISO) and the American National
Standards Institute (ANSI) published revisionsto their SQL standard, which | will call
SQL:2006. Asyou will see later, the standard is divided in parts, and each part is approved
and published on its own timeline, so different parts have different publication years; it is
common to use the latest year as the collective name for the set of all parts published up
through that year. The SQL :2006 standard, like its predecessors SQL:2003, SQL:1999 (also
known as SQL 3), and SQL-92, is based on the relational data model, which defines how data
can be stored and manipulated within arelational database. Relational database management
systems (RDBM Ss) such as Oracle, Sybase, DB2, MySQL, and Microsoft SQL Server (or just
SQL Server) use the SQL standard as a foundation for their technology, providing database
environments that support both SQL and the relational data model. There is more information
on the SQL standard later in this chapter.

Understand Relational Databases

Structured Query Language (SQL) supports the creation and maintenance of the relational
database and the management of data within that database. However, before | go into a
discussion about relational databases, | want to explain what | mean by the term database.
Theterm itself has been used to refer to anything from a collection of names and addresses to
acomplex system of dataretrieval and storage that relies on user interfaces and a network of
client computers and servers. There are as many definitions for the word database as there are
books about them. Moreover, different DBMS vendors have developed different architectures,
so not all databases are designed in the same way. Despite the lack of an absolute definition,
most sources agree that a database, at the very least, is a collection of data organized in a
structured format that is defined by metadata that describes that structure. Y ou can think
of metadata as data about the data being stored; it defines how the data is stored within the
database.

Over the years, anumber of database models have been implemented to store and manage
data. Several of the more common models include the following:

Hierarchical Thismodel has a parent—child structure that is similar to an inverted tree,
which iswhat forms the hierarchy. Datais organized in nodes, the logical equivalent of
tablesin arelational database. A parent node can have many child nodes, but a child node

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Infroduction fo Relational Databases and SQL

can have only one parent node. Although the model has been highly implemented, it is
often considered unsuitable for many applications because of itsinflexible structure and
lack of support for complex relationships. Still, some implementations such as IMS from
IBM have introduced features that work around these limitations.

Network This model addresses some of the limitations of the hierarchical model. Data
isorganized in record types, the logical equivalent of tablesin arelational database. Like
the hierarchical model, the network model uses an inverted tree structure, but record

types are organized into a set structure that relates pairs of record typesinto owners and
members. Any one record type can participate in any set with other record typesin the
database, which supports more complex queries and relationships than are possible in the
hierarchical model. Still, the network model hasits limitations, the most serious of which
is complexity. In accessing the database, users must be very familiar with the structure and
keep careful track of where they are and how they got there. It s also difficult to change the
structure without affecting applications that interact with the database.

Relational This model addresses many of the limitations of both the hierarchical and
network models. In a hierarchical or network database, the application relies on a defined
implementation of that database, which is then hard-coded into the application. If you add
anew attribute (data item) to the database, you must modify the application, even if it
doesn’t use the attribute. However, arelational database isindependent of the application;
you can make nondestructive modifications to the structure without impacting the
application. In addition, the structure of the relational database is based on the relation, or
table, along with the ability to define complex relationships between these relations. Each
relation can be accessed directly, without the cumbersome limitations of a hierarchical

or owner/member model that requires navigation of acomplex data structure. In the
following section, “ The Relational Model,” I'll discuss the model in more detail.

Although still used in many organizations, hierarchical and network databases are now
considered legacy solutions. The relational model is the most extensively implemented model
in modern business systems, and it is the relational model that provides the foundation for SQL.

The Relational Model

If you' ve ever had the opportunity to look at a book about relationa databases, you have quite
possibly seen the name of E. F. (Ted) Codd referred to in the context of the relational model.
In 1970, Codd published his seminal paper, “A Relational Model of Datafor Large Shared Data
Banks,” in the journal Communications of the ACM, Volume 13, Number 6 (June 1970). Codd
defines arelational data structure that protects data and allows that data to be manipulated in
away that is predictable and resistant to error. The relational model, which is rooted primarily
in the mathematical principles of set theory and predicate logic, supports easy dataretrieval,
enforces data integrity (data accuracy and consistency), and provides a database structure
independent of the applications accessing the stored data.

At the core of the relational model isthe relation. A relation is a set of columns and
rows collected in atable-like structure that represents a single entity made up of related data.

www.it-ebooks.info

5

http://www.it-ebooks.info/

6

SQL: A Beginner's Guide

An entity is a person, place, thing, event, or concept about which datais collected, such as a
recording artist, a book, or a sales transaction. Each relation comprises one or more attributes
(columns). An attribute is a unit fact that describes or characterizes an entity in some way. For
example, in Figure 1-1, the entity is a compact disc (CD) with attributes of CD_NAME (the
title of the CD), ARTIST_NAME (the name of the recording artist), and COPYRIGHT_YEAR
(the year the recording was copyrighted).

Asyou can seein Figure 1-1, each attribute has an associated domain. A domain defines
the type of data that can be stored in a particular attribute; however, adomain is not the same
thing as adatatype. A data type, which is discussed in more detail in Chapter 3, is a specific
kind of constraint (a control used to enforce data integrity) associated with a column, whereas
adomain, asit isused in the relational model, has a much broader meaning and describes
exactly what data can be included in an attribute associated with that domain. For example, the
COPYRIGHT_YEAR attribute is associated with the Y ear domain. Asyou see in this example,
it is common practice to include a class word that describes the domain in attribute names, but
thisisnot at all mandatory. The domain can be defined so that the attribute includes only data
whose values and format are limited to years, as opposed to days or months. The domain might
also limit the data to a specific range of years. A datatype, on the other hand, restricts the
format of the data, such as allowing only numeric digits, but not the values, unless those values
somehow violate the format.

Datais stored in arelation in tuples (rows). A tupleis aset of data whose values make
up an instance of each attribute defined for that relation. Each tuple represents arecord of
related data. (In fact, the set of datais sometimes referred to as arecord.) For example, in
Figure 1-1, the second tuple from the top contains the value “ Joni Mitchell” for the ARTIST_
NAME attribute, the value “Blue” for the CD_NAME attribute, and the value “1971” for the
COPYRIGHT_YEAR attribute. Together these three values form atuple.

Attribute Attribute name Domain name
(CD_NAME) (Year)
ARTIST_NAME:FullName|CD_NAME:Title COPYRIGHT_YEAR:Year

Jennifer Warnes Famous Blue Raincoat 1991

Joni Mitchell Blue 1971

William Ackerman Past Light 1983 Relation
Kitaro Kojiki 1990 «—Tuple

Bing Crosby That Christmas Feeling 1993

Patsy Cline Patsy Cline: 12 Greatest Hits 1988

Figure 1-1 Relation containing CD_NAME, ARTIST_NAME, and COPYRIGHT_YEAR

attributes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Infroduction fo Relational Databases and SQL

NOTE

The logical terms relation, attribute, and tuple are used primarily when referring to

the relational model. SQL uses the physical terms table, column, and row to describe
these items. Because the relational model is based on mathematical principles (a logical
model) and SQL is concerned more with the physical implementation of the model, the
meanings for the model’s terms and the SQL language’s terms are slightly different,

but the underlying principles are the same. The SQL terms are discussed in more detail

in Chapter 2.

Therelational model is, of course, more complex than merely the attributes and tuples that
make up arelation. Two very important considerations in the design and implementation of
any relational database are the normalization of data and the associations of relations among
the various types of data.

Normalizing Data
Central to the principles of the relational model is the concept of normalization, atechnique
for producing a set of relations that possesses a certain set of properties that minimizes
redundant data and preserves the integrity of the stored data as data is maintained (added,
updated, and deleted). The process was developed by E. F. Codd in 1972, and the nameis a bit
of apoalitical gag because President Nixon was “normalizing” relations with China at that time.
Codd figured if relations with a country could be normalized, then surely he could normalize
database relations. Normalization defines sets of rules, referred to as normal forms, which
provide specific guidelines on how data should be organized in order to avoid anomalies that
lead to inconsistencies in and loss of data as the data stored in the database is maintained.
When Codd first presented normalization, it included three normal forms. Although
additional normal forms have been added since then, the first three still cover most situations
you will find in both personal and business databases, and since my primary intent hereisto
introduce you to the process of normalization, I'll discuss only those three forms.

Choosing a Unique Identifier A unique identifier is an attribute or set of attributes that
uniquely identifies each row of datain arelation. The unique identifier will eventually become
the primary key of the table created in the physical database from the normalized relation, but
many use the terms unique identifier and primary key interchangeably. Each potential unique
identifier is called a candidate key, and when there are multiple candidates, the designer
will choose the best one, which isthe one least likely to change values or the one that is the
simplest and/or shortest. In many cases, a single attribute can be found that uniquely identifies
the datain each tuple of the relation. However, when no single attribute can be found that
isunique, the designer looks for several attributes that can be concatenated (put together) in
order to form the unique identifier. In the few cases where no reasonabl e candidate keys can
be found, the designer must invent a unique identifier called a surrogate key, often with values
assigned sequentially or randomly as tuples are added to the relation.

While not absolutely required until second normal form, it is customary to select a unique
identifier asthe first step in normalization. It'sjust easier that way.

www.it-ebooks.info

7

http://www.it-ebooks.info/

8

SQL: A Beginner's Guide

First Normal Form First normal form, which provides the foundation for second and third
normal forms, includes the following guidelines:

Each attribute of atuple must contain only one value.
Each tuple in arelation must contain the same number of attributes.

Each tuple must be different, meaning that the combination of all attribute valuesfor a
given tuple cannot be the same as any other tuple in the same relation.

Asyou can seein Figure 1-2, the second tuple and the last tuple violate first normal form.
In the second tuple, the CD_NAME attribute and the COPY RIGHT _Y EAR attribute each
contain two values. In the last tuple, the ARTIST_NAME attribute contains three values. Also
be on the lookout for repeating values in the form of repeating columns. For example, splitting
the ARTIST_NAME attribute to three attributes called ARTIST_NAME_1, ARTIST_NAME 2,
and ARTIST_NAME_3 is not an adequate solution because you will eventually find a need
for afourth name, then afifth name, and so forth. Moreover, repeating columns make queries
more difficult because you must remember to search all the columns when looking for a
specific value.

To normalize the relation shown in Figure 1-2, you would create additional relations
that separate the data so that each attribute contains only one value, each tuple contains the
same number of attributes, and each tuple is different, as shown in Figure 1-3. The data now
conforms to first normal form.

Notice that there are duplicate values in the second relation; the ARTIST _ID value of 10002
isrepeated and the CD_ID value of 99308 is also repeated. However, when the two attribute
valuesin each tuple are taken together, the tuple as a whole forms a unique combination, which
means that, despite the apparent duplications, each tuplein the relation is different.

ARTIST_NAME CD_NAME COPYRIGHT_YEAR
Jennifer Warnes Famous Blue Raincoat 1991

Joni Mitchell Blue; Court and Spark 1971; 1974
William Ackerman Past Light 1983

Kitaro Kojiki 1990

Bing Crosby That Christmas Feeling 1993

Patsy Cline Patsy Cline: 12 Greatest Hits 1988
:_?fc?a?‘irg:?as;;lt?(:ido Domingo; Carreras Domingo Pavarotti in Concert 1990

Figure 1-2 Relation that violates first normal form

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Infroduction fo Relational Databases and SQL

ARTIST_ID| ARTIST_NAME ARTIST_ID| CD_ID CD_ID |CD_NAME COPYRIGHT_YEAR
10001 | Jennifer Warnes 10001 99301 99301 | Famous Blue Raincoat 1991
10002 Joni Mitchell 10002 (99302 99302 | Blue 1971
10003 William Ackerman 10002 (99303 99303 | Court and Spark 1974
10004 Kitaro 10003 |99304 99304 | Past Light 1983
10005 Bing Crosby 10004 |[99305 99305 | Kojiki 1990
10006 Patsy Cline 10005 99306 99306 | That Christmas Feeling 1993
10007 | Jose Carreras 10006 |99307 99307 | Patsy Cline: 12 Greatest Hits 1988
10008 Placido Domingo 10007 |99308 99308 | Carreras Domingo Pavarotti in Concert| 1990
10009 | Luciano Pavarotti 10008 |99308

10009 99308

Figure 1-3 Relations that conform to first normal form

Did you notice that the ARTIST_ID and CD_ID attributes were added? This was done
because there were no other key candidates. ARTIST_NAME is not unique (two people with
the same name could both be recording artists), and neither is CD_NAME (two CDs could end
up the same name, although they would likely be from different record labels). ARTIST ID is
the primary key of the first relation, and CD_ID isthe primary key of the third. The primary
key of the second relation is the combination of ARTIST_ID and CD_ID.

Second Normal Form To understand second normal form, you must first understand the
concept of functional dependence. For this definition, we'll use two arbitrary attributes,
cleverly named A and B. Attribute B is functionally dependent (dependent for short) on
attribute A if at any moment in time there is no more than one value of attribute B associated
with a given value of attribute A. Lest you wonder what planet | lived on before this one,

let’ stry to make the definition more understandable. If we say that attribute B is functionally
dependent on attribute A, we are also saying that attribute A determines attribute B, or that

A isadeterminant (unique identifier) of attribute B. In Figure 1-4, COPYRIGHT_YEAR is
dependent on CD_ID since there can be only one value of COPYRIGHT_YEAR for any given
CD. Said the other way, CD_ID is adeterminant of COPYRIGHT_YEAR.

Second normal form states that arelation must bein first normal form and that all attributes
in the relation are dependent on the entire unique identifier. In Figure 1-4, if the combination of
ARTIST _ID and CD_ID is selected as the unique identifier, then COPYRIGHT _Y EAR violates
second normal form becauseit is dependent only on CD_ID rather than the combination of
CD_ID and ARTIST_ID. Even though the relation conforms to first normal form, it violates
second normal form. Again, the solution isto separate the data into different relations, as you
saw in Figure 1-3.

Third Normal Form Third normal form, like second normal form, is dependent on the
relation’s unique identifier. To adhere to the guidelines of third normal form, arelation

www.it-ebooks.info

9

http://www.it-ebooks.info/

10 SQL: A Beginner's Guide

<4—— Unique identifier —
ARTIST_ID CD_ID COPYRIGHT_YEAR
10001 99301 1991
10002 99302 1971
10002 99303 1974
10003 99304 1983
10004 99305 1990
10005 99306 1993
10006 99307 1988

Figure 1-4 Relation with a concatenated unique identifier

must be in second normal form and nonkey attributes (attributes that are not part of any
candidate key) must be independent of each other and dependent on the unique identifier. For
example, the unique identifier in the relation shown in Figure 1-5 isthe ARTIST _ID attribute.

Unique
identifier

ARTIST_ID | ARTIST_NAME AGENCY_ID|AGENCY_STATE

10001 | Jennifer Warnes 2305 NY

10002 Joni Mitchell 2306 CA

10003 William Ackerman| 2306 CA

10004 Kitaro 2345 NY
10005 Bing Crosby 2367 VT
10006 Patsy Cline 2049 TN
10007 | Jose Carreras 2876 CA

10008 Placido Domingo 2305 NY

10009 Luciano Pavarotti | 2345 NY

Figure 1-5 Relation with an attribute that violates third normal form

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Infroduction fo Relational Databases and SQL

The ARTIST_NAME and AGENCY _ID attributes are both dependent on the unique identifier
and are independent of each other. However, the AGENCY _STATE attribute is dependent on
the AGENCY _ID attribute, and therefore it violates the conditions of third normal form. This
attribute would be better suited in arelation that includes data about agencies.

NOTE

In the theoretical world of relational design, the goal is to store data according to the
rules of normalization. However, in the real world of database imp|ementdtion, we
must occasionally denormalize data, which means to deliberately violate the rules

of normalization, particularly the second and third normal forms. Denormalization

is used primarily to improve performance or reduce complexity in cases where an
overnormalized structure complicates implementation. Still, the goal of normalization is
to ensure data integrity, so denormalization should be performed with great care and
as a last resort.

Relationships
So far, the focusin this chapter has been on the relation and how to normalize data. However,
an important component of any relational database is how those relations are associated with
each other. These associations, or relationships, link relations together in meaningful ways,
which helps to ensure the integrity of the data so that an action taken in one relation does not
negatively impact data in another relation.

There are three primary types of relationships:

One-to-one A relationship between two relations in which atuple in the first relation
isrelated to at most one tuple in the second relation, and atuple in the second relation is
related to at most one tuple in the first relation.

One-to-many A relationship between two relationsin which atuplein thefirst relationis
related to zero, one, or more tuples in the second relation, but atuple in the second relation
isrelated to at most one tuple in the first relation.

Many-to-many A relationship between two relations in which atuplein thefirst relation
isrelated to zero, one, or more tuplesin the second relation, and a tuple in the second
relation isrelated to zero, one, or more tuplesin the first relation.

The best way to illustrate these relationshipsisto look at a data model of several relations
(shown in Figure 1-6). The relations are named to make referencing them easier. Asyou can
see, all three types of relationships are represented:

A one-to-one relationship exists between the ARTIST_AGENCIES relation and the
ARTIST_NAMES relation. For each artist listed in the ARTIST _AGENCIES relation,
there can be only one matching tuple in the ARTIST_NAMES relation, and vice versa.
Thisimplies abusiness rule that an artist may work with only one agency at atime.

www.it-ebooks.info

http://www.it-ebooks.info/

12

SQL: A Beginner's Guide

A one-to-many relationship exists between the ARTIST_NAMES relation and the
ARTIST_CDSrelation. For each artist inthe ARTIST_NAMES relation, zero, one, or
more tuples for that artist can be listed in the ARTIST_CDS relation. In other words,

each artist could have made zero, one, or more CDs. However, for each artist listed in the
ARTIST_CDS relation, there can be only one related tuple for that artist in the ARTIST _
NAMES relation because each artist can have only tuple in the ARTIST_NAMES relation.

A one-to-many relationship exists between the ARTIST_CDS relation and the COMPACT _
DISCS relation. For each CD, there can be one or more artists; however, each tuplein
ARTIST_CDS can match only one tuple in COMPACT_DISCS because each CD can

appear only once in the COMPACT_DISCS relation.

A many-to-many relationship exists between the ARTIST_NAMES relation and the
COMPACT_DISCSrelation. For every artist, there can be zero, one, or more CDs, and
for every CD, there can be one or more artists.

NOTE

Relational databases only support one-to-many relationships directly. A many-to-many
relationship is physically implemented by adding a third relation between the first and
second relation fo create two one-to-many relationships. In Figure 1-6, the ARTIST_CDS
relation was added between the ARTIST_NAMES relation and the COMPACT_DISCS
relation. A one-to-one relationship is physically implemented just like a one-to-many
relationship, except that a constraint is added to prevent duplicate matching rows on the
“many” side of the relationship. In Figure 1-6, a unique constraint would be added on
the ARTIST_ID attribute to prevent an artist from appearing with more than one agency.

One-to-one One-to-many One-to-many
ARTIST_AGENCIES ARTIST_NAMES ARTIST_CDS COMPACT_DISCS
ARTIST_ID [AGENCY|----{ ARTIST_ID| ARTIST_NAME -7 ARTIST_ID| CD_ID [-"1CD_ID |CD_NAME
10001 2305 10001 Jennifer Warnes 10001 99301 99301 |Famous Blue Raincoat
10002 2306 10002 | Joni Mitchell 10002 | 99302 99302 |Blue
10003 2306 10003 William Ackerman 10002 99303 99303 [Court and Spark
10004 | 2345 10004 | Kitaro 10003 199304 | |99304 |Past Light
10005 | 2367 10005 | Bing Crosby 10004 99305 | 199305 |Kojiki
10006 2049 10006 Patsy Cline 10005 | 99306 99306 |That Christmas Feeling
10006 | 99307 | | 49307 |patsy Cline: 12 Greatest Hits

\

Many-to-many

Figure 1-6 Types of relationships between relations

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Infroduction fo Relational Databases and SQL

Relationships are also classified by minimum cardinality (the minimum number of tuples

that must participate in the relationship). If each tuple in one relation must have a matching
tuplein the other, the relationship is said to be mandatory in that direction. Similarly, if each
tuple in one relation does not require a matching tuple in the other, the relationship is said to
be optional in that direction. For example, the relationship between ARTIST_NAMES and
ARTIST_AGENCIES is mandatory-mandatory because each artist must have one agency and
each ARTIST_AGENCIES tuple must refer to one and only one artist. Business rules must be
understood before minimum cardinality can be determined with certainty. For instance, can we
have an artist in the database who at some point in time has no CDs in the database (that is, no
matching tuplesin ARTIST_CDS)? If so, then the relationship between ARTIST_NAMES and
ARTIST_CDS is mandatory-optional; otherwise it is mandatory-mandatory.

Ask the Expert

Q:
A:

=

You mention that relationships between relations help to ensure data integrity.
How do relationships make that possible?

Suppose your data model includes arelation (named ARTIST_NAMES) that lists all the
artists who have recorded CDs in your inventory. Y our model also includes arelation
(named ARTIST_CDS) that matches artist IDs with compact disc IDs. If arelationship
exists between the two relations, tuplesin one relation will always correspond to tuples

in the other relation. As aresult, you could prevent certain actions that could compromise
data. For example, you would not be able to add an artist ID to the ARTIST_CDS relation
if that ID wasn't listed in the ARTIST_NAMES relation. Nor would you be able to

delete an artist from the ARTIST_NAMES relation if the artist ID was referenced in the
ARTIST_CDSrelation.

What do you mean by the term data model?

By data model, I'm referring to a design, often presented using diagrams, that represents
the structure of a database. The model identifies the relations, attributes, keys, domains,
and relationships within that database. Some database designers will create alogical model
and physical model. The logical model is based more on relational theory and appliesthe
appropriate principles of normalization to the data. The physical model, on the other hand,
is concerned with the actual implementation, as the data will be stored in an RDBMS.
Based on the logical design, the physical design brings the data structure down to the real
world of implementation.

www.it-ebooks.info

13

http://www.it-ebooks.info/

14 SQL: A Beginner's Guide

Normalizing Data and Identifying

Relationships

Asabeginning SQL programmer, it's unlikely that you’ll be responsible for normalization
of the database. Still, it'simportant that you understand these concepts, just asit’s important
that you understand the sorts of relationships that can exist between relations. Normalization
and relationships, like the relations themselves, help to provide the foundation on which SQL
isbuilt. Asaresult, this Try This exercise focuses on the process of normalizing data and
identifying the relationships between relations. To complete the exercise, you need only a
paper and pencil on which to sketch the data model.

Step by Step

1. Review therelation in the following illustration:

CD_ID |(CD_NAME CATEGORY

99301 |Famous Blue Raincoat Folk, Pop

99302 |Blue Folk, Pop

99304 | Past Light New Age

99305 | Kojiki New Age, Classical
99306 |That Christmas Feeling Christmas, Classics
99307 | Patsy Cline: 12 Greatest Hits | Country, Pop, Classics

2. Identify any elements that do not conform to the three normal forms. Y ou will find that the
CATEGORY attribute contains more than one value for each tuple, which violates the first
normal form.

3. Normalize the data according to the normal forms. Sketch out a data model that includes the
appropriate relations, attributes, and tuples. Y our model will include three tables, one for the
list of CDs, onefor the list of music categories (for example, Pop), and one that associates
the CDs with the appropriate categories of music. View the Try_This 01-1ajpg file online
for an example of how your data model might look.

4. Ontheillustration you drew, identify the relationships between the relations. Remember
that each CD can be associated with one or more categories, and each category can be
associated with zero, one, or more CDs. View the Try_This _01-1b.jpg file online to view
the relationships between relations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to Relational Databases and SQL 18

Try This Summary
Data models are usually more specific than the illustrations shown in this Try This exercise.
Relationships and keys are clearly marked with symbols that conform to a particular type
of data modeling system, and relationships show only the attributes, but not the tuples.
However, for the purposes of this chapter, it is enough that you have a basic understanding of
normalization and the relationships between relations. The exercise is meant only as away for
you to better understand these concepts and how they apply to the relational model.

Learn About SQL

Now that you have afundamental understanding of the relational model, it’s time to introduce
you to SQL and its basic characteristics. As you might recall from the “Understand Relational
Databases’ section earlier in this chapter, SQL is based on the relational model, althoughiitis
not an exact implementation. While the relational model provides the theoretical underpinnings
of therelational database, it isthe SQL language that supports the physical implementation of
that database.

SQL, anearly universally implemented relational language, is different from other
computer languages such as C, COBOL, and Java, which are procedural. A procedural
language defines how an application’ s operations should be performed and the order in which
they are performed. A nonprocedural language, on the other hand, is concerned more with the
results of an operation; the underlying software environment determines how the operations
will be processed. Thisis not to say that SQL supports no procedural functionality. For
example, stored procedures, added to many RDBMS products a number of years ago, are part
of the SQL:2006 standard and provide procedural-like capabilities. (Stored procedures are
discussed in Chapter 13.) Many of the RDBM S vendors added extensions to SQL to provide
these procedural-like capahilities, such as Transact-SQL found in Sybase and Microsoft SQL
Server and PL/SQL found in Oracle.

SQL still lacks many of the basic programming capabilities of most other computer
languages. For this reason, SQL is often referred to as a data sublanguage because it is
most often used in association with application programming languages such as C and Java,
languages that are not designed for manipulating data stored in a database. As aresult, SQL is
used in conjunction with the application language to provide an efficient means of accessing
that data, which iswhy SQL is considered a sublanguage.

The SQL Evolution

In the early 1970s, after E. F. Codd’ s groundbreaking paper had been published, IBM

began to develop a language and a database system that could be used to implement that
model. When it was first defined, the language was referred to as Structured English Query
Language (SEQUEL). When it was discovered that SEQUEL was a trademark owned by
Hawker-Siddeley Aircraft Company of the UK, the name was changed to SQL. Asword got
out that IBM was developing arelational database system based on SQL, other companies

www.it-ebooks.info

http://www.it-ebooks.info/

16

SQL: A Beginner's Guide

began to develop their own SQL -based products. In fact, Relational Software, Inc., now the
Oracle Corporation, released their database system before IBM got their product to market.
As more vendors released their products, SQL began to emerge as the standard relational
database language.

In 1986, the American National Standards Institute (ANSI) released the first published
standard for the language (SQL-86), which was adopted by the International Organization
for Standardization (ISO) in 1987. The standard was updated in 1989, 1992, 2003, 2006, and
work continues. It has grown over time—the original standard was well under 1,000 pages,
while the SQL :2006 version weighsin at more than 3,700 pages. The standard was written in
parts to permit more timely publication of revisions and to facilitate parallel work by different

committees. Table 1-1 provides an overview of the parts and the current status of each.

Part | Topic Status
1 SQL/Framework | Completed in 1999, revised in 2003, corrections published in 2007
2 SQL/Foundation | Completed in 1986, revised in 1999 and 2003, corrections published in
2007
3 SQL/CL Completed in 1995, revised in 1999 and 2003, corrections published in
2005
4 SQL/PSM Completed in 1996, revised in 1999 and 2003, corrections published in
2007
5 SQL/Bindings Established as a separate part in 1999, but merged back into Part 2 in
2003; there is currently no Part 5
6 SQL/Transaction | Project canceled; there is currently no Part 6
7 SQL/Temporal Withdrawn; there is no Part 7
8 SQL/Objects and | Merged into Part 2; there is no Part 8
Extended Objects
9 SQL/MED Started after 1999, completed in 2003, corrections published in 2005
10 SQL/OLB Completed as ANSI standard in 1998, ISO version completed in 1999,
revised in 2003, corrections published in 2007
11 SQL/Schemata | Extracted to a separate part in 2003, corrections published in 2007
12 SQL/Replication | Project started in 2000, but subsequently dropped; there currently is
no Part 12
13 SQL/JRT Completed as ANSI standard in 1999, revision completed in 2003,
corrections published in 2005
14 SQL/XML Completed in 2003, expanded in 2006, corrections published in 2007
Table 1-1 Parts of the SQL standard

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to Relational Databases and SQL - 17

RDBM S vendors had products on the market before there was a standard, and some of the
features in those products were implemented differently enough that the standard could not
accommodate them all when it was developed. We often call these vendor extensions. This
may explain why there is no standard for a database. And as each release of the SQL standard
comes out, RDBM S vendors have to work to incorporate the new standard into their products.
For example, stored procedures and triggers were new in the SQL:1999 standard, but had been
implemented in RDBM Ss for many years. SQL:1999 merely standardized the language used to
implement functions that already existed.

NOTE

Although | discuss stored procedures in Chapter 13 and triggers in Chapter 14, |
thought I'd give you a quick definition of each. A stored procedure is a set of SQL
statements that are stored as an ob]ect in the database server but can be invoked by a
client simply by calling the procedure. A trigger is similar to a stored procedure in that
it is a set of SQL statements stored as an object in the database on the server. However,
rather than being invoked from a client, a trigger is invoked automatically when some
predefined event occurs, such as inserting or updating data.

Obiject Relational Model

The SQL language is based on the relational model, and up through SQL-92, so was the SQL
standard. However, beginning with SQL:1999, the SQL standard extended beyond the pure
relational model to include object-oriented constructs into the language. These constructs are
based on the concepts inherent in object-oriented programming, a programming methodol ogy
that defines self-contained collections of data structures and routines (called objects). In
object-oriented languages such as Java and C++, the objects interact with one another in
ways that allow the language to address complex problems that were not easily resolved in
traditional languages.

With the advent of object-oriented programming—along with advancesin hardware and
software technologies and the growing complexities of applications—it became increasingly
apparent that a purely relational language was inadequate to meet the demands of the real
world. Of specific concern was the fact that SQL could not support complex and user-defined
data types or the extensibility required for more complicated applications.

Fueled by the competitive nature of the industry, RDBM S vendors took it upon themselves
to augment their products and incorporate object-oriented functionality into their systems.
The SQL :2006 standard follows suit and extends the relational model with object-oriented
capabilities, such as methods, encapsulation, and complex user-defined data types, making
SQL an object-relational database language. As shown in Table 1-1, Part 14 (SQL/XML) was
significantly expanded and republished with SQL:2006, and all the other parts are carried over
from SQL:2003.

Conformance to SQL:2006
Once SQL was standardized, it followed that the standard would also define what it took for an
implementation of SQL (an RDBMS product) to be considered in conformance to that standard.

www.it-ebooks.info

http://www.it-ebooks.info/

18

SQL: A Beginner's Guide

For example, the SQL-92 standard provided three levels of conformance: entry, intermediate,
and full. Most popular RDBM Ss reached only entry-level conformance. Because of this,
SQL:2006 takes a different approach to setting conformance standards. For a product to bein
conformance with SQL:2006, it must support the Core SQL level of conformance. Core SQL
in the SQL:2006 standard is defined as conformance to Part 2 (SQL/Foundation) and Part 11
(SQL/Schemata) of the standard.

In addition to the Core SQL level of conformance, vendors can claim conformance to any
other part by meeting the minimum conformance requirements for that part.

NOTE

You can view information about the SQL:2006 standard by purchasing a copy of the
appropriate standard document(s) published by ANSI and ISO. The standard is divided
into nine documents (one part per document). The first document (ANSI/ISO/IEC
9075-1:2003) includes an overview of all nine parts. The suffix of each document
name contains the year of publication, and different parts have different publication
years because parts are updated and published independently by different committees.
As you can see in Table 1-1, Part 1 was last published in 2003, and in fact, only Part
14 carries a 2006 publication date — all the other parts were last published in 2003.
You can purchase these documents online at the ANSI Electronic Standards Store
(http:/ /webstore.ansi.org/), the NCITS Standards Store (http://www.techstreet.com/
ncitsgate.html), or the 1SO Store (http://www.iso.org/iso/store.htm). On the ANSI site,
note that there are two variants of each document with essentially identical content,
named INCITS/ISO/IEC 9075 and ISO/IEC 9075. The ISO/IEC variants cost between
$139 and $289 per document, while the INCITS/ISO/IEC variants cost only $30 per
document. The ISO Store has the entire set of documents available on a convenient CD
for 356 Swiss francs (about $350). Obviously, prices are subject to change at any time.
Also available at no charge are corrections, called “Technical Corrigenda.” As shown
in Table 1-1, three parts had corrections published in 2005, and six other parts had
corrections published in 2007.

Types of SQL Statements

Although SQL is considered a sublanguage because of its nonprocedural nature, it is

nonethel ess a complete language in that it allows you to create and maintain database objects,
secure those objects, and manipulate the data within the objects. One common method used to
categorize SQL statements is to divide them according to the functions they perform. Based on
this method, SQL can be separated into three types of statements:

Data Definition Language (DDL) DDL statements are used to create, modify, or delete
database objects such as tables, views, schemas, domains, triggers, and stored procedures.
The SQL keywords most often associated with DDL statements are CREATE, ALTER,
and DROP. For example, you would use the CREATE TABLE statement to create atable,
the ALTER TABLE statement to modify the table’ s properties, and the DROP TABLE
statement to delete the table definition from the database.

www.it-ebooks.info

http://www.techstreet.com/ncitsgate.html
http://www.techstreet.com/ncitsgate.html
http://www.iso.org/iso/store.htm
http://webstore.ansi.org/
http://www.it-ebooks.info/

Chapter 1: Infroduction fo Relational Databases and SQL

Data Control Language (DCL) DCL statements alow you to control who or what
(adatabase user can be a person or an application program) has access to specific objects
in your database. With DCL, you can grant or restrict access by using the GRANT or
REV OKE statements, the two primary DCL commands. The DCL statements also allow
you to control the type of access each user has to database objects. For example, you

can determine which users can view a specific set of data and which users can manipulate
that data.

Data Manipulation Language (DML) DML statements are used to retrieve, add,
modify, or delete data stored in your database objects. The primary keywords associated
with DML statements are SELECT, INSERT, UPDATE, and DELETE, al of which
represent the types of statements you’ Il probably be using the most. For example, you can
use a SELECT statement to retrieve data from atable and an INSERT statement to add
datato atable.

Most SQL statements that you' [l be using fall neatly into one of these categories, and 'l
be discussing a number of these statements throughout the remainder of the book.

NOTE

There are a number of ways you can classify statements in addition to how they’re
classified in the preceding list. For example, you can classify them according to how
they’re executed or whether or not they can be embedded in a standard programming
language. The SQL:2006 standard provides ten broad categories based on function.
However, | use the preceding method because it is commonly used in SQL-related
documentation and because it is a simple way to provide a good overview of the
functionality inherent in SQL.

Types of Execution

In addition to defining how the language can be used, the SQL :2006 standard provides details
on how SQL statements can be executed. These methods of execution, known as binding
styles, not only affect the nature of the execution, but also determine which statements, at a
minimum, must be supported by a particular binding style. The standard defines four methods
of execution:

Direct invocation By using this method, you can communicate directly from a front-end
application, such asiSQL*Plusin Oracle or Management Studio in Microsoft SQL Server,
to the database. (The front-end application and the database can be on the same computer,
but often are not.) Y ou simply enter your query into the application window and execute
your SQL statement. The results of your query are returned to you asimmediately as
processor power and database constraints permit. Thisis a quick way to check data, verify
connections, and view database objects. However, the SQL standard’ s guidelines about
direct invocation are fairly minimal, so the methods used and SQL statements supported
can vary widely from product to product.

www.it-ebooks.info

http://www.it-ebooks.info/

20

SQL: A Beginner's Guide

Embedded SQL In this method, SQL statements are encoded (embedded) directly in

the host programming language. For example, you can embed SQL statements within C
application code. Before the code is compiled, a preprocessor analyzes the SQL statements
and splits them out from the C code. The SQL code is converted to aform the RDBMS can
understand, and the remaining C code is compiled as it would be normally.

Modulebinding This method allows you to create blocks of SQL statements (modul es)
that are separate from the host programming language. Once the module is created, it

is combined into an application with alinker. A module contains, among other things,
procedures, and it is the procedures that contain the actual SQL statements.

Call-level interface (CL1) A CLI alowsyou to invoke SQL statements through an
interface by passing SQL statements as argument values to subroutines. The statements
are not precompiled as they are in embedded SQL and module binding. Instead, they are
executed directly by the RDBMS.

Direct invocation, although not the most common method used, isthe one I’ll be using

primarily for the examples and exercises in this book because it supports the submission of
ad hoc queries to the database and generates immediate results. However, embedded SQL is
currently the method most commonly used in business applications. | discuss this method, as
well as module binding and CLI, in greater detail in Chapter 17.

Ask the Expert

Q:

You statethat, for an RDBM Sto bein confor mance with the SQL : 2006 standard,
it must comply with Core SQL . Arethere any additional requirementsto which a
product must adhere?

Yes. In addition to Core SQL, an RDBMS must support either embedded SQL or module
binding. Most products support only embedded SQL, with some supporting both. The
SQL standard does not require RDBM S products to support direct invocation or CLI,
although most do.

What aretheten categories used by the SQL :2006 standard to classify SQL statements?

The SQL standard classifies statements into the following categories: schema, data, data
change, transaction, connection, control, session, diagnostics, dynamic, and embedded
exception declaration. Keep in mind that these classifications are merely atool that you can
use to better understand the scope of the language and its underlying concepts. Ultimately, it
isthe SQL statements themselves—and what they can do—that isimportant.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Infroduction fo Relational Databases and SQL

Use a Relational Database Management System

Throughout this chapter, when discussing the relational model and SQL, I’ ve often
mentioned RDBM Ss and how they use the SQL standard as the foundation for their
products. A relational database management systemis a program or set of programs that
store, manage, retrieve, modify, and manipulate data in one or more relational databases.
Oracle, Microsoft SQL Server, IBM’s DB2, and the shareware product MySQL are all
examples of RDBMSs. These products, like other RDBMSs, allow you to interact with

the data stored in their systems. Although an RDBMS is not required to be based on SQL,
most products on the market are SQL -based and strive to conform to the SQL standard. At a
minimum, these products claim entry-level conformance with the SQL-92 standard and are
now working toward Core SQL conformance with SQL :2006.

In addition to complying with SQL standards, most RDBM Ss support other features,
such as additional SQL statements, product-based administrative tools, and graphical user
interface (GUI) applications that allow you to query and manipulate data, manage database
objects, and administer the system and its structure. The types of functionality implemented
and the methods used to deliver that functionality can vary widely from product to product.
As databases grow larger, become more complicated, and are distributed over greater areas,
the RDBMSS products used to manage those databases become more complex and robust,
meeting the demands of the market as well as implementing new, more sophisticated
technologies.

SQL Standard versus Product Implementations

At the core of any SQL-based RDBMS s, of course, SQL itself. However, the language used
isnot pure SQL. Each product extends the language in order to implement vendor-defined
features and enhanced SQL -based functionality. Moreover, a number of RDBMS products
made it to market before there was a standard. Consequently, every vendor supports a slightly
different variation of SQL, meaning that the language used in each product is implementation-
specific. For example, SQL Server uses Transact-SQL , which encompasses both SQL and
vendor extensions to provide the procedural statements necessary for triggers and stored
procedures. On the other hand, Oracle provides procedural statements in a separate product
component called PL/SQL. As aresult, the SQL statementsthat | provide in the book might be
slightly different in the product implementation that you' re using.

Throughout the book, | will be using pure SQL in most of the examples and exercises.
However, | realize that, as a beginning SQL programmer, your primary interest isin
implementing SQL in the real world. For that reason, | will at times use SQL Server (with
Transact-SQL) or Oracle (with PL/SQL) to demonstrate or clarify a particular concept that
can't be fully explained by pure SQL alone.

www.it-ebooks.info

http://www.it-ebooks.info/

22

SQL: A Beginner's Guide

One of the advantagesto using a product like Oracle or SQL Server isthat they both support
direct invocation through afront-end GUI application. SQL Server uses the Management Studio
interface, shown in Figure 1-7. The GUI interface makes it possible for you to create ad hoc SQL
queries, submit them to the DBMS for processing, and view the results, allowing you to apply
what you're learning in the book to an actual SQL environment. Oracle has severa solutionsfor a
front-end GUI, including the web-based i SQL* Plus interface, shown in Figure 1-8.

In addition to GUI interfaces, most products include a command-line interface that can
be used on older terminal s that have no graphic capability. These interfaces are also useful
for executing scripts containing SQL statements and for dial-up connections where graphical
interfaces are too slow. Figure 1-9 shows the command-line interface for MySQL running on
Microsoft Windows.

My use of these products by no meansimplies that I’'m endorsing any of them over any other
commercial products (such as Sybase or Informix) or shareware products (such as PostgreSQL),

B Microsoft SQL Server Management Studio ;lﬂlﬂ
e Edt Vew Query Project Jook Window Community belp

i mewouey | MEBEID SHS BEBES

| W) W 3 | mvenToRy »| ¥ pecute v W EEE W2 4| PR D QED =2 FE

Object Exploi - 4 x | 0L 200,501 Querysql* | Summary - X
connect- | ¥ w3 T SELECT * FROM COMPACT DISCS; =
= [DIGOO0\SQL2005 (SQL Server 9.0.1399 - DIGC
= 3 Databases
7 [System Datahases
3 Database Snapshots =
B L) INVENTORY
£ Database Diagrams >
B [Tables | | LI_‘
= [System Tables =] Rosule |_..] M&sﬁgnsl
= g :xﬁ:‘ﬁ:ﬁcm COMPAGT_DISC 1D | CO_TITLE [LABEL_[m stock]
& T dbo.CD_LABELS 1 |wm | Famous Hiue Rancost a27 13
@ 0 dbo.COMPACT_DISC_TYPES 2 102 Blve 528 42
& O dbo.COMPACT_DISCS 3 103 Court and Spark 829 22
@ O dbo.MUSIC_TYPES a 104 Past Light 830 17
(3 Views 5] ws Kook 831 [
& [Synonyms 6 | 108 That Christmas Feeling 232 [
3 Programmabiity (7 | w7 Patsy Cline: 12 Greatest Hits 832 32
Service Droker a |08 Carreras Domingo Pavaratt in Concert 833 27
o Storage g |we After this Rein: The Seit Sounds of Erk Satie 233 3
bS] o] 110 Out of Africa 232 2
B [Security —
T (3 Server Objects JRA R AN Leanard Cohen The Bast Of 034 12
& Ca Replcation 12 112 Fundamental &35 4
® 3 Management g s Hob Seger and the Siver Bullot Band Greatest Hils | 835 18
3 Motfication Services 14 114 Blues on the Bayou 832 27
& [SQL Server Agent 05 | 11s Orando 836 5
4 | 1#| [Query axscuted successtully. |DIG00ms0L2005 BORTM) [DIBIOMANdY (52) INVENTORY (000000 |15 rows
Ready tn3 Col1 chi ms

Figure 1-7 Using SQL Server Management Studio

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction fo Relational Databases and SQL 23

€2 isQ1 =Plus Release 10.1.0.2 - Mozila Firefox _|o] x|
Fie EQt View Hstory Bookmarks Toos Hep :
@ - @ o |1 hupjocanostsseo/sapsiorkspace.u o) 6 &)
ORACLE v =
‘SO * k)) (2)
i’b QL 3 PILIS Lagaut Praferances Help
E)
Connecled as INVENTORY@orcl
Workspace
Enter SAL, PL/SAL and SQL*Plus statements. | Clear)

SELECT * FROM COMPACT DISCS;

_Executn) (Load Senpt) (SavoSeriot) (Cancal)

COMPACT_DISC_ID CD_TITLE LABEL_ID IN_STOCK
101 Famous Blue Raincoat 827 13
102 Blue 828 42
103 Court and Spark 829 22
104 Past Light 830 17
105 Koijiki a3 6
106 That Christmas Feeling 032 i}
107 Patsy Cline: 12 Greatest Hits 832 32
108 Carreras Domingo Pavarotti in Concert 833 27
109 After the Rain: The Soft Sounds of Crik Satie 833 21
110 Out of Africa 832 29
111 Leonard Cohen The Best Of 834 12
112 Fundamental 8350 34
113 Bob Seger and the Siver Bullet Band Greatest Hits 83 16
114 Blues on the Bayou 832 27
115 Orando 836 9 -

15 rows selected.

| Done

B

Figure 1-8 Using Oracle’s iSQL*Plus

and indeed you' re encouraged to use whatever RDBM S you have available, assuming it supports
most of the functionality I'll be discussing in this book. However, I'm choosing SQL Server and
Oracle for the majority of the examplesin this book because | want to demonstrate how SQL
isimplemented in the real world and how SQL might differ from an implementation-specific
version of the language, and these two products supply me with the vehiclesto do so. Keepin
mind that, in order for you to gain afull understanding of SQL and be able to useit in various
RDBMS products, you will need to understand both standard SQL and the language asit is
implemented in the products you'll be using.

www.it-ebooks.info

http://www.it-ebooks.info/

24

SQL: A Beginn

n=. MySQL Command Line

Database changed

e +

| COMPACT_DISC_ID
D | IN_STOCK |

o =
e +

| 101
T 13 1

| 102
8 | 42 |

| 103
9 | 22 |

| 104
0 | 17 1

| 105
11 6 |

| 106
2 | 8 |

| 107
2 | 32 |

| 108
3 | 27 |

| 109
3 | 21 |

| 110
2 | 29 |

| 111
4 | 12 |

| 112
5 | 34 |

| 113
5 | 16 |

| 114
2 | 27 |

| 115
6 | il

B T
e +

15 rows in set (0.
mysql>

mysql>

mysql>

mysql>

mysql>

mysql> use inventory

er's Guide

Client

mysql> SELECT = FROM COMPACT_DISCS;
4

e e e e e o e e e o e o i o i o L s L o L v

| CD_TITLE

| Famous Blue Raincoat

| Blue

| Court and Spark

| Past Light

| Kojiki

| That Christmas Feeling

| Patsy Cline: 12 Greatest Hits

| Carreras Domingo Pavarotti in Concert

| After the Rain: The Soft Sounds of Erik Satie
| Out of Africa

| Leonard Cohen The Best Of

| Fundamental

| Bob Seger and the S$ilver Bullet Band Greatest Hits
| Blues on the Bayou

| Orlando

00 sec)

82

82

83

83

83

83

83

83

83

83

83

83

83

83

Figure 1-9 Using the MySQL command-line inferface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction fo Relational Databases and SQL 25

Connecting to a Database

Although this book focuses primarily on pure SQL, to try out the examples and do most of
the exercises, you'll need accessto an RDBM S in order to execute SQL statements. Asa
result, one of the first things you should do is to make sure you' re able to access an SQL
environment. This exercise will help you do that; however, unlike most other exercisesin the
book, this one will require more effort on your part to go to resources outside the book to set
yourself up with an RDBM S that allows you to invoke SQL statements directly. To that end,
this exercise tries to get you started, but you must use your own initiative to ensure that you
have an environment in which you’' re comfortable working.

Step by Step

1. Identify the RDBM S you plan to use for the exercisesin thisbook. Perhaps there isa system
you're aready familiar with or one that’ s available to you in your work environment. If you
don’t have anything available at work and you' re not ready to purchase a product, check online
to see what might be available. Most RDBM S vendors offer afree of charge, basic, restricted-
use version of their product, often called the “ Express Edition”; others offer atrial version
that may be used free of charge for alimited time period. For example, you can download
Oracle Express Edition for Linux or Windows at http://www.oracle.com/technol ogy/software/
products/database/, or you can download SQL Server Express at http://www.microsoft.com/sql/
editiong/express. (Y ou will need a high-speed Internet connection to download largefiles.)

If you prefer afreeware product, MySQL is apopular choice. In fact, Yahoo and Google
both use MySQL extensively in a configuration known as LAMP (Linux, Apache, MySQL,
and PHP). Y ou can download the MySQL Community Server at no charge from http://dev
.mysqgl.com/downloads/mysqgl. MySQL Enterprise Server, on the other hand, is afee-based
edition supported by the vendor.

Before you decide on a particular product, do the necessary research to make sure it
supports direct invocation, preferably though a GUI application, and can run in your
computer environment. Also check to see how much of the SQL:2006 standard it supports
and review any licensing agreements to make sure you're in compliance. If asystemis
available through your work, be sure to talk to database and network administrators to
determine which server you should use, whether and how you should download a copy, and
how to make your connection to the SQL server. You'll often need an account to connect to
the RDBMS, soif thisisthe case, find out what username and password you should use.

2. Once you' ve established which RDBMS you'll be using, install it on your computer. If
you'll be connecting to a system over the network, you'll need to install only the client tools
on your local compulter.

3. Open the client GUI that allows you to directly invoke SQL statements. When you open
the GUI, you might be prompted for a username and password. When and if you're
prompted varies depending on the product you' re using, whether you’ re connecting over
the network, whether the RDBMS is set up as a stand-alone system, and other variables
specific to the product. In addition, a product such as SQL Server offers security integrated
with the operating system, so you may be prompted for a server name only.

(continued)

www.it-ebooks.info

http://www.oracle.com/technology/software/products/database/
http://www.oracle.com/technology/software/products/database/
http://www.microsoft.com/sql/editions/express/
http://www.microsoft.com/sql/editions/express/
http://dev.mysql.com/downloads/mysql
http://dev.mysql.com/downloads/mysql
http://www.it-ebooks.info/

26

SQL: A Beginner's Guide

4. Execute a SELECT statement in the application input window. | realize that we haven't
covered SELECT statements yet, but the basic syntax isrelatively easy:

SELECT * FROM <t abl e>
The <table> placeholder should be replaced with the name of atable in an existing database.

The purpose of this exerciseis simply to verify that you have connectivity with the data
stored in your RDBMS. Most products include sample data, and that is the datayou're
trying to connect to. Check product documentation or check with the database administrator
to verify whether a database exists that you can access. If not, you can download the SQL
for the INVENTORY database from the download site http://www.osborne.com or http://
www.mhprofessional.com/category/?cat=112, and use it to create your database objects.

If you're working in Oracle and the sample schemas were installed, you can execute the
following statement:

SELECT * FROM scott. enp;
To execute the statement, type it in the input window of i SQL* Plus and then click EXECUTE.

If you're working in SQL Server with sample data installed, you can execute the following
Statement:

USE pubs
SELECT * FROM enpl oyee

To execute the statement, type it in the input window of SQL Server Management Studio
and then click EXECUTE.

If you're working in the MySQL command-line interface, smply type the SQL statement
and press ENTER.

Once you execute the statement, the results of your query appear in the output window. At
this point, don’t concern yourself with the meaning of each word in the SQL statement or
with the query results. Y our only concern isto make sure everything isworking. If you can't
execute the statement, check with your database administrator or the product documentation.

5. Close the GUI application without saving your query.

Try This Summary

As| said at the beginning of the exercisg, it is different from most of the other onesin the book
because you are basically on your own to establish connectivity with your RDBMS. Again,
thisis because SQL is alanguage standard, independent of RDBM S implementations, and
vendor-specific issues are, for the most part, beyond the scope of this book. In addition, the
methods used to connect to a database, the tools available to make those connections, and the
way in which an RDBMS s set up vary from product to product, environment to environment,
and even operating system to operating system. However, the time you take now to research
which product you' [l use and to make sure you can connect to data in an existing database will
prove invaluable as you apply the information discussed in the rest of the book.

www.it-ebooks.info

http://www.osborne.com
http://www.mhprofessional.com/category/?cat=112
http://www.mhprofessional.com/category/?cat=112
http://www.it-ebooks.info/

Chapter 1: Introduction fo Relational Databases and SQL 27

Chapfer 1 Self Test

. What is a database?
. Which of the following objects make up arelation?

A Datatypes
B Tuples
C Attributes

D Forms

. A(n) isaset of data whose values make up an instance of each attribute

defined for that relation.

. What are the differences between the first normal form and the second normal form?

5. A relationisin third normal form if it isin second normal form and if it complies with the

10.

11.
12.

13.
14.
15.

other guidelines of that form. What are those guidelines?

. What are the three primary types of relationships supported by arelational database?

. Inyour data model, you have two relations associated with each other by a many-to-many

relationship. How will this relationship be physically implemented in arelational database?

. How does SQL differ from programming languages such as C, COBOL, and Java?
. What factors have contributed to the SQL:2006 standard incorporating object-oriented

capabilities?
Which level of conformance must an RDBM S support in order to comply with SQL:20067?
A Entry
B Core
C Full
D Intermediate
What are the differences between a DDL statement and aDML statement?

What method of executing SQL statements would you use if you want to communicate
directly with an SQL database from a front-end application?

What four methods does the SQL :2006 standard support for the execution of SQL statements?
What isarelationa database management system?
What is an example of an RDBM S?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Working with the
SQL Environment

29

http://www.it-ebooks.info/

30

SQL: A Beginner's Guide

Key Skills & Concepts

Understand the SQL Environment
Understand SQL Catalogs

Name Objectsin an SQL Environment
Create a Schema

Create a Database

I n Chapter 1, | discuss relational theory, SQL, and relational database management systems
(RDBMSs). In this chapter, | want to take this discussion one step further and introduce you
to the SQL environment, asit is defined in the SQL:2006 standard. The SQL environment
provides the structure in which SQL isimplemented. Within this structure, you can use SQL
statements to define database objects and store data in those objects. However, before you
start writing SQL statements, you should have a basic understanding of the foundations on
which the SQL environment is built so you can apply this information throughout the rest

of the book. In fact, you might find it helpful to refer back to this chapter often to help gain
a conceptual understanding of the SQL environment and how it relates to the SQL elements
you'll learn about in subsequent chapters.

Understand the SQL Environment

The SQL environment is, quite simply, the sum of al the parts that make up that environment.
Each distinct part, or component, works in conjunction with other components to support SQL
operations such as creating and modifying objects, storing and querying data, or modifying
and deleting that data. Taken together, these components form amodel on which an RDBMS
can be based. This does not imply, however, that RDBM S vendors adhere strictly to this
model; which components they implement and how they implement them are left, for the most
part, to the discretion of those vendors. Even so, | want to provide you with an overview of the
way in which the SQL environment is defined, in terms of its distinct components, asthey are
described in the SQL:2006 standard.

The SQL environment is made up of six types of components, as shown in Figure 2-1. The
SQL client and SQL servers are part of the SQL implementation and are therefore subtypes of
that component.

Notice that thereis only one SQL agent and one SQL implementation, but there are
multiple components for other types, such as catalogs and sites. According to SQL:2006,
there must be exactly one SQL agent and SQL implementation and zero or more SQL client
modules, authorization identifiers, and catalogs. The standard does not specify how many sites
are supported, but implies multiple sites.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Working with the SQL Environment 31

SQL implementation

o
+“—r | SQL client | L |SQL server|
% [saL server]

SQL environment

|SQL client modulel |SQL client modulel |SQL client modulel

|Authorization identifier| |Authorization identifier| |Authorization identifier|

|User mapping| |User mapping| |User mapping| |User mapping|

|Routine mapping| |Routine mapping| |Routine mapping|

| Catalog | | Catalog] | Catalog| | Catalog]

| site | | site | | site | | site |

Figure 2-1 The components of the SQL environment

Each type of component performs a specific function within the SQL environment. Table 2-1
describes the eight types.

For the most part, you need to have only a basic understanding of the components that
make up an SQL environment (in terms of beginning SQL programming). However, one of
these components—the catal og—plays a more critical role than the others, with regard to what
you'll belearning in this book. Therefore, | will cover thistopic in more detail and explain
how it relates to the management of data and the objects that hold that data.

Component Type Description

SQL agent Any structure that causes SQL statements to be executed. The SQL agent is
bound to the SQL client within the SQL implementation.

SQL implementation A processor that executes SQL statements according to the requirements of
the SQL agent. The SQL implementation includes one SQL client and one
or more SQL servers. The SQL client establishes SQL connections with the
SQL servers and maintains data related to interactions with the SQL agent
and the SQL servers. An SQL server manages the SQL session that takes
place over the SQL connection and executes SQLL statements received from

the SQL client.

Table 2-1 The Component Types Supported in an SQL Environment

www.it-ebooks.info

http://www.it-ebooks.info/

32 SQL A Beginner's Guide

Component Type Description

SQL client module A collection of SQL statements that are written separately from your

rogramming application language but that can be called from within that
E:mgque. An SQL client module contains zero or more externally invoked
procedures, with each procedure consisting of a single SQL statement.
SQL client modules reside within the SQL environment and are processed
by the SQL implementation, unlike embedded SQL, which is written within
the application programming language and precompiled before the
programming language is compiled. SQL client modules are discussed in
more detail in Chapter 17.

Authorization identifier | An identifier that represents a user or role that is granted specific access
privileges to objects and data within the SQL environment. A user is

an individual security account that can represent an individual, an
application, or a system service. A role is a set of predefined privileges
that can be assigned to a user or to another role. | discuss authorization
identifiers, users, and roles in Chapter 6.

User mapping A user mapping pairs an authorization identifier with a foreign server
descriptor.

Routine mapping A routine mapping pairs an SQL-invoked routine with a foreign server
descriptor.

Catalog A group of schemas collected together in a defined namespace. Each

catalog contains the information schema, which includes descriptors of
a number of schema objects. The catalog itself provides a hierarchical
structure for organizing data within the schemas. (A schema is basically
a container for ob]ects such as tables, views, and domains, all of which
I'll be discussing in greater detail in the next section, “Understand SQL
Catalogs.”)

Site A group of base tables that contain SQL data, as described by the contents
of the schemas. This data may be thought of as “the database,” but keep
in mind that the SQL standard does not include a definition of the term
“database” because it has so many different meanings.

Table 2-1 The Component Types Supported in an SQL Environment (continued)

Understand SQL Catalogs

In the previous section, “Understand the SQL Environment,” | state that an SQL environment
isthe sum of al parts that make up that environment. Y ou can use the same logic to describe
acatalog, in that a catalog is a collection of schemas and these schemas, taken together, define
a namespace within the SQL environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Working with the SQL Environment 33

NOTE

A namespace is a naming structure that identifies related components in a specified
environment. A namespace is often depicted as an inverted tree configuration to
represent the hierarchical relationship of objects. For example, suppose your namespace
includes two objects: OBJECT_1 and OBJECT_2. If the namespace is called NAME_T,
the full object names will be NAME_1.OBJECT_1 and NAME_1.OBJECT_2 (or some

such naming configuration), thus indicating that they share the same namespace.

Another way to look at a catalog is as a hierarchical structure with the catal og as the parent
object and the schemas as the child objects, as shown in Figure 2-2. At the top of the hierarchy
isthe SQL environment, which can contain zero or more catal ogs (although an environment
with zero catalogs wouldn’t do you much good because the catalog is where you'll find the
data definitions and SQL data). The schemas are located at the third tier, beneath the catal og,
and the schema objects are at the fourth tier.

SQL environment

Catalog 3

Information schema

SQL data is
stored in
base tables.

Base tables

Views

Schema objects are
owned by authorization
identifier.

Domains

T
User-defined types

Constraints

SQL server modules Schema objects
T

Triggers

T
SQL-invoked routines
T

Character sets

T
Collations
T

Transliterations

T
Sequence generators

Figure 2-2 The components of a catalog

www.it-ebooks.info

http://www.it-ebooks.info/

34

SQL: A Beginner's Guide

Y ou can compare the rel ationships between the objects in a catalog to the relationships
between files and directoriesin your computer’ s operating system. The catalog is represented
by a directory off the root; the schemas, by subdirectories; and the schema objects, by files
within the subdirectories.

Like the hierarchical structure of afile system, the structure of a catalog islogical
in nature; that is, afile systemis presented in a hierarchical form (like that of Windows
Explorer), but that doesn’t mean that the files are actually stored hierarchically on your hard
disk. In the same sense, the catalog hierarchy is merely arepresentation of the relationships
between objectsin your SQL environment. It doesn’t imply any physical containment or
organization. How these objects are actually implemented, with regard to the catal og structure,
and which ones are implemented are |eft to the discretion of the RDBM S vendor. In fact, the
SQL:2006 standard doesn’t define language for the creation or deletion of catalogs; thistoo is
left up to the vendors, and few systems even support catalogs.

Schemas

Each catalog contains one or more schemas. A schema is a set of related objects that are
collected under a common namespace. The schema acts as a container for those objects, which
in turn store the SQL data or perform other data-related functions. Each schema, the objects
contained in the schema, and the SQL data within those objects are owned by the authorization
identifier associated with that schema.

Unlike catalogs, schemas are widely implemented in RDBM S products. However, as
with catalogs, SQL |eaves most of the implementation details up to the vendor, although
the standard does provide language for the creation and deletion of schemas. For creating
aschema, the CREATE SCHEMA statement is used, and for deleting a schema, the DROP
SCHEMA statement is used. Creating and deleting schemas are discussed in more detail in the
“Create a Schema’” section.

The treatment of schemasin an RDBMS can vary widely from the standard, and therefore,
it'simportant that you read the product documentation carefully if you want to create a schema
in your SQL environment. For example, the Oracle database architecture combines the concept
of aschema and the owning authorization identifier—when you create a user in Oracle, you
are also implicitly creating a schema for that user. While Oracle 11g does contain a CREATE
SCHEMA statement for compatibility with the SQL standard, it merely allows you to execute
abatch of specific SQL statements to create tables and views and grant privileges within a
schemathat already exists (that is, one that was aready implicitly created using the CREATE
USER statement).

Information Schema

Each catalog contains a special schema named INFORMATION_SCHEMA. This schema
contains definitions for a number of schema objects, mostly views. A view isavirtual table that
allows you to view data collected from actual tables. By using these views, you can display
the definitions of objectsin that catalog as though it were SQL data. Y ou cannot change any

of the data—if you did you would be changing the object definitions themselves—but you can
display information simply by querying the appropriate view.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Working with the SQL Environment

Aswith most SQL features, the implementation of the information schema and what
functions are supported varies from product to product, although these implementations are
usualy fairly straightforward. For example, SQL Server 2008 includes aview in the information
schemanamed INFORMATION_SCHEMA.COLUMNS. If you query this view, the results will
include alist that contains information about every column accessible to the current user within
the current database. The results include such information as the column name, the data type
assigned to that column, and the owner (authorization identifier) who owns that column.

Schema Objects
At the bottom tier of the catalog hierarchy sit the schema objects. The schema objects are a set
of related components that are contained within a schema. Thisisthe level where the SQL data
is stored and, consequently, the level that concerns SQL programmers the most. By using SQL,
you'll be able to define SQL objects, modify those definitions, and store and manipulate SQL
data within the objects. In fact, most of what you’ll be doing in this book from here onin has
adirect impact on or is directly connected with the schema objects.

The SQL :2006 standard defines 12 types of schema objects. These objects, described
in Table 2-2, provide the foundation for the SQL environment and the structure for the way
in which datais stored within that environment. I’ll be discussing most of these objectsin
greater detail later in the book; as aresult, I’ ve included references, where appropriate, to the
applicable chapters.

Schema Object Description

Base table The basic unit of data management in the SQL environment. A table is made

up of columns and rows and is analogous to a relation (with its attributes
and tuples) in relational theory. Each column is associated with a data type
and holds values that are somehow related to each other. For example, @
table about customers would contain columns that contain data about those
customers, such as their names and addresses. (See Chapter 3.)

View A virtual table that is created when the view is invoked (by calling its name).

The table doesn't actually exist—only the SQL statement that defines the
table is stored in the database. When that statement is invoked, the view
pulls data from base tables and displays the results as if you're viewing the
results of a base table query. (See Chapter 5.)

Domain A user-defined object that can be specified in place of a data type when

defining a column (a process part of creating or altering a table definition).
A domain is based on an SQL data type but can include a default value and
a constraint, which further limits the values that can be stored in a particular
column. (See Chapter 4.)

Table 2-2 The Types of Objects That Can Be Defined in Each Schema

www.it-ebooks.info

35

http://www.it-ebooks.info/

36

SQL: A Beginner's Guide

Schema Object

Description

User-defined type (UDT)

A user-defined object that can be specified in place of a data type when
defining a column. SQL supports two types of UDTs: distinct and structured.
Distinct types are based on SQL data types and their defined values.
Structured types are made up of attribute values, each of which is based on
an SQL data type. (See Chapter 3.)

Constraint

A restriction defined on a table, column, or domain that limits the type of
data that can be inserted into the applicable object. For example, you can
create a constraint on a column that restricts the values that can be inserted
into that column to a specific range or list of numbers. (See Chapter 4.)

SQL server module

A module that contains SQL-invoked routines. A module is an object that
contains SQL statements, routines, or procedures. An SQL-invoked routine
is a function or procedure that can be invoked from SQL. Both functions
and procedures are types of SQL statements that can handle parameters
(values passed to a statement when you invoke that statement). A function
can receive input parameters and return a value based on the expression
included in the function statement. A procedure can receive input and return
output parameters. (See Chapter 13.)

Trigger

An object associated with a base table that defines an action to be taken
when an event occurs related to that table. The action that caused the trigger
to fire (execute) can be an insert into, delete from, or update of a base
table. For example, a row deleted from one table might cause a trigger to
fire that then deletes data from another table. (See Chapter 14.)

SQL-invoked routine

A function or procedure that can be invoked from SQL. An SQL-invoked
routine can be a schema object or be embedded in a module, which is also
a schema object. (See Chapter 13.)

Character set

A collection of character attributes that define how characters are
represented. A character set has three attributes: the repertoire, form-of-use,
and default collation. The repertoire determines which characters can be
expressed (for example, A, B, C, and so on). The form-of-use determines
how the characters are represented as strings to hardware and software
(for example, one byte per character, two bytes per character). The default
collation determines how those strings compare with one another.

Collation

A set of rules that control how character strings compare with one another
within a particular repertoire. This information can then be used to order the
characters (for example, A comes before B, B comes before C). A default
collation is defined for each character set.

Transliteration

An operation that maps characters from one character set to characters
in another set. Transliterations can include such operations as trans|qrinﬂ
characters from uppercase to lowercase or from one alphabet into another.

Sequence generator

A mechanism for generating successive numeric data values (integers), one
at a time. Sequence generators retain a current base value, which is used as
the basis for generating the next sequential value.

Table 2-2 The Types of Objects That Can Be Defined in Each Schema (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Working with the SQL Environment

Asl said, I'll be discussing most of the itemsin the table in greater detail later in the
book. However, the last three items, which are all related to character sets, are covered only
briefly. The character sets, collations, and translations supported by RDBM Ss can vary from
product to product, and so can the implementation of these features. Throughout this book, the
examples and projects I'll be giving you all rely on whatever the default character set isfor the
product that you' re using. If you want to change that character set, either at the default level or
at the database or table level, you should first carefully review the product documentation to
find out what is supported and how those features are implemented.

Ask the Expert

Q: You describe a domain as a user-defined object that isbased on a data type but can
include a default value and a constraint. How does thistype of domain differ from
adomain asyou describeit in the relational model?

A: in many ways the two are the same, and for al practical purposes, you can think of an
SQL domain as a counterpart to a domain in the relational model. There is one subtle
difference, however—a domain in the relational model is merely a description of the data
that can be included in an attribute (column) associated with that particular domain. An
SQL domain, on the other hand, restricts the data that can be inserted into the column. An
SQL domain does this through the use of constraints, which are validation rules that are
part of the system of dataintegrity. The main ideato keep in mind is that a domain in the
relational model isalogical concept, whereas an SQL domain is aphysical one.

Q: When you talk about schema objects, you mention base tables. Does SQL support
any other types of tables?

A: The SQL:2006 standard supports four types of tables: base tables, transient tables, derived
tables, and viewed tables. The base table is atype of table whose datais actually stored
somewhere. In other words, SQL datais stored in abase table. A transient table is a named
table that isimplicitly created during the evaluation of a query expression or the execution
of atrigger. A derived table isthe returned table that contains the result of a query (the set
of data specific to the query). A viewed table is another name for aview, whichisavirtua
table whose definition is stored but whose datais derived from base tables at the time the
view iscalled.

Then What Is a Database?

Asyou might have noticed, nowhere in the structure of the SQL environment or acatalog is
there mention of a database. The reason for thisis that nowhere in the SQL:2006 standard is
the term “database” defined. In fact the only mention of a database, in terms of how it might fit
into the structure of the SQL environment, is that you can consider the sites to be the database,

www.it-ebooks.info

37

http://www.it-ebooks.info/

38

SQL: A Beginner's Guide

although this is offered more as a suggestion than an absolute definition. Although the standard
uses the word to refer to SQL as a database language, it never actually defines the term.

This approach might be fine for the standard, but in the real world, it can be difficult for an
RDBM S to create an SQL environment without creating some sort of component that users can
point to and say, “Yes, thereisthe database.” And indeed, most products allow you to create,
alter, and delete objects that are called databases. In SQL Server, for example, an instance of
the DBM S software can manage any number of databases, with each database being alogical
collection of database objects that the designer chooses to manage together. Sybase, MySQL,
and IBM’s DB2 have similar architecture. SQL Server provides a management console called
Microsoft SQL Server Management Studio to view and manipulate database objects. The
Object Explorer panel aong the left margin provides a hierarchical directory-like structure
that includes a Database node, with each database shown under it, and objects such as tables
shown under each database. Figure 2-3 shows SQL Server Management Studio with the
INVENTORY database expanded down to the columns of the ARTIST_CDStable.

"\ Microsoft S01 Server Management Studio i, [I’]Iﬂ
fe Edt Vew Took Window Community Help
ooy) BREID SES BEBET

Object Explorer paall | Summary| 2]

Connect- | S m [T lch & &7 38 Lt |~ [l oo
=1 [DIROOOYSEL2005 (SQL Server 9.0.1399 - DIBC B
&= Ca Databases |
o o s - Columns

[Database Snapehats \SOL NTORY) L ARTIST_CDS\Colimns 2 Tremis)
5 4 INVENTORY
® (3 Database Dagrams
= [Tables Name |
® 3 System Tables 1 ARTIST_ID (PK, FK, int, not null)
= M dbo ARTIST_CDS ¥ COMPACT_DISC_ID (PK, FK, 0, not nul)

Y Coburnins
™ [0 Keys
& [Constraints
3 Triggers
= 3 Indexes
@ 3 Salistics
® O dboARTISTS
O dbo.CD_LABELS
B O dbo.COMPACT_DISC_TYPES
O dbo.COMPACT_DISCS
@ O dbo.MUSIC_TYPES
F [Views
& [Symonyms
% [Programmabiity
& (L3 Service Broker
F 3 Storage
A @ Securty
4 [Security
T 3 Server Objects
[Replcation
T 23 Management,
+ 3 Notficaton Services

+ [SOL Server Agent

4 - |

Ready &

Figure 2-3 Microsoft SQL Server Management Studio with INVENTORY database expanded

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Working with the SQL Environment 39

=Injx]
Toals ¢

Edn [de hew Neegate Fun Oebug Sowce

Faomg 9™ xum O-9
L ctans L [

rants | Statistics | Column Statistics | Teggers | Dapandancies | Detads | Parmions | indeves | 501

8 Duta Type|§ Nuliable | Data Defaut [§ COLUMN ID[§ Primary Koy [§ COMMENTS
NUMBER Ko fredl) 1 1)
DUSC_I0 NUMBER Ko {redl] 2 2 fnulfy

0|
TABLE INVENTORY ARTIST_COSELocal - Invantcey Ediling

Figure 2-4 Oracle SQL Developer with INVENTORY schema expanded

The Oracle DBMS has a different architecture. Each instance of the DBM S software
manages only one database. However, each database user gets a distinct schemafor storage
of database objects owned by that user. So, in Oracle a schemais much like what SQL Server
calls adatabase. Oracle has atool called SQL Developer that is functionally similar to the SQL
Server Management Studio. Figure 2-4 shows SQL Developer with the INVENTORY schema
expanded down to the columnsin the ARTIST _CDStable. Oracle was the first commercially
available RDBMS, and since it was created |ong before there was an SQL standard, it should
be no surprise that it is architecturally different.

In Chapter 1, | stated that a database is a collection of data organized in a structured format
that is defined by the metadata that describes that structure. In both SQL Server and Oracle
you can see how this definition applies. Both systems (and any true RDBM S you’ re working
with) collect the datain a structured format and define that data by the use of schemas,
which contain the metadata. This definition can aso be applied to the SQL standard and its
construction of the SQL environment and catalogs. SQL datais stored in an organized format
within base tables. These base tables are contained within a schema, which defines those
tables, thereby defining the data. So even though the SQL :2006 standard doesn’t actually
define the term “database,” it nonethel ess supports the concept of a database, as do the
RDBMS products that implement SQL .

www.it-ebooks.info

http://www.it-ebooks.info/

40

SQL: A Beginner's Guide

Name Obijects in an SQL Environment

Up to this point in the book, | have provided you with alot of conceptual and background
information. The reason for thisisthat | want you have a basic foundation in SQL before you
actually start writing SQL statements. | believe that, with thisinformation, you will be better
able to grasp the logic behind the SQL code that you create and the reason for creating it, and |
have no doubt that you’ re more than ready to start writing those statements.

However, before | actually start getting into the meat of SQL, there’s one more topic that |
need to cover briefly—abject identifiers. Anidentifier isaname given to an SQL object. The
name can be up to (but not including) 128 characters and must follow defined conventions.
An identifier can be assigned to any object that you can create with SQL statements, such as
domains, tables, columns, views, or schemas. The SQL:2006 standard defines two types of
identifiers: regular identifiers and delimited identifiers.

Regular identifiers are fairly restrictive and must follow specific conventions:

The names are not case-sensitive. For example, Artist Namesisthe sasme as ARTIST _
NAMES and artist_names.

Only letters, digits, and underscores are allowed. For example, you can create identifiers
such as First_Name, 1stName, or FIRST_NAME. Notice that the underscore is the only
valid character that may be used as a separator between words. Spaces are not acceptable
nor are dashes (dashes are interpreted as subtraction operators).

No SQL reserved keywords can be used.

NOTE

A keyword is a word that is part of the SQL lexicon. There are two types of SQL
keywords: reserved and nonreserved. As the name suggests, the reserved keywords
cannot be used for any purpose other than as they are intended to be used within an
SQL statement. The nonreserved words have no such restriction. For a complete list of

the SQL keywords, see Appendix B.

SQL isinsensitive to case, with regard to regular identifiers. All names are changed to
uppercase by SQL when they are stored, which iswhy 1stName and 1ISTNAME are read
asidentical values. As already mentioned, case insensitivity is the default behavior in most
RDBM Ss and while the default can be changed in some products, | highly recommend
that you don’t change it because it’s not consistent with the SQL standard, and it leads to
compatibility problems should you use other products to access your data.

Delimited identifiers are not as restrictive as regular identifiers, but they still must follow
specific conventions:

The identifier must be enclosed in a set of double quotation marks, such asthe
“ArtistNames” identifier.

The quotation marks are not stored in the database, but all other characters are stored as
they appear in the SQL statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Working with the SQL Environment 41

The names are case-sensitive. For example, “Artist_ Names’ is not the same as “artist_
names’ or ARTIST_NAMES, but “ARTIST_NAMES’ isthe same as ARTIST_NAMES
and Artist_Names (because regular identifiers are converted to uppercase).

Most characters are allowed, including spaces.

SQL reserved keywords can be used.

When you' re deciding how to name your SQL objects, there are a number of systems
that you can follow. The first choice you'll have to make is whether you want to use regular
or delimited identifiers. You'll aso want to decide on other issues, such as case and the use
of underscores, and whether your identifiers will be singular or plural. For example, you
could name a table CompactDiscTitles, compact_disc_titles, COMPACT _DISC TITLES,
“Compact Disc Titles’, or some other form of that name. The important part to remember
isthat you should choose a naming convention and stick with it throughout the coding for a
particular database. Y ou'll also want to take the RDBM S you are using into account. Earlier
versions of the SQL standard allowed only uppercase letters in object names (a consequence
of mainframe systems that used a character set called EBCDIC that in the early days
contained only capital letters). As aresult, many of the older RDBMS products, including
Oracle and DB2, automatically fold lowercase names into uppercase. So, you may create
atable named CompactDiscTitles, but it will appear as COMPACTDISCTITLES in the
catalog, which is obviously not a very user-friendly name. By the way, MySQL follows the
case sensitivity of the operating system, so on Windows it is case insensitive, but on Linux
and Unix, it is case sensitive. And finally, take note of the maximum identifier lengthin
the RDBMS product you are using. While SQL Server allows 128-character names, Oracle
allows up to 30 characters (8 for database names), and many others have maximum lengths
that are shorter than 128.

NOTE

For the examples and projects in this book, | use regular identifiers with uppercase letters
and underscores used to separate words (for example, COMPACT_DISC_TITLES). | do
this because such identifiers are compatible with (and form user-friendly object names in)
all RDBMS products. However, | acknowledge that SQL Server users in particular like to
use mixed-case identifiers.

Qualified Names

All schema object identifiers are qualified by the logical way in which they fit into the
hierarchical structure of the SQL environment. A fully qualified name includes the name of
the catalog, the name of the schema, and the name of the schema object, each separated by
aperiod. For example, suppose you have atable named CD_ARTISTS. Thetableisin the
COMPACT_DISCS schema, which isin the MUSIC catalog. The fully qualified name for that
table would be MUSIC.COMPACT_DISCS.CD_ARTISTS.

The way in which these naming conventions play out in various RDBM S products depends
on how that product has implemented the structure of the SQL environment. For example,

www.it-ebooks.info

http://www.it-ebooks.info/

42

SQL: A Beginner's Guide

afully qualified namein SQL Server is based on the server name, database name, owner name,
and object name. In this case, atable named ARTISTS might have afully qualified name

of SERVER01.MUSIC DB.DBO.ARTISTS, where SERVEROL is the name of the server,
MUSIC_DB isthe name of the database, and DBO (which refers to database owner) isthe
name of the object owner. To determine how fully qualified names are handled for a particular
RDBMS, check the product documentation.

Create a Schema

Now that you have a fundamental understanding of how to use identifiers to name SQL
objects, you're ready to start writing SQL statements. I’ [l begin with the CREATE SCHEMA
statement because schemas are at the top of the SQL hierarchy, in terms of which objects the
SQL:2006 standard allows you to create. (Remember, the SQL standard doesn’'t provide any
sort of CREATE CATALOG or CREATE DATABASE statement. It’s left up to the RDBMS
vendors to determine how and whether to implement these objects.) And as already mentioned,
Oracle automatically creates a schema for each user, so while it hasa CREATE SCHEMA
statement, it is only there for compatibility with the SQL standard. In the next section, “ Create
aDatabase,” | will slip out of SQL mode and discuss database creation because most RDBM S
products support the creation of database objects, and you'll probably find that you’'ll want to
create a database in order to try out the examples and projects in this book.

The place to start with any type of SQL statement is the syntax that defines the statements.
The following syntax shows the basic components of the CREATE SCHEMA statement:

CREATE SCHEMA <name clause>
[<character set or path>]
[<schema elements>]

NOTE

The angle brackets contain information that serves as a placeholder for a value or
clause related to that information. For example, <name clause> is a placeholder for
keywords and values related to naming the schema. The square brackets, on the other
hand, mean that the clause is optional. You do not have to specify a character set, path,
or schema element.

Let’slook at the syntax for the CREATE SCHEMA statement piece by piece. The SQL
keywords CREATE SCHEMA alert the SQL implementation to the type of statement being
executed. Thisis followed by the <name clause> placeholder, which can include a name for
the schema, an authorization identifier (preceded by the AUTHORIZATION keyword), or
both. Asaresult, the name clause can take any one of the following forms:

<schema name>

AUTHORIZATION <authorization identifier>

<schemaname> AUTHORIZATION <authorization identifier>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Working with the SQL Environment 43

The <authorization identifier> value specifies who owns the schema and its objects.

If noneis specified, the value defaults to the current user. If no <schemaname> valueis
specified, anameis created that’ s based on the authorization identifier.

The next clause, <character set or path>, allows you to set a default character set, a default
path, or both. The name of the character set is preceded by the DEFAULT CHARACTER SET
keywords and specifies a default character set for the new schema. The path specifies an order
for searching for SQL-invoked routines (procedures and functions) that are created as part of
the CREATE SCHEMA statement. (SQL-invoked routines are discussed in Chapter 13.)

The <schema elements> clause is made up of various types of other SQL statements that
you can include in the CREATE SCHEMA statement. For the most part, this clause allows you
to create schema objects such as tables, views, domains, and triggers. The advantage of thisis
that objects are added right to the schema when you create it, all in one step.

Now that you' ve seen the syntax for a CREATE SCHEMA statement, let’slook at an
example. The following code creates a schema named INVENTORY . The statement also
specifies an authorization identifier name MNGR and a character set named Latinl.

CREATE SCHEMA | NVENTORY AUTHORI ZATI ON MNGR
DEFAULT CHARACTER SET Latinl

CREATE TABLE ARTI STS

(ARTI ST_ID | NTEGER ARTI ST_NAME CHARACTER (20))

Notice that the code sample includes a CREATE TABLE statement. Thisis one of the
elements that can be specified as part of the <schema elements> clause. Y ou can include as
many statements as you want. This particular statement creates atable named ARTISTS that
containsthe ARTIST _ID column and the ARTIST_NAME column. (I discuss the CREATE
TABLE statement in great detail in Chapter 3.)

In addition to defining a CREATE SCHEMA statement, SQL :2006 al so defines a DROP
SCHEMA statement, as shown in the following syntax:

DROP SCHEMA <schema name>
CASCADE | RESTRICT

Thefirst lineisfairly straightforward: the named schemawill be removed from the system.
The second line has two options: CASCADE and RESTRICT.

NOTE

The vertical bar (|) symbol can be read as “or,” which means that you should use
either the CASCADE option or the RESTRICT option, but not both.

If the CASCADE option is specified, all schema objects and SQL data within those objects
are deleted from the system. If the RESTRICT option is used, the schemais deleted only if no
schema objects exist. This method is used as a safeguard against deleting any objects that you
do not want deleted. It's meant as away to make you verify that the objects you' re deleting are
what you want to delete before you actually delete the schema.

www.it-ebooks.info

http://www.it-ebooks.info/

44

SQL: A Beginner's Guide

Now let’slook at an example of the DROP SCHEMA statement. The following code
removes the INVENTORY schema:

DROP SCHEMA | NVENTORY CASCADE;

Notice that the CASCADE option is used, which means that all schema objects and SQL
datawill be removed.

Create a Database

Despite the fact that the SQL standard does not define what a database is, |et alone provide a
statement to create any sort of database object, thereis agood possibility that you'll be working
with an RDBMS that not only supports the creation of a database object, but also uses that object
as the foundation for its hierarchical structure in the management of data objects. Consequently,
you might find that, in order to work through the examples and projects in this book, you will
want to create atest database so you have an environment in which you can create, ater, or
delete data objects or data as necessary, without risking the loss of data definitions or data from
an actual database. (Idedlly, you'll be working with an RDBM Sthat is a clean installation,
without any existing databases, except preinstalled system and sampl e databases.)

If you've already worked with an RDBM S, you might be familiar with how database
objects are organized within that system. For example, if you take alook again at Figure 2-3,
you can see that SQL Server organizes the server’s databases into alogical structure beneath
the Databases node. Each database node (for example, INVENTORY) contains child nodes
that represent the different types of objects associated with that particular database. Asyou can
see, the INVENTORY database currently lists eight categories of objects. Database Diagrams,
Tables, Views, Synonyms, Programmability, Service Broker, Storage, and Security. And under
the ARTIST_CDS table, the categories are Columns, Keys, Constraints, Triggers, Indexes,
and Statistics. For a definition of how SQL Server defines each of these types of objects, you
should view the product documentation, which you should do for any RDBMS. Compare and
contrast that with Oracle’ s categories of objects as shown in Figure 2-4.

Most products that support database objects also support language to create those objects.
For example, Oracle, MySQL, and SQL Server al include the CREATE DATABASE
statement in their SQL -based languages. However, which parameters can be defined when
building that statement, what permissions you need in order to execute that statement, and
how a system implements the database object vary from product to product. Fortunately, most
products use the same basic syntax to create a database object:

CREATE DATABASE <database name>
<additional parameters>

Before creating a database in any system, make sure to first read the product documentation,
and if appropriate, consult with a database administrator to be sure that it is safe for you to add a
database object to the SQL environment. Once you create the database, you can create schemas,
tables, views, and other objects within that database, and from there, populate the tables with
the necessary data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Working with the SQL Environment 45

Creating a Database and a Schema

In“Try This 1-2: Connecting to a Database,” you established access to an RDBMS. In that
project, you used a front-end application that allowed you to directly invoke SQL statements.
Y ou will be using that application for this project (and the rest of the projects in the book)

to create a database and a schema, or whichever of these functions your system supports.
Once you create the database, you should work within the context of that database for future
examples and projects. If your system supports schema creation but not database creation, you
should work within the context of that schemafor the other projects.

Step by Step

1. Open the client application that allows you to directly invoke SQL statements. If applicable,
check with the database administrator to make sure that you' re logging in with the
credentials necessary to create a database and schema. Y ou might need special permissions
to create these objects. Also verify whether there are any parameters you should include
when creating the database (for example, log file size), restrictions on the name you can
use, or restrictions of any other kind. Be sure to check the product documentation before
going any further.

2. Create adatabase named INVENTORY (if your RDBM S supports this functionality—in
Oracleyou' |l want to create a user named INVENTORY, which will implicitly create a
schema with the same name). Depending on the product you' re using, you'll be executing
a statement that’ s similar to the following:

CREATE DATABASE | NVENTORY!

If you're required to include any additional parametersin the statement, they would
most likely be included in the lines following the CREATE DATABASE clause. Once
you execute the statement, you should receive some sort of message telling you that the
statement has been executed successfully.

3. Connect to the new database. The method for doing that will vary from product to product.
In Oracle, you can connect to a database by entering the appropriate logon information in
any of several tools such as SQL*Plus, iSQL* Plus, and SQL Developer. In SQL Server, it's
simply a matter of selecting the appropriate database from the Connect drop-down list of
databasesin the SQL Server Management Studio toolbar, or you can execute the following
statement (MySQL uses this same syntax):

USE I nventory

4. Create aschemanamed CD_INVENTORY (if your RDBMS supports this functionality).
Create the schema under your current authorization identifier. Do not include any schema
elements at thistime. In most cases, you will be executing a statement that looks similar to
the following:

CREATE SCHENMA CD_| NVENTORY;

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

46

SQL: A Beginner's Guide

Try This Summary

Step-by-step exercises of this sort can be complicated because they’ re so dependent on how
RDBMS products have implemented various features. As aresult, you must rely heavily on
product documentation (which you should be using anyway) and, if applicable, database
administrators. However, now that you’ ve gotten through this exercise and have created

the necessary database and/or schema environment, you should be ready to move on to the
examples and projectsin the rest of the book. Because you' ve laid the necessary foundation,
you’'re now ready to create, ater, and drop data objects, and insert, modify, and delete the data
stored in those objects.

Chapter 2 Self Test

1. What are the differences between an SQL agent and an SQL implementation?

2. Which component of an SQL environment represents a user or role that is granted specific
access privileges to objects and data?

A Catalog

B Authorization identifier
C SQL client module

D SQL agent

3. A(n) isacollection of schemas that form a namespace within the SQL
environment.

4. What is a schema?
5. Which statement do you use to add a schemato an SQL environment?
A ADD SCHEMA
B INSERT SCHEMA
C CREATE SCHEMA
6. What is the name of the schemathat contains definitions for schema objects in a catalog?
7. What are the 11 types of schema objects that can be contained in a schema?

8. Whatisaview?

www.it-ebooks.info

http://www.it-ebooks.info/

10.
11.
12.
13.
14.

15.

16.

17.
18.

Chapter 2: Working with the SQL Environment 47

. Which schema objects provide the basic unit of data management in the SQL environment?

A Views
B Domains
C Basetables
D Character sets
How does the SQL :2006 standard define a database?
A (n) isaname given to an SQL object.
How isaregular identifier distinguished from a delimited identifier in an SQL statement?
Which type of identifier permits spaces to be used as part of the name of an object?

Y our SQL environment includes a catalog named INVENTORY . In that catalog is a schema
named COMPACT _DISCS, and in that schemais atable named ARTISTS. What isthe
qualified name of that table?

Wheat three forms can the <name clause> component of a CREATE SCHEMA statement
take?

What are the differences between the CASCADE option and the RESTRICT optionin
aDROP SCHEMA statement?

Within the hierarchy of the SQL environment, how is a domain related to a catalog?
Which type of identifier allows you to use areserved keyword?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Creating and
Altering Tables

49

http://www.it-ebooks.info/

50

SQL: A Beginner's Guide

Key Skills & Concepts

Create SQL Tables

Specify Column Data Types
Create User-Defined Types
Specify Column Default Values
Alter SQL Tables

Delete SQL Tables

n an SQL environment, tables are the basic unit of data management. Most SQL programming
you do is related either directly or indirectly to those tables. As aresult, before you can insert
datainto your database or modify that data, the appropriate tables must have been created or
you must create them. The SQL:2006 standard provides three statements that allow you to
define, change, and delete table definitions in an SQL environment. Y ou can use the CREATE
TABLE statement to add a table, the ALTER TABLE statement to modify that definition, or
the DROP TABLE statement to delete the table and its data from your database. Of these three
statements, the CREATE TABLE statement has the most complex syntax. Not only is this
because of the various types of tables supported by SQL, but also because a table definition
can include many elements. However, despite these complexities, table creation is afairly
straightforward process, once you understand the basic syntax.

Create SQL Tables

Asyou might recall from Chapter 2, SQL supports three types of tables: base tables, derived
tables, and viewed tables. Most base tables are schema objects that hold SQL data. Derived
tables are the results you see when you request (query) data from the database. Viewed tables
are another name for views, which | discussin Chapter 5. Y ou can think of aviewed table as
atype of named derived table, with aview definition stored in the schema.

In this chapter, you'll be working with base tables. In fact, most of what you'll be directly
working with throughout this book (aswell as throughout your programming career) are base
tables; however, not all base tables are the same. Some are persistent (permanent) and some
are temporary. Some are schema objects and some are contained in modules. All module base
tables are also temporary tables. SQL supports four types of base tables:

Persistent basetables A named schema object defined by atable definitioninaCREATE
TABLE statement. Persistent base tables hold the SQL datathat is stored in your database.
Thisisthe most common type of base table and is often what is being referred to when
people mention base tables or tables. A persistent base table always exists as long as the
table definition exists, and can be called from within any SQL session.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Creating and Altering Tables

Global temporary tables A named schema object defined by atable definition in a
CREATE GLOBAL TEMPORARY TABLE statement. Although the table definition isa
part of the schema, the actual table exists only when referenced within the context of the
SQL session in which it was created. When the session ends, the table no longer exists.

A global temporary table created in one session cannot be accessed from another SQL
session. The contents are distinct within each SQL session.

Created local temporary tables A named schema object defined by atable definitionin
aCREATE LOCAL TEMPORARY TABLE statement. Like a global temporary table, the
created local temporary table can be referenced only within the context of the SQL session
in which it was created and cannot be accessed from another SQL session. However, a
global temporary table can be accessed from anywhere within the associated SQL session,
whereas a created local temporary table can be accessed only within the associated
module. The contents are distinct within that module.

Declared local temporary tables A table declared as part of a procedure in amodule.
The table definition is not contained in the schema and does not exist until that procedure
is executed. Like other temporary tables, the declared local temporary table can be
referenced only within the context of the SQL session in which it was created.

NOTE

An SQL session refers to the connection between a user and an SQL agent. During this
connection, a sequence of consecutive SQL statements is invoked by this user and then
executed. A module is an object that contains SQL statements, routines, or procedures.
Modules are discussed in Chapter 13 and Chapter 17.

Asyou can see, you can use aform of the CREATE TABLE statement to create all base
table types except declared local temporary tables. Throughout the rest of the chapter, | will
primarily be discussing persistent base tables, although I’ll be touching on the subject of
temporary tables in subsequent chapters. In the meantime, let’s take alook at the syntax in
aCREATE TABLE statement:

CREATE [{ GLOBAL | LOCAL } TEMPORARY | TABLE <table name>
(<table elenent> [{ , <table elenent>} . . . 1)
[ON COW T { PRESERVE | DELETE } ROWS]

NOTE

The curly brackets are used to group elements together. For example, in the first line

of syntax, the GLOBAL | LOCAL keywords are grouped together. The brackets tell you
that you should first decide how to handle the contents within the brackets and then
determine how they fit into the clause. In the first line, you should use either GLOBAL

or LOCAL along with TEMPORARY. However, the entire clause is optional. The three
periods (in the second line) tell you that you can repeat the clause as often as necessary.
In this case, you could add as many <table element> clauses as your definition requires.

www.it-ebooks.info

51

http://www.it-ebooks.info/

52

SQL: A Beginner's Guide

The syntax I’ ve shown here provides only the basics of the CREATE TABLE statement,
which is actually far more complex. (The syntax and its explanations take up about 38 pages of
the SQL:2006 standard.) Even so, the syntax provided here is enough of afoundation for you
to create the majority of tablesthat you're likely to be using.

In the first line of the syntax, you designate whether the table is temporary and you provide
aname for the table, so you have three options:

CREATE TABLE <table name>
CREATE GLOBAL TEMPORARY TABLE <table name>
CREATE LOCAL TEMPORARY TABLE <table name>

Depending on the RDBM S in which you' re working, you might have to qualify the table
name by including a schema name, authorization identifier, or database name (for example,
INVENTORY .ARTISTS).

NOTE

There are a number of implementation-specific variations regarding temporary

tables that are worth mentioning here. Oracle (through 11g) has no LOCAL option

for creating a temporary table; data in a temporary table is private to the expressed
session. IBM DB2 UDB through 9.1 uses the command, DECLARE GLOBAL TEMPORARY
TABLE, to created the global temporary table; there appears to be no designation for
creating/declaring a local temporary table. In SQL Server (through 2008), temporary
tables are created with the typical CREATE TABLE command, but local temporary table
names are prefixed with a single number sign (#table_name), and global temporary
table names are prefixed with a double number sign (##table_name).

The second line of the syntax allows you to specify the parts that make up the table,
such as columns. (I'll return to that in amoment.) The third line of the syntax applies only if
you're creating atemporary table. The clause allows you to specify whether or not the table
should be emptied when a COMMIT statement is executed. A COMMIT statement isused in
atransaction to commit changes to the database. | discuss transactions in Chapter 16.

Y ou can think of the <table element> clauses as the meat of a CREATE TABLE statement.
It is here that you define columns, constraints, and other elements specific to the table you're
creating. Y ou can define one or more <table element> clauses. If you define more than one,
you must separate them with commas. Of the elements that you can create, we'll be focusing
primarily on columns (in this chapter) and constraints (in Chapter 4). Let’ s take a closer look at
the syntax that is used to define a column:

<col um nane> { <data type> | <domain> }
[<default clause>] [<columm constraint>] [COLLATE <coll ation nanme>]

In the first line of the syntax, you must provide a column name and declare a data type or
user-defined domain. | discuss data types in the “ Specify Column Data Types’ section later in
this chapter, and | discuss domainsin Chapter 4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Creating and Altering Tables 53

In the second line of the syntax, you have the option to provide a default value (see the
“Specify Column Default Values’ section), column constraints (see Chapter 4), or a collation
(see Chapter 2).

At its most basic, a CREATE TABLE statement might look something like the following
statement:

CREATE TABLE ARTI STS
(ARTIST_ID | NTEGER
ARTI ST_NAVE CHARACTER(60));

In this statement, I’ m creating a table named ARTISTS, acolumn named ARTIST _ID, and a
column named ARTIST_NAME. The ARTIST_ID column is associated with the INTEGER
data type, and the ARTIST_NAME column is associated with the CHARACTER datatype.
Notice that the two column definitions are separated by a comma. Also notice that | have
placed the two column definitions on separate lines and aligned the data types by adding
extra spaces—all of thisisto improve readability, but is otherwise unnecessary (when SQL
statements are processed, extra spaces and new lines are ssmply ignored). If you execute the
CREATE TABLE statement, your table will look similar to the table shown in Figure 3-1.

NOTE

The rows of data shown would not be in a table until you have actually added that
data. The rows are shown here merely to give you an idea of the type of table that this
statement would create.

Before we go any further with the discussion of creating atable, let’s take a closer ook at
data types, which play an integral role in any column definition.

ARTIST_ID: ARTIST_NAME:
INTEGER CHARACTER(60)
10001 Jennifer Warnes
10002 Joni Mitchell
10003 William Ackerman
10004 Kitaro

10005 Bing Crosby
10006 Patsy Cline
10007 Jose Carreras
10008 Placido Domingo
10009 Luciano Pavarotti

Figure 3-1 The ARTIST_ID and ARTIST_NAME columns of the ARTISTS table

www.it-ebooks.info

http://www.it-ebooks.info/

54

SQL: A Beginner's Guide

Ask the Expert

Q: when you discussed the varioustypes of tablesthat SQL supports, you talked briefly
about temporary tables. What isthe purpose of temporary tables?

A: Temporary tables provide you with away to store temporary results within the context
of your session. Y ou might find that you need a place to store data in order to take a
certain course of action. Y ou can explicitly create a persistent base table, store datain
it, and then drop the table when you' re finished, but the temporary table alows you
to do the same without having to explicitly destroy the table each time you useit. In
other words, the temporary table is a useful tool when you need to store data for only a
specific period of time. For example, suppose you have an application that allows you
to generate a quarterly report based on your inventory at the end of the reporting period.
The application might need to gather the data into a meaningful collection to generate the
report; however, once the report is generated, the application no longer needs to store that
data, so the table can be deleted. One of the advantages of using atemporary tableis that,
because it is unique to a session, the table cannot interact with other users or sessions. As
aresult, the RDBMS doesn’'t have to take special steps to lock the data to prevent other
users from applying conflicting updates to the temporary tables, and bypassing locking
can result in better performance.

Specify Column Data Types

Whenever you define acolumn in a CREATE TABLE statement, you must, at the very least,
provide a name for the column and an associated data type or domain. The data type or domain
(discussed in Chapter 4) restricts the values that can be entered into that column. For example,
some data types limit a column’s values to numbers, while other data types allow any character
to be entered. SQL supports three types of datatypes:

Predefined Predefined data types are the most common. Each predefined datatypeisa
named element (using an SQL keyword) that limits values to the restrictions defined by
that database. SQL includes five types of predefined data types: string, numeric, datetime,
interval, and Boolean.

Constructed Constructed data types are also a named element but tend to be more
complex than predefined data types because they can hold multiple values. Constructed
types allow you to construct more complicated structures than more traditional data types.
A thorough discussion of these typesis beyond the scope of this book, but | wanted to
mention them so you know that they exist.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Creating and Altering Tables 88

User-Defined User-defined data types are based on predefined types or attribute
definitions and are added as schema objects to the SQL environment. SQL supports two
types of user-defined data types: distinct and structured. The distinct typeis based on a
predefined data type, and the structured type is based on attribute definitions. | discuss
user-defined typesin the “ Create User-Defined Types’ section later in this chapter.

Although all implementations of SQL support data types, which data types are supported
varies from product to product. However, as a beginning SQL programmer, you'll find that
most implementations support the basic (more traditional) data types, which are the ones | will
be using in the examples and exercises throughout the book. These more traditional data types,
sometimes known as primitive types, are al part of the SQL predefined data types, which |
describe in the following sections. Don't try to memorize each of these types, but start becoming
familiar with the differences between them. You'll find that, as you start using specific data types,
you'll become more comfortable with them. In the meantime, refer back to the following sections
as often as necessary whenever you' re working with table definitions or SQL data.

String Data Types

The string data types are made up of types that permit values based on character sets or on data
bits. The values permitted by string types can be fixed in length or varying, depending on the
specific type. SQL defines four types of string data types:

Character strings Permitted values must be drawn from a specific character set,

either the default set or a set defined at the time the column is being defined. Character
string data types include CHARACTER, CHARACTER VARYING, and CHARACTER
LARGE OBJECT.

National character strings Permitted values are similar to character strings except

that the character set associated with these data types is defined by the implementation.
Asaresult, when a national character string data type is specified, the values associated
with that data type must be based on the character set specified by the relational database
management system (RDBMS) for national character strings. These are useful for storing
character strings in various human languages in the same database. The national character
string data types include NATIONAL CHARACTER, NATIONAL CHARACTER
VARYING, and NATIONAL CHARACTER LARGE OBJECT.

Bit strings Permitted values are based on data bits (binary digits), rather than character
sets or collations, which means that these data types allow only values of 0 or 1. SQL
supports two types of bit string data types: BIT and BIT VARYING.

Binary strings Permitted values are similar to bit strings, except that they are based on
bytes (referred to as octets in SQL :2006), rather than on bits. Asaresult, no character sets
or collations are associated with them. (A byteis equal to 8 bits, which is why the SQL
standard uses the term octet.) SQL supports only one binary string data type: BINARY
LARGE OBJECT. Thistypeisuseful for storing pure binary data such as sound clips or
images in the database.

www.it-ebooks.info

http://www.it-ebooks.info/

56 SQL: A Beginner's Guide

Now that you have an overview of the types of string data types, let’s take a closer look at
each one. Table 3-1 describes each of these data types and provides an example of a column
definition that uses the specific type.

Data Type

Description/Example

CHARACTER

Specifies the exact number of characters (which must be from a
cﬁorocter set) that will be stored for each value. For examp|e, if you
define the number of characters as 10, but the value contains only six
characters, the remaining four characters will be spaces. The data type
can be abbreviated as CHAR.

Example: ARTI ST_NAME CHAR(60)

CHARACTER VARYING

Specifies the greatest number of characters (which must be from

a character set) that can be included in a value. The number of
characters stored is exactly the same number as the value entered, so
no spaces are added to the value. The data type can be abbreviated
as CHAR VARYING or VARCHAR.

Example: ARTI ST_NAVME VARCHAR(60)

CHARACTER LARGE OBJECT

Stores large groups of characters, up to the specified amount. The
number o?characfers stored is exactly the same number as the value
entered, so no spaces are added to the value. The data type can be
abbreviated as CLOB.

Example: ARTI ST_BI O CLOB(200K)

NATIONAL CHARACTER

Operates just like the CHARACTER data type, except that it's based
on an imp||ementcﬁon-defined character set. The data type can be
abbreviated as NATIONAL CHAR and NCHAR.

Example: ARTI ST_NAME NCHAR(60)

NATIONAL CHARACTER
VARYING

Operates just like the CHARACTER VARYING data type, except that it's
based on an implementation-defined character set. The data type can
be abbreviated as NATIONAL CHAR VARYING or NCHAR VARYING.
Example: ARTI ST_NAME ~ NCHAR VARY! NG (60)

NATIONAL CHARACTER
LARGE OBJECT

Operates just like the CHARACTER LARGE OBJECT data type, except
that it's based on an implementation-defined character set. The data
type can be abbreviated as NCHAR LARGE OBJECT or NCLOB.
Example: ARTI ST_BI ONCLOB(200K)

BIT

Specifies the exact number of bits that can be stored for each
cﬁaracter. For example, if you define the number of bits as 2, but
the value contains only 1 bit, the remaining bit will be a space. If the
number of bits is not specified, 1 bit is stored.

Example: IN_STOCK BI T

BIT VARYING

Specifies the greatest number of bits that can be included in a value.
The number of bits stored is exactly the same number as the value
enfered, so no spaces are added to the value.

Example: | N_STOCK BI T VARYI NG (2)

Table 3-1 String Data Types with Example Column Definitions

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Creating and Altering Tables 87

Data Type Description/Example

BINARY LARGE OBJECT Stores large groups of bytes, up to the specified amount. The number
of bytes stored is exactly the same number as the value entered, so no
spaces are added to the value. The data type can also be referred to
as BLOB.

Example: ARTI ST_PI C BLOB(1M

XML The Extensible Markup Language (XML) is a general-purpose markup
language used fo describe documents in a format that is convenient
for display on web pages and for exchanging data between different
parties. TKe specifications for storing XML data in SQL databases
were added to the SQL standard in SQL:2003 and are covered in
Chapter 18.
Example: ARTIST_BIO

XML(DOCUMENT(UNTYPED))

Table 3-1 String Data Types with Example Column Definitions (continued)

Numeric Data Types

Asyou probably guessed by the name, the val ues specified by the numeric data types are
numbers. All numeric data types have a precision and some have a scale. The precision
refers to the number of digits (within a specific numeric value) that can be stored. The scale
refers to the number of digitsin the fractional part of that value (the digits to the right of
the decimal point). For example, the number 435.27 has a precision of 5 and ascale of 2. A
scale cannot be a negative number or be larger than the precision. A scale of 0 indicates that
the number is an integer and contains no fractional component. SQL defines two types of
numeric data types:

Exact numerics Permitted values have a precision and scale, which, for some numeric
data types, are defined by the implementation. Exact numeric data types include
NUMERIC, DECIMAL, INTEGER, and SMALLINT.

Approximate numerics Permitted values have a precision but no scale. As aresult
the decimal point can float. A floating-point number is one that contains a decimal point,
but the decimal point can be located at any place within that number, which iswhy an
approximate numeric is said to have no scale. Approximate numeric data types include
REAL, DOUBLE PRECISION, and FLOAT.

Table 3-2 describes each of the numeric data types and provides an example of a column
definition that uses the specific type.

www.it-ebooks.info

http://www.it-ebooks.info/

58

SQL: A Beginner's Guide

Data Type Description/Example

NUMERIC Specifies the precision and the scale of a numeric value. You can specify only
the precision and use the implementation-defined (default) scale, or you can
specify the precision and scale. If you specify neither the precision nor the
scale, the implementation will provide defaults for both values.

Example: ARTI ST_RATE NUMERI C[5, 2)

DECIMAL Specifies values similar to those of the NUMERIC data type. However, if the
implementation-defined precision is higher than the specified precision, values
with the higher precision will be accepted, but the scale will always be what
you specify.

Exqmp|e: ARTI ST_ROYALTY DECI MAL(5, 2)

INTEGER Specifies a value with an implementation-defined precision and a O scale,
meaning that only integers are accepted and you do not specify any
parameters with this data type. The data type can also be abbreviated as INT.
Example: ARTIST_ID I NT

SMALLINT Specifies a value similar to an INTEGER data type. However, the precision
defined by the implementation must be smaller than the INTEGER precision.
Example: ARTI ST_I D SMALLI NT

FLOAT Specifies the precision of a numeric value, but not the scale.

Exomp|e: ARTI ST_ROYALTY FLOAT(6)
REAL Specifies a value with an implementation-defined precision, but without a

scale. The precision must be smaller than the precision defined for a DOUBLE
PRECISION data type.
Example: ARTI ST_ROYALTY REAL

DOUBLE PRECISION

Specifies a value with an implementation-defined precision, but without a
scale. The precision must be greater than the precision defined for the REAL
data ?/pe. The implication is that the value of the precision should be double
that of the REAL data type, but each implementation defines double differently.
Examp|e: ARTI ST_ROYALTY DOUBLE PRECI SI ON

Table 3-2 Numeric Data Types with Example Column Definitions

Datetime Data Types

Asthe name implies, datetime data types are concerned with tracking dates and times. SQL
defines three datetime types—DATE, TIME, and TIMESTAMP—and variations on these types.
These variations are related to Coordinated Universal Time (UTC), which used to be called
Greenwich mean time (GMT), and the various time zones. Table 3-3 describes each of the
SQL:2006 standard datetime data types and provides an example of a column definition that
uses the specific type.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Type

Chapter 3: Creating and Altering Tables 59

Description/Example

DATE

Specifies the year, month, and day value of a date. The year is four
digits and supports the values 0001 through 9999; the month is

two digits and supports the values 01 through 12; and the day is two
digits and supports the values 01 through 31.

Example: DATE_HI RED DATE

TIME

Specifies the hour, minute, and second values of a time. The hour

is two digits and supports the values 00 through 23; the minute is
two digits and supports the values 00 through 59; and the second

is at least two digits and supports values 00 through 61.999 (to
accommodate leap seconds). The data type includes no fractional
digits unless you specify them. For example, TIME(3) would give you
three fractional digits. The data type can also be referred to as TIME
WITHOUT TIME ZONE.

Example: EVENT_TI ME TI ME(2)

TIME WITH TIME ZONE

Specifies the same information as the TIME data type except that the
value also includes information specific to UTC and time zones. The
values added to the data type range from —11:59 to +12:00.
Example: EVENT_TI ME TI MEW THTI ME ZONE (2)

TIMESTAMP

Combines the values of TIME and DATE. The only difference is that
with the TIME data type, the default number of fractional digits

is 0, but with the TIMESTAMP data type, the default number is 6.
You can specify a different number of fractional digits by including
a Forometer, such as TIMESTAMP(4). The data type can also be
referred to as TIMESTAMP WITHOUT TIME ZONE.

Example: PURCHASE_DATE Tl MESTAMP(3)

TIMESTAMP WITH TIME ZONE

Specifies the same information as the TIMESTAMP data type except
that the value also includes information specific to UTC and time
zones. The values added to the data type range from —11:59 to
+12:00.

Example: PURCHASE_DATE TI MESTAMP W TH Tl NE ZONE (2)

Table 3-3 Datetime Data Types with Example Column Definitions

Y ou will find considerable implementation variations for datetime data types because
early relational databases didn’t have them at all. That seems odd until you realize that they
were built by computer scientists who didn’t know how much business applications rely on
dates and times. As business users demanded date and time capabilities, commercial RDBM S
vendors of the day (long before there was an SQL standard) rushed to deliver the new features,
and thus implemented them in very different ways. For example, Oracle’s DATE datatype
always includes a time component, and SQL Server usesthe TIMESTAMP data type for a
completely different purpose, with a datatype called DATETIME operating like the SQL:2006
TIMESTAMP datatype. So, as aways, consult your vendor documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

60 SQl: A Beginner's Guide

Interval Data Type
Theinterva datatypeis closely related to the datetime data types. The value of aninterval data
type represents the difference between two datetime values. SQL supports two types of intervals:

Year-month intervals Theinterval data type specifiesintervals between years, months,
or both. Y ou can use only the YEAR and MONTH fields in ayear-month interval.

Day-timeintervals Theinterval datatype specifiesintervals between any of the
following values: days, hours, minutes, or seconds. Y ou can use only the DAY, HOUR,
MINUTE, and SECOND fields in aday-time interval.

Y ou cannot mix one type of interval with the other. For example, you cannot define an
interval datatype that uses the YEAR field and the HOUR field.

Theinterval datatype uses the keyword INTERVAL followed by an <interval qualifier>
clause. The clauseis a complex series of rulesthat describe how the INTERVAL datatype can
be defined to express intervals involving years, months, days, hours, minutes, or seconds. In
addition, the leading field (the first word) in the clause can be defined with a precision (p).
The precision is the number of digits that will be used in the leading field. If aprecisionisn’t
specified, the default is 2. For year-month intervals, you can specify one of the following
interval datatypes:

INTERVAL YEAR
INTERVAL YEAR(p)

INTERVAL MONTH

INTERVAL MONTH(p)
INTERVAL YEAR TO MONTH
INTERVAL YEAR(p) TO MONTH

There are many more options for day-time intervals because there are more fields from
which to choose. For example, you can specify any of the following interval types using the
DAY field asaleading field or stand-alone field:

INTERVAL DAY
INTERVAL DAY (p)

INTERVAL DAY TO HOUR
INTERVAL DAY (p) TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY (p) TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL DAY (p) TO SECOND

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Creating and Altering Tables 61

INTERVAL DAY TO SECOND(x)
INTERVAL DAY (p) TO SECOND(X)

When the trailing field (the last word) is SECOND, you can specify an additional precision
(X), which defines the number of digits after the decimal point. Asyou can see from these
examples, there are many more day-time interval data types that can be defined. Keep in mind,
however, that the leading field must always be a greater time unit than the trailing field. For
example, the YEAR field is greater than MONTH, and HOUR is greater than MINUTE.

If you were going to use an interval datatype in a column definition, it might look
something like the following:

DATE_RANGE | NTERVAL YEAR(4) TO MONTH

In this example, avauein this column will include four digits for the year, a hyphen, and then
two digits for the month, such as 1999-08. If a precision were not specified for the year, the
year range could include only two digits (00 through 99).

Boolean Data Type
The Boolean data type (unlike the interval datatypes) is very straightforward and easy to
apply. The data type supports atrue/false construct that permits only three values: true, false,
or unknown. A null value evaluates to unknown. (In SQL, anull value is used to signify that a
value is undefined or not known. | discuss null values in Chapter 4.)

The values in the Boolean data type can be used in SQL queries and expressions for
comparison purposes. (I discuss comparisonsin Chapter 9.) Boolean comparisons follow
specific logic:

Trueis greater than false.

A comparison involving an unknown (null) value will return an unknown resullt.

A value of unknown can be assigned to a column only if it supports null values.

To use the Boolean data type, you must use the BOOLEAN keyword with no parameters,
as shown in the following example:

ARTI ST_HAS_AGENT BOOLEAN

The ARTIST_HAS AGENT column will accept only the values of true, false, and unknown.

NOTE

The Boolean data type is based on a specific type of computer logic known as Boolean
(named for 19th century mathematician George Boole), which evaluates conditions of
true or false in a given operation or expression. Many programming languages support
Boolean logic through the use of logical operators such as AND, OR, and NOT, for
example, “ITEM_A IS NOT FALSE” or “ITEM_A AND ITEM_B OR ITEM_C IS TRUE.” In
SQL, Boolean logic is implemented through the use of comparison operators to compare
values within various data types. | discuss these operators in Chapter 9.

www.it-ebooks.info

http://www.it-ebooks.info/

62

SQL: A Beginner's Guide

Ask the Expert

Q:
A:

e

How do the predefined data typesin SQL compare to the data typesyou find in other
programming languages?

For the most part, it is unlikely that data types from two different languages will be the
same. A set of data types in one language can vary in structure and semantics from a set of
data types in another language. These differences, sometimes called impedance mismatch,
can lead to the loss of information when an application draws data from an SQL database.
In fact, it's often a good idea to know which language will be used for applications as

the database is being designed. In some cases, the database design can affect which
application language you can most easily use to manipulate datain an SQL database.
However, SQL includes a data conversion expression named CAST. The CAST expression
allows you to convert data from one data type to another data type, allowing the host
language to access values that it wouldn’t have been able to handle in its original form.
The CAST expression is discussed in more detail in Chapter 10.

Can SQL data types be assigned to objects other than columns?

Every SQL datavalue, or literal, belongs to adata type. For example, data types can

be assigned to the parameters of externally invoked procedures. Externally invoked
procedures are procedures that are contained within an SQL client module. A procedureis
an SQL statement (or series of statements) that can be called from another element in the
code, which in the case of externally invoked proceduresis external code. A parameter,
which istheliteral that belongsto adatatype, isavauethat is passed to the procedure
and used as the procedure is processed. The parameter acts as a placeholder for that value.
SQL client modules are discussed in Chapter 17.

Using SQL Data Types

Now that you’ ve taken alook at the various predefined data types, let’slook at a CREATE
TABLE statement that defines a table with columns that use different data types. In the
following example, the statement is creating a table named ARTISTS that includes four
columns:

CREATE TABLE ARTI STS

(

ARTI ST_I D I NT,
ARTI ST_NAME VARCHAR(60) ,
ARTI ST_DOB DATE,

POSTER_| N_STOCK BOCLEAN);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Creating and Altering Tables 63

ARTIST_ID: | ARTIST_NAME: ARTIST_DOB: POSTER_IN_STOCK:
INT VARCHAR(60) DATE BOOLEAN

10001 Jennifer Warnes 1947-03-03 False

10002 Joni Mitchell 1943-11-07 Unknown

10005 Bing Crosby 1904-05-02 True

10006 Patsy Cline 1932-09-08 True

10008 Placido Domingo 1941-01-21 False

10009 Luciano Pavarotti 1935-10-12 Unknown

Figure 3-2 The ARTISTS table defined with different data types

Asyou can see, the ARTIST_ID column is anumeric datatype, the ARTIST_NAME
column a string data type, the ARTIST_DOB column is a datetime data type, and the
POSTER _IN_STOCK is aBoolean data type. Figure 3-2 illustrates how this table might look.

Create User-Defined Types

In Chapter 1, | mentioned that the SQL :2006 standard has incorporated some of the principles
of object-oriented programming (OOP) into its language. One example of thisis the user-
defined type, sometimes referred to as the user-defined data type. The user-defined typeisa
type of datatype (stored as a schema object) that isin part defined by the programmer and in
part based on one or more data types. SQL supports two types of user-defined types:

Structured types These types are made up of one or more attributes that are each
based on another data type, including predefined types, constructed types, and other
structured types. In addition to being associated with a data type, each attribute can
include a default clause and can specify a collation. A structured type can include
methods in its definition. A method is atype of function that’s associated with a user-
defined type. A function is a named operation that performs predefined tasks that you
can’'t normally perform by using SQL statements alone. It is atype of routine that takes
input parameters (which are sometimes optional) and returns a single value based on
those parameters.

Distinct types These types are simply based on predefined data types and whatever
parameters are defined for that datatype, if parameters are required or desired.

www.it-ebooks.info

http://www.it-ebooks.info/

64

SQL: A Beginner's Guide

SQL providesa CREATE TY PE statement for defining user-defined types. However, the
language used for creating a user-defined type can vary from product to product. The features
that are supported in a user-defined type also vary widely. For example, SQL Server 2000 does
not support a CREATE TY PE statement, but SQL Server 2005 does.

Despite the differences with and limitations of product implementations, | want to at
least provide an example of how the CREATE TY PE statement is used to create a distinct
type. In the following statement, | create a user-defined type that is based on the NUMERIC
data type:

CREATE TYPE SALARY AS NUMERI C(8, 2)
FI NAL;

This simple example is straightforward enough, creating a type named SALARY with a
data type of NUMERIC(8,2). However, the keyword FINAL is probably new to you. When
FINAL is specified, it tells SQL that no subtypes will be defined for this type. The alternative
isto specify NOT FINAL, which means that subtypes may be defined for the type. Once
you've created the type, you can use it in a column definition as you would a predefined data

type:

CREATE TABLE EMPLOYEES
(EMPLOYEE_I D | NTEGER,
EMPLOYEE_SALARY SALARY);

Any values you add to the EMPLOYEE_SALARY column would have to conform to the
specifications of the NUMERIC data type with a precision of 8 and ascale of 2. Asaresult, a
value could be anything from —999999.99 to 999999.99. The nice part is that you can then use
the SALARY user-defined type in any other tables that require similar values.

NOTE

As you see, numeric types allow negative numbers as well as zero and positive
numbers. If negative numbers are not desired (which would obviously be the case for
someone’s salary), the data type alone won’t do the job, but you can use a CHECK
constraint for this purpose. | discuss CHECK constraints in Chapter 4.

Specify Column Default Values

Another valuable feature that SQL supportsis the ability to specify adefault value for a
column when you're using the CREATE TABLE statement to create atable. The syntax for
asimple column definition with a default value looks like this:

<col um nane> <data type> DEFAULT <default val ue>

The <column name> and <data type> placehol ders, which should now be familiar, are
followed by the DEFAULT keyword. After the DEFAULT keyword, you must specify a
value for the <default value> placeholder. Thisvalue can be aliteral, which isan SQL data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Creating and Altering Tables 65

value (such asthe string ‘ To be determined’ or the number 0); a datetime value function,
which isafunction that allows you to perform operations related to dates and times (discussed
in Chapter 10); or a session-related user function, which is a function that returns user-related
information (discussed in Chapter 10).

Whichever type of value you use for the <default value> placeholder, it must conform to
the data requirements of the data type specified in the column definition. For example, if you
define a column with an INT data type or a CHAR(4) datatype, you cannot specify a default
value of ‘Unknown’. In thefirst case, INT requires a numeric value, and in the second case,
CHAR(4) requires that the value contain no more than four characters.

In the following example, | use the CREATE TABLE statement to define a table named
ARTISTS, which contains three columns:

CREATE TABLE ARTI STS
(ARTIST ID | NT,
ARTI ST_NAVE VARCHAR(60) ,
PLACE OF BIRTH VARCHAR(60) DEFAULT ' Unknown');

Notice that the PLACE_OF BIRTH column includes the default value ‘Unknown’. The
value is acceptable because it conforms to the data requirements of the VARCHAR(60) data
type. Also notice that the default value is enclosed in single quotes. Y ou must use single quotes
for character string values. Figure 3-3 illustrates what this table might look like if it were
populated with rows of data.

If you were to insert any new rows into this table and you didn’t know the artist’s place of
birth, the system would automatically insert a value of ‘Unknown’.

ARTIST_ID: ARTIST_NAME: PLACE_OF_BIRTH:

INT VARCHAR(60) VARCHAR(60)

10001 Jennifer Warnes Unknown

10002 Joni Mitchell Fort MacLeod, Alberta, Canada
10005 Bing Crosby Tacoma, Washington, United States
10006 Patsy Cline Winchester, Virginia, United States
10008 Placido Domingo Madrid, Spain

10009 Luciano Pavarotti Unknown

Figure 3-3 A default value of ‘Unknown’ for the PLACE_OF_BIRTH column

www.it-ebooks.info

http://www.it-ebooks.info/

66 SQl: A Beginner's Guide

Creating SQL Tables

Y ou've probably noticed that I’ ve been using CD-related data for the examples I’ ve shown
you so far. We will be carrying this theme throughout the book as we begin to build a
database that tracks the CD inventory of asmall business. In this exercise, you will create
three tables that are related to the INVENTORY database, which you created in Chapter 2,
Try This 2-1. Before you begin, take alook at a simple data model (Figure 3-4) that shows
the three tables you’ll be creating. Each table is represented by a rectangle, with the name of
the table above the rectangle and the name of the columns, along with their data types, listed
within the rectangle.

We will be using the data model throughout the book—as it evolves into a more complex
structure—to define the objects in our database. Y ou can also download the Try_This 03.txt
file, which contains the SQL statements used in this Try This exercise.

Step by Step
1. Open the client application for your RDBM S and connect to the INVENTORY database.
Y ou will be creating all objects within that database. (If your RDBM S doesn’t support the
creation of adatabase and instead you created the CD_INVENTORY schema, you should
create all your objects within that schema.)

2. Thefirst table that you will createisthe COMPACT_DISCS table. Notice that it includes
three columns, two of which have an INT data type and one that has a VARCHAR(60) data
type. Thistable will hold data about the compact discs in your inventory. The COMPACT_
DISC_ID column will contain numbers that uniquely identify each CD. The CD_TITLE
column will contain the actual names of the CDs. The LABEL _ID column will contain
numbers that identify the companies that published the CDs. Enter the following SQL
statement into your client application’s input window:

CREATE TABLE COVPACT DI SCS

(COMPACT DISC ID INT,
CD_TITLE VARCHAR(60) ,
LABEL | D INT);

3. Verify that you have entered the correct information and execute the statement. Y ou should
receive a message confirming that the statement has been successfully executed.

COMPACT_DISCS CD_LABELS MUSIC_TYPES
COMPACT_DISC_ID: INT LABEL_ID: INT TYPE_ID: INT

CD_TITLE: VARCHAR(60) COMPANY_NAME: VARCHAR(60) TYPE_NAME: VARCHAR(20)
LABEL_ID: INT

Figure 3-4 Simple data model of the INVENTORY database

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Creating and Altering Tables 67

4. The next table that you will createisthe CD_LABELStable. The table includes the
LABEL_ID column, which uniquely identifies each company that publishes the CDs, and
the COMPANY_NAME column, which lists the actual names of the companies. Enter and
execute the following code:

CREATE TABLE CD_LABELS
(LABEL_I D | NT,
COVPANY_NAME VARCHAR(60));

5. Thefinal table that you will createisthe MUSIC_TY PES table. The table includes the
TYPE_ID column, which uniquely identifies each category of music, and the TY PE_
NAME column, which lists the actual names of the categories of music (for example, Blues
or Jazz). Enter and execute the following code:

CREATE TABLE MJSI C_TYPES
(TYPEID | NT,
TYPE_NAME VARCHAR(20));

6. Close the client application.

Try This Summary
Y our database should now contain three new tables. These tables will serve as a foundation for
other Try This exercisesin the book. Asyou progress through these exercises, you will modify
these tables, create additional tables, insert data into the tables, and then query and manipulate
that data. By the time you’' ve completed all the exercises, you'll have created and populated a
small database that stores data about an inventory of compact discs.

Alter SQL Tables

Taking what you’ ve learned about creating tables, you can use the ALTER TABLE statement
to modify the definitions of base tables stored in your database (as schema objects). At its
most basic, the syntax for the ALTER TABLE statement |ooks like this:

ALTER TABLE <t abl e nane>
ADD [COLUMN] <col umm definition>
| ALTER [COLUMN] <col unm nane>
{ SET DEFAULT <default value> | DROP DEFAULT }
| DROP [COLUMN] <col umm nanme> { CASCADE | RESTRICT }

The statement allows you to take three different actions: adding columns, altering
columns, or dropping columns.

www.it-ebooks.info

http://www.it-ebooks.info/

68

SQL: A Beginner's Guide

NOTE

The ALTER TABLE statement also allows you to add or drop table constraints. A table
constraint is a rule that restricts what data can be entered into the table. The table
constraint is part of the table definition, but is not part of any specific column
definitions. Constraints are discussed in detail in Chapter 4.

The <column definition> placeholder in the ADD [COLUMN] clause is similar to the
column definition section of the CREATE TABLE statement. Y ou provide a column name
and a data type or domain. Y ou also have the option of adding a default clause, a column
constraint, or a collation. For example, you can use the following statement to alter the
ARTISTStable so that it includesan ARTIST_DOB column:

ALTER TABLE ARTI STS
ADD COLUWN ARTI ST_DOB DATE;

Unlike the ADD [COLUMN] clause, the ALTER [COLUMN] clause s limited to two
actions: setting a default or deleting the default (although there are product implementations
that permit changes to other properties such as data type or precision and scale). For example,
suppose your ARTISTS table includesa PLACE_OF_BIRTH column, but no default has been
defined for that column. Y ou can add a default by using the following statement:

ALTER TABLE ARTI STS
ALTER COLUWN PLACE_OF_BI RTH SET DEFAULT ' Unknown';

Y ou can aso drop the default by using the following statement:

ALTER TABLE ARTI STS
ALTER COLUWN PLACE_OF_BI RTH DROP DEFAULT,;

Thefina clause in the syntax—DROP [COL UM N]—provides two options for deleting a
column and its data from atable: the CASCADE keyword and the RESTRICT keyword. You
might remember these keywords from the discussion about the DROP SCHEMA statement in
Chapter 2. If the CASCADE option is specified, the column and the data within the column
are deleted regardless of whether other objects reference the column. Any views, constraints,
routines, or triggers that reference the column are also dropped. If the RESTRICT optionis
used, the column is deleted only if no views, constraints, routines, or triggers reference the
column. For example, the following statement deletesthe PLACE_OF_BIRTH column and the
data stored in the column, regardless of dependencies:

ALTER TABLE ARTI STS
DROP COLUMN PLACE_OF BI RTH CASCADE;

In general, the ALTER TABLE statement is a handy one to know because invariably,
table definitions are going to change, and so too are the types of data stored in those tables.
However, this statement, like most SQL statements, can vary widely from implementation to
implementation in terms of how the specifics of the statement are applied. For example, SQL
Server does not support the CASCADE and RESTRICT keywords. In Oracle, CASCADE
must be written as CASCADE CONSTRAINTS, and RESTRICT (which is the default
behavior) is not explicitly supported. As always, be sure to check your product documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Creating and Altering Tables 69

Delete SQL Tables

Asyou might imagine, the process of deleting a table and its stored datais very
straightforward. The following syntax shows you how easy this processis.

DROP TABLE <t abl e nane>{ CASCADE | RESTRICT }

The only real decision you need to make when deleting the table is whether to choose the
CASCADE option or the RESTRICT option. Asin previous syntax examples, the two options
determine whether you should delete the table and its data if the table is being referenced by
other objects. If CASCADE is used, the table and its data are deleted, along with any views,
constraints, routines, or triggers that reference the table. If RESTRICT is used, the table
is deleted only if no such dependencies exist. (Aswith the DROP COLUMN clause, SQL
Server does not support CASCADE or RESTRICT, and Oracle permits only CASCADE
CONTRAINTS.) For example, the following statement del etes the ARTIST S table and the data
stored in the column, regardless of dependencies:

DROP TABLE ARTI STS CASCADE;

Ask the Expert

Q: what if you want to delete the data in a table, but not the table definition itself?

A: Rather than usi ng the DROP TABLE statement, you would use the DELETE statement.
The DELETE statement deletes all rows from atable or deletes only specific rows, as
defined within the statement. Thisis not the same as the DROP TABLE statement, which
removes the table definition and the data. | discuss the DELETE statement in more detail
in Chapter 8. Many product implementations also provide a TRUNCATE statement
that provides a quick and efficient way to clear all the data out of atable. However, the
TRUNCATE statement is not included in the SQL :2006 standard.

Q: You state that when a default value is defined for a column, the value is automatically
inserted into the column when you add arow to the table but don’t specify a value
for that particular column. What happensif your column definition doesn’t include
adefault and you try toinsert that row?

A: The action taken depends on whether null values are permitted within the column. A null
value means that the value is not known. Thisis not the same as a zero, blank, or default.
If anull valueis present, then the datais not available. By default, all columns permit null
values, although you can override the default (discussed in Chapter 4). If you try to insert
arow without specifying a specific value, anull value will be inserted into that column if
the column permits null values. If the column does not permit null values, you will not be
ableto insert arow without defining a specific value for that column.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

70

SQL: A Beginner's Guide

Q: 1’ve often heard the term “indexes’ discussed in relation to creating SQL tables.

How do you create indexes?

A: Oddly enough, the SQL :2006 standard does not support the creation and maintenance

of indexes, nor does it provide a definition or mention them in any other way. For

those of you not familiar with them, an index is a set of search values and pointers (in a
subsidiary table) that correspond to rowsin atable. Indexes speed up queries and improve
performance, making data access much more efficient, much like using the index of a
book helps you find things more quickly than sequentially searching the pages. As aresult,
nearly every RDBMS supports some form of indexing, and indeed they are an important
part of that product. However, the method used to implement indexing varies greatly, so
each product provides its own system to set up and maintain their indexes. For example,
the CREATE INDEX statement is available in most products; however, the syntax for the
statement can vary considerably. As always, be sure to review the product documentation.

Altering and Deleting SQL Tables

Throughout the life cycle of nearly any database, the likelihood that business requirements
will change and the database will have to be altered is almost a foregone conclusion. Asa
result, you will no doubt run into situations in which table definitions have to be modified or
deleted. Inthis Try This exercise, you will create atable, drop it, recreate it, and then change
it by deleting a column. By the time you are finished, you will have added one more table to
the INVENTORY database and will be making use of that table in later exercises. Y ou can
download the Try_This 03.txt file, which contains the SQL statements used in this exercise.

Step by Step

1. Open the client application for your RDBMS and connect to the INVENTORY database
(or CD_INVENTORY schema).

2. You will create atable named COMPACT _DISC_TYPES. The table will include the
COMPACT _DISC_ID column and the TYPE_ID column. Both columns will be assigned
an INT datatype. Enter and execute the following code:

CREATE TABLE COVPACT DI SC_TYPES
(COMPACT DISC ID INT,
TYPE_ID INT);

3. You will now delete the table from the database. Enter and execute the following code:
DROP TABLE COVPACT_DI SC_TYPES CASCADE;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Creating and Altering Tables 71

4. You will now recreate the table you created in step 2, only thistime you' |l include a third
column named CD_TITLE with adatatype of VARCHAR(60). Enter and execute the
following code:

CREATE TABLE COWPACT DI SC_TYPES

(COVPACT DISC ID INT,
CD_TITLE VARCHAR(60) ,
TYPE_ID INT);

5. Your next step will beto deletethe CD_TITLE column. Enter and execute the following
code:

ALTER TABLE COVPACT_DI SC_TYPES
DRCOP COLUMN CD_TI TLE CASCADE ;

6. The COMPACT_DISC_TY PES table should now contain only the COMPACT_DISC_ID
column and the TY PE_ID column. Close the client application.

Try This Summary

The INVENTORY database should now contain four tables: COMPACT_DISCS, CD_
LABELS, MUSIC_TYPES, and COMPACT_DISC_TYPES. The COMPACT_DISC_TYPES
table, which you just created, contains two columns, COMPACT_DISC_ID and TYPE_ID,
both of which are defined with the INT data type. In subsequent Try This exercises, you will
continue to build on this database by adding new tables and modifying existing ones.

Chapter 3 Self Test

1. Which kinds of base tables can you create by using a CREATE TABLE statement?
A Persistent base tables
B Global temporary base tables
C Created local temporary tables
D Declared local temporary tables

2. What isthe primary difference between a global temporary table and a created local
temporary table?

3. You're creating atable named AGENTS. The table includes the AGENT_ID column, which
hasan INT data type, and the AGENT_NAME column, which has a CHAR(60) data type.
What SQL statement should you use?

4. What are the three types of data types that SQL supports?
5. What are the four types of string data types?

www.it-ebooks.info

http://www.it-ebooks.info/

72

SQL: A Beginner's Guide

10.
11.
12.

13.

14.

15.
16.

17.

18.

. A(n) data type permits values that are based on data bits, rather than

character sets or collations. Thistype of datatype allows only values of 0 and 1.

. What are the precision and the scale of the number 5293.472?
. What are the differences between exact numeric data types and approximate numeric
data types?
. Which data types are exact numeric data types?
A DOUBLE PRECISION
B DECIMAL
C REAL
D SMALLINT
A(n) data type specifies the year, month, and day values of a date.

What are the two types of interval datatypesthat SQL supports?

Which data type should you use to support a true/false construct that can be used for
comparing values?

You are creating a distinct user-defined type named CITY . The user type is based on the
CHAR(40) data type. Which SQL statement should you use?

Y ou're creating a table named CUSTOMERS. The table includes the CUSTOMER_NAME
column and the CUSTOMER_CITY column. Both columns have aVVARCHAR(60) data
type. The CUSTOMER_CITY column aso has a default value of Seattle. Which SQL
statement should you use?

Which SQL statement should you use to delete a column from an existing table?

Which SQL statement should you use to delete a table definition and all its SQL data from
a database?

Y our database includes atable named OPERA_SINGERS. Y ou want to add a column
named NATIONALITY to thetable. The column should have a VARCHAR(40) data type.
What SQL statement should you use?

Y ou want to delete the table definition for the OPERA_SINGERS table from your database.
Y ou also want to delete all the data and any dependencies on the table. What SQL statement
should you use?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Enforcing Data Integrity

73

http://www.it-ebooks.info/

74 SQL: A Beginner's Guide

Key Skills & Concepts

Understand Integrity Constraints
Use NOT NULL Constraints

Add UNIQUE Constraints

Add PRIMARY KEY Constraints
Add FOREIGN KEY Constraints
Define CHECK Constraints

SQL database must do more than just store data. It must ensure that the data it stores
iscorrect. If theintegrity of the datais compromised, the data might be inaccurate or
inconsistent, bringing into question the reliability of the database itself. In order to ensure the

integrity of the data, SQL provides a number of integrity constraints, rules that are applied
to base tables to constrain the values that can be placed into those tables. Y ou can apply
congtraints to individual columns, to individual tables, or to multiple tables. In this chapter,

| discuss each type of constraint and explain how you can apply them to your SQL database.

Understand Integrity Constraints
SQL integrity constraints, which are usually referred to simply as constraints, can be divided
into three categories:

Tablerelated constraints A type of constraint that is defined within atable definition.
The constraint can be defined as part of the column definition or as an element in the table
definition. Constraints defined at the table level can apply to one or more columns.

Assertions A type of constraint that is defined within an assertion definition (separate from
the table definition). An assertion can be related to one or more tables.

Domain constraints A type of constraint that is defined within adomain definition
(separate from the table definition). A domain constraint is associated with any column
that is defined within the specific domain.

Of these three categories of constraints, table-related constraints are the most common
and include the greatest number of constraint options. Table-related constraints can be divided
into two subcategories:. table constraints and column constraints. The constraintsin both these
subcategories are defined in the table definition. A column constraint isincluded with the column
definition, and atable constraint isincluded as a table element, similar to the way columns
are defined as table elements. (Chapter 3 discusses table elements and column definitions.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Infegrity 79

Both column constraints and table constraints support a number of different types of constraints.
Thisis not the case for assertions and domain constraints, which are limited to only one type of
constraint. Figure 4-1 provides an overview of the types of constraints that can be created.

At the top of theillustration, you can see the three categories of constraints. Beneath the
Table-Related Constraints category are the Column Constraints subcategory and the Table
Constraints subcategory, each of which contains specific types of constraints. For example,
table constraints can include unique (UNIQUE constraints and PRIMARY KEY constraints),
referential (FOREIGN KEY constraints), and CHECK constraints, while column constraints
can include the NOT NULL constraint aswell as unique, referential, and CHECK constraints.
However, domains and assertions support only CHECK constraints.

NOTE

In some places, the SQL:2006 standard uses the term “table constraint” to refer to both
types of table-related constraints. | use the term “table-related” to avoid confusion.

As Figure 4-1 shows, there are five different types of constraints: NOT NULL, UNIQUE,
PRIMARY KEY, FOREIGN KEY, and CHECK. In SQL, UNIQUE constraints and PRIMARY
KEY constraints are both considered unique constraints, and FOREIGN KEY constraints are
considered referential constraints. The rest of the chapter is devoted to explaining what each of
these constraints means and how to apply them.

Integrity Constraints

Domain Constraints Table-Related Constraints Assertions
(within domain definitions) (within table definitions) (within assertion definitions)
I I
CHECK CHECK
Column Constraints Table Constraints
NOT NULL Unique Referential CHECK Unique Referential CHECK
UNIQUE FOREIGN KEY UNIQUE FOREIGN KEY
PRIMARY KEY PRIMARY KEY|

Figure 4-1 Types of SQL integrity constraints

www.it-ebooks.info

http://www.it-ebooks.info/

76

SQL: A Beginner's Guide

Use NOT NULL Constraints

In Chapter 3, | told you that null signifies that avalue is undefined or not known. Thisis not
the same as a zero, a blank, an empty string, or a default value. Instead, it indicates that a data
valueis absent. Y ou can think of anull value as being aflag. (A flag is a character, number,
or bit that indicates a certain fact about a column. The flag serves as a marker that designates
aparticular condition or existence of something.) In the case of null, if no valueis provided
for acolumn, the flag is set, indicating that the value is unknown, or null. Every column

has a nullability characteristic that indicates whether the column will accept null values. By
default, all columns accept null values. However, you can override the default nullability
characteristic by using aNOT NULL constraint, which indicates that the column will not
accept null values.

NOTE

Some RDBMSs allow you to change the default nullability of any new column you
create. In addition, some systems support a NULL constraint, which you can use to
designate that a column will accept null values.

The NOT NULL constraint can only be used as a column constraint. It is not supported
for table constraints, assertions, or domain constraints. Implementing a NOT NULL constraint
isavery straightforward process. Simply use the following syntax when creating a column
definition:

<column name> { <datatype> | <domain>} NOT NULL

For example, suppose you want to create a table named COMPACT_DISC_ARTISTS
that requires three columns: ARTIST_ID, ARTIST_NAME, and PLACE_OF BIRTH. You
want to make sure that any new rows that are added to the table include a value for the
ARTIST_ID column and avalue for the ARTIST_NAME column. To do this, you add aNOT
NULL constraint to both column definitions, as shown in the following SQL statement:

CREATE TABLE COMPACT DI SC_ARTI STS

(ARTIST_ID | NT NOT NULL,
ARTI ST_NANME VARCHAR(60) NOT NULL,
PLACE_OF_BI RTH VARCHAR(60)):

Notice that the PLACE_OF BIRTH column does not include aNOT NULL constraint. As
aresult, if avalueisn't supplied for this column (when arow isinserted), anull value will be
inserted. (The null flag will be set.) Figure 4-2 shows how the table might look if rows were
inserted that contained no value for the PLACE_OF BIRTH column.

Asyou can see, the ARTIST_ID and ARTIST_NAME columns do not—, and cannot,
—contain null values. The PLACE_OF_BIRTH column, on the other hand, contains two
null values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Integrity 77

ARTIST_ID: ARTIST_NAME: PLACE_OF_BIRTH:

INT VARCHAR(60) VARCHAR(60)

10001 Jennifer Warnes NULL

10002 Joni Mitchell Fort MacLeod, Alberta, Canada
10005 Bing Crosby Tacoma, Washington, United States
10006 Patsy Cline Winchester, Virginia, United States
10008 Placido Domingo Madrid, Spain

10009 Luciano Pavarotti NULL

Figure 4-2 Null values appearing in the PLACE_OF_BIRTH column in the COMPACT_DISC_

ARTISTS table

Add UNIQUE Constraints

If you refer back to Figure 4-1, you' |l see that both column constraints and table constraints
support unique constraints. You' |l also see that that there are two types of unique constraints:
UNIQUE and PRIMARY KEY. In thissection, | focus on the UNIQUE constraint. The
PRIMARY KEY constraint is discussed in the“ Add PRIMARY KEY Constraints” section

later in this chapter.

The UNIQUE constraint allows you to require that a column or set of columns contains
unique values, meaning values that are different from all other rows in the same table. For
example, take alook at Figure 4-3, which showsthe CD_INVENTORY table. Thetable
contains three columns: ARTIST_NAME, CD_NAME, and COPYRIGHT.

ARTIST_NAME: CD_NAME: COPYRIGHT_YEAR:
VARCHAR(40) VARCHAR(60) INT

Jennifer Warnes Famous Blue Raincoat 1991

Joni Mitchell Blue 1971

William Ackerman Past Light 1983

Kitaro Kojiki 1990

Bing Crosby That Christmas Feeling 1993

Patsy Cline Patsy Cline: 12 Greatest Hits 1988

Figure 4-3 The CD_INVENTORY table with the ARTIST_NAME, CD-NAME, and COPYRIGHT_

YEAR columns

www.it-ebooks.info

http://www.it-ebooks.info/

78

SQL: A Beginner's Guide

Y ou might decide that you want the valuesin the CD_NAME column to be unique so
that no two CD names can be alike. If you applied a UNIQUE constraint to the column, you
would not be able to insert arow that contained a CD_NAME value that already existed in
the table. Now suppose that you realize that making the CD_NAME values unique is not a
good idea because it is possible for more than one CD to share the same name. Y ou decide to
take another approach and use a UNIQUE constraint on the ARTIST_NAME and CD_NAME
columns. That way, no ARTIST_NAME/CD_NAME pair can be repeated. Y ou can repest
an ARTIST_NAME value or aCD_NAME value, but you cannot repeat the exact same
combination of the two. For example, the table already contains arow with an ARTIST _
NAME value of Joni Mitchell and aCD_NAME value of Blue. If a UNIQUE constraint had
been applied to these two columns, you could not add another row that contained both of
these values.

NOTE

| should point out that the tables used for illustration of concepts in this chapter are not
necessarily good designs. For example, names of people and things are seldom good
choices to uniquely identify rows of data because they are rather long (compared to
numbers), tend to chonge, and are prone to prob|ems with c|up|icote values. However,
these tables were chosen because they illustrate the concepts well.

Now that you have a basic understanding of how UNIQUE constraints are applied, let’'s
take alook at the syntax that you use to create them. Remember, | said that you can create a
UNIQUE constraint that is either a column constraint or atable constraint. To create a column
constraint, add it as part of the column definition, as shown in the following syntax:

<column name> { <datatype> | <domain>} UNIQUE

If you want to add a unique constraint as a table constraint, you must add it as atable
element in the table definition, as shown in the following syntax:

[CONSTRAINT <constraint name> |
UNIQUE (<column name> [{, <columnname>} ...])

Asyou can see, applying a UNIQUE constraint as a column constraint is alittle simpler than
applying it as atable constraint. However, if you apply the constraint at the column level,
you can apply it to only one column. Regardless of whether you use column constraints or
table constraints, you can define as many UNIQUE constraints as necessary in asingle table
definition.

Now let’s return to the table in Figure 4-3 and use it to create code examples for applying
UNIQUE constraints. In the first example, | apply a UNIQUE constraint to the CD_NAME
column:

CREATE TABLE CD_| NVENTORY

(ARTI ST_NAME VARCHAR(40),
CD_NAME VARCHAR(60) UNI QUE,
COPYRI GHT ~ INT);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Infegrity 79

| can also apply UNIQUE constraints to other columns, but that would not have the same
effect as combining two columns into one table constraint, as shown in the following example:

CREATE TABLE CD_| NVENTORY
(ARTI ST_NAME VARCHAR(40),
CD_NAME VARCHAR(60) ,
COPYRI GHT I NT,
CONSTRAI NT UN_ARTI ST_CD UNI QUE (ARTI ST_NAME, CD NAME));

The ARTIST_NAME column and CD_NAME column must now contain unique combinations
of valuesin order for arow to be added to the CD_INVENTORY table.

Until now, | have told you that a UNIQUE constraint prevents duplicate values from being
entered into a column or columns defined with that constraint. However, there is one exception
to this—the null value. A UNIQUE constraint permits multiple null valuesin acolumn. As
with other columns, null values are permitted by default. Y ou can, however, override the
default by using the NOT NULL constraint in conjunction with the UNIQUE constraint. For
example, you can add NOT NULL to the CD_NAME column definition:

CREATE TABLE CD_| NVENTORY

(ARTI ST_NAME VARCHAR(40),
CD_NAME VARCHAR(60) NOT NULL UNI QUE,
COPYRIGHT INT);

You can aso add NOT NULL to a column definition that’s referenced by atable
constraint:

CREATE TABLE CD_| NVENTORY
(ARTI ST_NAME VARCHAR(40),
CD_NAME VARCHAR(60) NOT NULL,
COPYRI GHT INT,
CONSTRAI NT UN_ARTI ST_CD UNI QUE (CD_NAME));

In each case, both the NOT NULL constraint and the UNIQUE constraint are applied to the
CD_NAME column, which meansthe CD_NAME values must be unique and without null values.

Add PRIMARY KEY Constraints

As| mentioned in the “Add UNIQUE Constraints’ section, aPRIMARY KEY constraint,
like the UNIQUE constraint, is atype of SQL unique constraint. Both types of constraints
permit only unique values in the specified columns, both types can be applied to one or more
columns, and both types can be defined as either column constraints or table constraints.
However, PRIMARY KEY constraints have two restrictions that apply only to them:

A column that is defined with aPRIMARY KEY constraint cannot contain null values.
It doesn’t matter whether or not the column definition specifies NOT NULL—the column
cannot contain null values because of the PRIMARY KEY constraint.

Only one PRIMARY KEY constraint can be defined for each table.

www.it-ebooks.info

http://www.it-ebooks.info/

80

SQL: A Beginner's Guide

The reason for these restrictionsis the role that a primary key (unique identifier) plays
in atable. Asyou might recall from Chapter 1, each row in atable must be unique. Thisis
important because SQL cannot differentiate between two rows that are completely identical,
S0 you cannot update or delete one duplicate row without doing the same to the other. The
primary key for atableis chosen by the database designer from available candidate keys. A
candidate key is a set of one or more columns that uniquely identify each row. For example,
in Figure 4-4, the only reasonable candidate key in the CD_ARTISTS tableisthe ARTIST_ID
column. Each value in the column will be unique. That way, even if the ARTIST_NAME
values and AGENCY values are duplicated, the row is still unique because the ARTIST_ID
value is always unique.

The uniqueness of a candidate key can be enforced with either a UNIQUE constraint
or aPRIMARY KEY constraint. However, each table should include a primary key even if
no UNIQUE constraints are defined. Thisis considered an industry best practice because a
primary key cannot accept null values, which makes it the definitive measure by which arow’s
uniqueness can be ensured. Primary keys are also useful when one table references another
through the use of foreign keys. (See the “Add FOREIGN KEY Constraints’ section later in
this chapter.) Furthermore, some RDBM Ss require the definition of primary keys under certain
circumstances, such as when atable columnisincluded in afull text index.

To define the primary key, you must use the PRIMARY KEY constraint to specify which
column or columns will serve asthe table's primary key. The process of defining a PRIMARY

Candidate

Key
ARTIST_ID:| ARTIST_NAME: AGENCY_ID:
INT VARCHAR (60) INT
10001 Jennifer Warnes 2305
10002 Joni Mitchell 2306
10003 William Ackerman| 2306
10004 Kitaro 2345
10005 Bing Crosby 2367
10006 Patsy Cline 2049
10007 Jose Carreras 2876
10008 Placido Domingo | 2305
10009 Luciano Pavarotti | 2345

Figure 4-4 The candidate key in the CD_ARTISTS table

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Infegrity 81

KEY constraint is very similar to that of defining a UNIQUE constraint. If you want to add a
PRIMARY KEY constraint to a column definition, use the following syntax:

<column name> { <datatype> | <domain>} PRIMARY KEY

If you want to add a PRIMARY KEY constraint as a table constraint, you must add it as atable
element in the table definition, as shown in the following syntax:

[CONSTRAINT <constraint name>]
PRIMARY KEY (<column name> [{, <columnname>1}...])

Aswith the UNIQUE constraint, you can use a column constraint to define a primary key
if you'reincluding only one column in the definition. For example, if you wereto define a
PRIMARY KEY constraint for the table shown in Figure 4-4, you would use the following
SQL statement:

CREATE TABLE CD_ARTI STS

(ARTIST.ID INT PRI MARY KEY,
ARTI ST_NAVE VARCHAR(60) ,
AGENCY ID INT);

If you want to apply the constraint to multiple columns—or you simply want to keep it as
a separate definition—then you must use a table constraint:

CREATE TABLE CD_ARTI STS

(ARTIST_ID I NT,
ARTI ST_NAME VARCHAR(60),
AGENCY_I D I NT,

CONSTRAI NT PK_ARTI ST_I D PRI MARY KEY (ARTIST_I D, ARTIST_NAME));

This method creates a primary key onthe ARTIST_ID and ARTIST_NAME columns, so that
the combined values of both columns must be unique, although duplicates can exist within the
individual column. An experienced database designer will quickly point out to you that this

is asuperkey, which means that it has more columnsin it than the minimum needed to form a
primary key. And that istrue—ARTIST_ID by itself is unique and we really don’t need to add
ARTIST_NAME to it in order to form a primary key, and we want to be sure that duplicate
values of ARTIST_ID are not entered into the table, which means we should have a primary
key with only ARTIST_ID init. It was only done here to illustrate that a primary key can
contain multiple columns and to define one that way, a table constraint must be used.

Y ou might find that you want to define both PRIMARY KEY and UNIQUE constraintsin
atable. To do so, you simply define the constraints as you normally would. For example, the
following SQL statement definesa PRIMARY KEY constraint on the ARTIST _ID column and
aUNIQUE constraint on the ARTIST_NAME column:

CREATE TABLE CD_ARTI STS

(ARTIST.ID INT PRI MARY KEY,
ARTI ST_NAME VARCHAR(60) ,
AGENCY ID INT,

CONSTRAI NT UN_ARTI ST_NAVE UNI QUE (ARTI ST_NAME));

www.it-ebooks.info

http://www.it-ebooks.info/

82

SQL: A Beginner's Guide

Y ou would achieve the same results with the following code:

CREATE TABLE CD_ARTI STS

(ARTIST ID [NT,
ARTI ST_NAVE VARCHAR(60) UNI QUE,
AGENCY_ID INT,

CONSTRAI NT PK_ARTI ST_I D PRI MARY KEY (ARTIST ID));

NOTE

| used a UNIQUE constraint in these SQL statements only as a way to demonstrate
how the constraint can be used in a table with a primary key. Most likely, you would
not want to use a UNIQUE constraint for the ARTIST_ NAME column because it is
possible for two artists to share the same name. (For example, two different blues
artists, both of whom lived in the earlier part of the last century, went by the name
of Sonny Boy Williamson.)

Ask the Expert

Q: can thecolumnsin atable belong to both a UNIQUE constraint and a PRIMARY
KEY constraint?

A: Yes, aslong as they’ re not the exact same columns. For example, suppose you have atable
that includes three columns: ARTIST_ID, ARTIST_NAME, and PLACE_OF _BIRTH.
Y ou can define a PRIMARY KEY constraint that includes the ARTIST_ID and ARTIST_
NAME columns, which would ensure unique value pairs in those two columns, but values
within the individual columns could still be duplicated. However, you can then define a
UNIQUE constraint that includes only the ARTIST_NAME column to ensure that those
values are unique as well. (This certainly isn't the best design, but it illustrates my point.)
Y ou can a'so create a UNIQUE constraint that includes the ARTIST_NAME and PLACE_
OF_BIRTH columns to ensure unique value pairs in those two columns. The only thing
you can’'t do is create a UNIQUE constraint that includes the exact same columns as an
existing PRIMARY KEY constraint and vice versa.

Q: VYou statethat a column that isincluded in a PRIMARY KEY constraint will not
accept null values. What happensif that column is configured with a NOT NULL
constraint aswell?

A: Nothi ng different happens. Thetableis still created in the same way. A column definition
that includes PRIMARY KEY is saying the same thing as a column definition that
includes NOT NULL PRIMARY KEY. Infact, prior to SQL-92, the NOT NULL
keywords were required on al columnsincluded in aPRIMARY KEY constraint.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Infegrity 83

The same was true for UNIQUE constraints. It wasn’t until SQL-92 that null values were
permitted in columns included in a UNIQUE constraint, which clearly set them apart from
PRIMARY KEY constraints. Also, be wary of variations across vendor implementations.
For example, Oracle will automatically add NOT NULL constraints to columns included
inaPRIMARY KEY constraint, while SQL Server (or at least some versions of it) will
display an error if you attempt to create aPRIMARY KEY constraint using columns that
have not been specified with aNOT NULL constraint.

Add FOREIGN KEY Constraints

Up to this point, the types of constraints that I’ ve discussed have had to do primarily with
ensuring the integrity of datawithin atable. The NOT NULL constraint prevents the use of null
values within a column, and the UNIQUE and PRIMARY KEY constraints ensure the uniqueness
of valueswithin acolumn or set of columns. However, the FOREIGN KEY constraint is different
inthat it is concerned with how datain one table relates to datain another table, which iswhy it
isknown as areferential constraint—it references another table. (Actudly, there is an exception
called arecursive relationship where the foreign key refersto another row in the same table, but
I’m going to ignore this specia case for now in order to focus on the basics.)

Y ou might recall from Chapter 1 that tablesin arelational database are linked together
in ameaningful way in order to ensure the integrity of the data. This association between
tables forms a relationship that provides referential integrity between tables. Referential
integrity prevents the manipulation of datain one table from adversely affecting datain
another table. Let’s take alook at an example that illustrates this point. Figure 4-5 shows
two tables (CD_TITLES and CD_PUBLISHERS) that are each defined with a primary key.

CD_TITLES CD_PUBLISHERS

CD_TITLE_ID{ CD_TITLE: PUBLISHER_ID:| | PUBLISHER_ID:| COMPANY_NAME:

INT VARCHAR(60) INT INT VARCHAR(60)

11001 Famous Blue Raincoat 5422 5403 MCA Records

11002 Blue 5402 5402 Reprise Records
11003 Past Light 5412 5409 Geffen

11004 Kojiki 5409 5412 Windham Hill Records
11005 That Christmas Feeling 5403 5422 Private Music

11006 Patsy Cline: 12 Greatest Hits | 5403

Figure 4-5 The relationship between the CD_TITLES and CD_PUBLISHERS tables

www.it-ebooks.info

http://www.it-ebooks.info/

84

SQL: A Beginner's Guide

The CD_TITLE_ID columninthe CD_TITLES tableis configured with a PRIMARY KEY
constraint, asisthe PUBLISHER_ID columninthe CD_PUBLISHERS table. Both these
columns are shaded in the illustration.

Notice that the CD_TITLES table contains a column named PUBLISHER_ID. This
column includes values from the PUBLISHER_ID column of the CD_PUBLISHERS table.
In fact, the PUBLISHER_ID valuesin the CD_TITLES table should include only values
that come from the PUBLISHER _ID columninthe CD_PUBLISHERS table. Y ou should
not be ableto insert arow into CD_TITLES if the PUBLISHER_ID valueisnot listed in
the CD_PUBLISHERS table. At the same time, if you alter or delete a PUBLISHER _ID
valuein the CD_PUBLISHERS table, you should be able to predict the outcome of your
action if those same values exist in the CD_TITLES table. Under no circumstances would
you want to delete a publisher and leave PUBLISHER_ID valuesinthe CD_TITLES table
that reference a publisher that no longer exists. These results can be achieved by using
aFOREIGN KEY constraint. A FOREIGN KEY constraint enforces referential integrity
between two tables by ensuring that no action is taken on either table that adversely affects
the data protected by the constraint.

In the tables shown in Figure 4-5, the FOREIGN KEY constraint must be configured on the
PUBLISHER _ID column of the CD_TITLEStable. The FOREIGN KEY constraint restricts the
valuesin that column to the values of a candidate key (usually the primary key) in the related
table. Only valid data values are permitted in the FOREIGN KEY column or columns.

NOTE

The table that contains the foreign key is the referencing table. The table that is being

referenced by the foreign key is the referenced table. Likewise, the column or columns
that make up the foreign key in the referencing table are referred to as the referencing
columns. The columns being referenced by the foreign key are the referenced columns.

When creating a FOREIGN KEY constraint, you must follow several guidelines:

The referenced columns must be defined with either aUNIQUE or PRIMARY KEY
constraint on them. As you might guess, the primary key is most commonly used for the
referenced columns.

A FOREIGN KEY constraint can be created as a table constraint or column constraint. If
you create the foreign key as a column constraint, you can include only one column. If you
create the foreign key as atable constraint, you can include one or more columns.

The foreign key in the referencing table must include the same number of columns that are
being referenced, and the referencing columns must each be configured with the same data
types as their referenced counterparts. However, the referencing columns do not have to
have the same names as the referenced columns.

If you don't specify the referenced columns when you define a FOREIGN KEY constraint,
then the columns defined in the primary key of the referenced table are used as the
referenced columns.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Infegrity 85

These guidelines will become clearer as | explain how to implement aforeign key.
First, let’stake alook at the basic syntax used to create that constraint. If you want to add a
FOREIGN KEY constraint as a column constraint, you must add the constraint to a column
definition, as shown in the following syntax:

<column name> { <datatype> | <domain>} [NOT NULL]
REFERENCES <referenced table> [(<referenced columns>) |
[MATCH { FULL | PARTIAL |SIMPLE}]

[<referential triggered action>]

If you want to add a FOREIGN KEY constraint as a table constraint, you must add it as atable
element in the table definition, as shown in the following syntax:

[CONSTRAINT <constraint name> |

FOREIGN KEY (<referencing column > [{, <referencing column>1}...])
REFERENCES <referenced table> [(<referenced columns>) |

[MATCH { FULL | PARTIAL |SIMPLE}]

[<referential triggered action>]

Asyou can see, a FOREIGN KEY constraint is a bit more complicated than the constraint
syntax you've looked at so far. However, creating a basic FOREIGN KEY constraint isa
relatively straightforward process. Let’ stake alook at onefirst, and then we'll go on to the
more complex language elements.

In the following example, | use a CREATE TABLE statement to createthe CD_TITLES
table (shown in Figure 4-5) and define a column constraint:

CREATE TABLE CD TI TLES
(CO_TITLEID I[NT,
CD_TI TLE VARCHAR(60) ,
PUBLI SHER | D | NT REFERENCES CD_PUBLI SHERS) ;

This statement definesa FOREIGN KEY constraint on the PUBLISHER _|D column.
Notice that, in order to add a column constraint, all you have to do is add the REFERENCES
keyword and the name of the referenced table. Also notice that the foreign key contains the
same number of columns as the primary key in the referenced table, and the referenced and
referencing columns are the same data type. Remember, if you're not referencing the primary
key in the referenced table, you must also include the name of the column or columns—for
example, REFERENCES CD_PUBLISHERS (PUBLISHER_ID).

NOTE

Before you can create a foreign key on a table, the referenced table must already exist
and a UNIQUE or PRIMARY KEY constraint must be defined for that table.

www.it-ebooks.info

http://www.it-ebooks.info/

86

SQL: A Beginner's Guide

In the next example, | create aforeign key that is atable constraint. Unlike the previous
example, | include the name of the referenced column in this constraint definition, even though
itisn't necessary:

CREATE TABLE CD_TI TLES

(CDTITLE_ID INT,
CD TITLE VARCHAR(60) ,
PUBLI SHER | D | NT,

CONSTRAI NT FK_PUBLI SHER | D FOREI GN KEY (PUBLI SHER | D)
REFERENCES CD_PUBLI SHERS (PUBLI SHER I D));

The last two lines of code are the constraint definition. The name of the constraint,
FK_PUBLISHER_ID, follows the CONSTRAINT keyword. Constraint names aren’t
necessary because the DBM S will assign a system-generated name if oneis not supplied.
However, it's agood practice to supply your own because constraint names often appear in
error messages when SQL statements attempt to violate constraints, and names you supply
will be easier to recognize than ones the DBM S supplied for you. Following the constraint
name, the FOREIGN KEY keywords indicate the type of constraint, which is followed by
the referencing column name, PUBLISHER _ID. Thisisthe name of the column on which
the constraint is being placed. If there were multiple column names, they would be separated
by commas. The name of the referencing column is then followed by the REFERENCES
keyword, which is followed by the name of the referenced table, CD_PUBLISHERS. The
name of the referenced column follows the name of the referenced table.

That's all thereisto it. Once the constraint is defined, you would not be able to place
valuesin the PUBLISHER |D column of the CD_TITLES table unless those values aready
existed in the primary key of the CD_PUBLISHERS table. Y ou should note, however, that the
valuesin the foreign key do not have to be unique, as they must be in the CD_PUBLISHERS
primary key. Valuesin the foreign key can be repeated any number of times, unless the column
islimited by a unique constraint.

Before | move on to discussing the other elements of the FOREIGN KEY syntax, let's
take aquick look at aforeign key that includes multiple columns. In Figure 4-6, there are two
tables: PERFORMING_ARTISTS and ARTISTS MUSIC_TYPES.

The primary key on the PERFORMING_ARTISTS table is defined on the ARTIST _
NAME and ARTIST_DOB columns. The following SQL statement createsthe ARTISTS _
MUSIC_TYPEStable, which includes aforeign key made up of the ARTIST_NAME and
DOB columns:

CREATE TABLE ARTI STS MJUSI C TYPES
(ARTI ST_NAME VARCHAR(60) ,
DOB DATE,
TYPE_I D I NT,
CONSTRAI NT FK_CD ARTI STS FOREI GN KEY (ARTI ST _NAVE, DOB)
REFERENCES PERFORM NG ARTI STS (ARTI ST _NAVE, ARTI ST _DOB));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Integrity 87

PERFORMING_ARTISTS ARTISTS_MUSIC_TYPES
ARTIST NAME: [ARTIST DOB:| PLACE_OF BIRTH: PSTR_IN_STK:| | ARTIST_NAME: | DOB: TYPE_ID:
VARCHAR(60) DATE VARCHAR(60) BOOLEAN VARCHAR(60) DATE INT
Jennifer Warnes | 1947-03-03 | Unknown False Jennifer Warnes | 1947-03-03 |10
Joni Mitchell 1943-11-07 | Fort MacLeod, Alberta, Canada Unknown Jennifer Warnes | 1947-03-03 |06
Bing Crosby 1904-05-02 | Tacoma, Washington, U.S.A. True Joni Mitchell 1943-11-07 (10
Patsy Cline 1932-09-08 | Winchester, Virginia, U.S.A. True Joni Mitchell 1943-11-07 |05
Placido Domingo | 1941-01-21 | Madrid, Spain False Joni Mitchell 1943-11-07 (12
Luciano Pavarotti | 1935-10-12 | Unknown Unknown Bing Crosby 1904-05-02 |05
Bing Crosby 1904-05-02 |13
Patsy Cline 1932-09-08 |02
Patsy Cline 1932-09-08 |10
Placido Domingo | 1941-01-21 |19
Luciano Pavarotti | 1935-10-12 |19

Figure 4-6 A foreign key made up of multiple columns

In this statement, there are two referencing columns (ARTIST_NAME and DOB) and
two referenced columns (ARTIST_NAME, ARTIST_DOB). The ARTIST_NAME columns
in the two tables have the same data type, and the DOB column has the same data type as the
ARTIST_DOB column. Asyou can see, one of the referencing columns (DOB) has a different
name than its referenced counterpart (ARTIST_DOB).

Ask the Expert

Q: in Figure 4-6 and in the preceding examples, you created a FOREIGN KEY
constraint on the ARTIST_NAME and DOB columnsin the ARTISTS MUSIC _
TYPEStable. What would the primary key befor thistable?

A: Remember that aprimary key must uniquely identify each row in atable. However, because
pairs of valuesin the ARTIST_NAME and DOB columns can be repeated (which means
that they can be repeated in the individual columns as well), those two columns cannot
be used by themselves as a primary key for this table. On the other hand, the TY PE_ID
column can have repeating values as well, so that column cannot be used by itself.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

88

SQL: A Beginner's Guide

In addition, you probably wouldn’t want to combine the TY PE_ID column with one of

the other two columns because it is concelvabl e that you would have repeating rows (for
example, two artists with the same name performing the same types of music, such asthe
two blues musicians named Sonny Boy Williamson, or two artists with the same date of
birth performing the same type of music). Asaresult, your best solution (aside from adding
another column to thetable) isto roll al three columns into the primary key. Together, the
three columns would uniquely identify each row because it is highly unlikely that anyone
would share the same name, date of birth, and type of music (although anything is possible,
which iswhy, ultimately, adding another column that is guaranteed to be uniqueis the very
best way to go).

The MATCH Clause

Now that you have an understanding of how to define a basic FOREIGN KEY constraint, let’s
look at another line of the FOREIGN KEY syntax:

[MATCH { FULL | PARTIAL | SIMPLE}]

You can tell from the brackets that thisis an optional clause. And in fact, very few vendor
products currently support this clause (it’s not supported by SQL Server 2005, Oracle 119,
or MySQL 5.0, for example), so you won't see it used much at all. However, it is described
in the SQL Standard, which means we can expect more vendor product support in the future.
Its purposeis to allow you to decide how to treat null valuesin the foreign key columns, with
regard to permitting values to be inserted into the referencing columns. If the columns do not
permit null values, then the MATCH clause does not apply. Y ou have three options that you
can useinthe MATCH clause:

If MATCH FULL is specified, all referencing columns must have a null value or none of
these columns can have anull value.

If MATCH PARTIAL is specified, one or more referencing columns can have null values
as long as the remaining referencing columns have values that equal their corresponding
referenced columns.

If MATCH SIMPLE is specified and one or more referencing columns have null values,
then the remaining referencing columns can have values that are not contained in the
corresponding referenced columns. The SIMPLE option isimplied if the MATCH clause
isnot included in the FOREIGN KEY constraint definition.

The best way to illustrate each of these MATCH optionsis through examples of valid and
invalid data that can be inserted in the referencing columns. Going back to our example shown
in Figure 4-6, you can see that the foreign key inthe ARTISTS MUSIC _TYPES tableis made
up of two referencing columns: ARTIST_NAME and DOB. Table 4-1 provides examples for
data that can and cannot be inserted into the foreign key columns. The examples are based on
datain the primary key columns of the PERFORMING_ARTISTS table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Infegrity 89

MATCH Option Valid Data Examples Invalid Data Examples
FULL Joni Mitchell, 1943-11-07 NULL, 1943-11-07
NULL, NULL Joni Mitchell, NULL
Joni Mitchell, 1802-08-03
PARTIAL Patsy Cline, 1932-09-08 NULL, 1802-08-03
NULL, 1932-09-08 Henryk Gérecki, NULL
Patsy Cline, NULL Patsy Cline, 1947-03-03
NULL, NULL
SIMPLE Bing Crosby, 1904-05-02 Bing Crosby, 1802-08-03

NULL, 1904-05-02
Bing Crosby, NULL
NULL, 1802-08-03
Henryk Gérecki, NULL
NULL, NULL

Bing Crosby, 1947-03-03
Henryk Gérecki, 1947-03-03

Table 4-1 Valid and Invalid Examples of the MATCH Clause Options

NOTE

You probably wouldn’t want to permit null values in your referencing columns in the
ARTISTS_MUSIC_TYPES table, particularly for the ARTIST_NAME column. And if either
of these columns were used in the primary key, you would not be able to permit null
values. However, in order to demonstrate how the MATCH options work, let’s assume
that null values are permitted.

If you decide to use the MATCH clause, you simply add it to the end of your FOREIGN
KEY constraint definition, as shown in the following SQL statement (assuming your
implementation of SQL supportsit):

CREATE TABLE ARTI STS_MJSI C_TYPES

(ARTI ST_NAME VARCHAR(60),

DOB

TYPE_ID

DATE,
I NT,

CONSTRAI NT FK_CD_ARTI STS FOREI GN KEY (ARTI ST_NAME, DOB)
REFERENCES PERFORM NG ARTI STS MATCH FULL);

To insert datainto the referencing columns (ARTIST_NAME and DOB), both values have to
be null or they must be valid data values from the referenced columns in the PERFORMING _

ARTISTS table.

The <referential trig

gered action> Clause

Thefinal clause in the FOREIGN KEY constraint syntax is the optional <referential triggered
action> clause. The clause allows you to define what types of actions should be taken when

attempting to update or delete data from the referenced columns—if that attempt would cause
aviolation of the datain the referencing columns. For example, suppose you try to delete data
from atable’'s primary key. If that primary key isreferenced by aforeign key and if the datato

www.it-ebooks.info

http://www.it-ebooks.info/

90

SQL: A Beginner's Guide

be deleted is stored in the foreign key, then del eting the data from the primary key would cause
aviolation of the FOREIGN KEY constraint. Datain referencing columns must always be
included in the referenced columns.

The point to remember about the <referential triggered action> clause isthat you are
including in the definition of the referencing table (through the foreign key) an action that
should be taken as aresult of something being done to the referenced table. This can be
clarified by taking alook at the syntax for the <referential triggered action> clause:

ON UPDATE <referential action>[ON DELETE <referential action>]

| ON DELETE <referential action>[ON UPDATE <referentia action> |
<referentia action> ::=

CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION

NOTE

The ::= symbol (two consecutive colons plus an equals sign) is used in the SQL:2006
standard to separate a placeholder in the angle brackets from its definition. In the

preceding syntax, the <referential action> placeholder is defined. The placeholder is
used in the code preceding the definition. You would then take the definition (the five

keywords) and use them in place of the <referential action> placeholder as it is used in
the ON UPDATE and ON DELETE clauses.

Asyou can see from the syntax, you can define an ON UPDATE clause, an ON DELETE
clause, or both, and you can define them in any order. For each of these clauses you can
choose one of five referential actions:

If CASCADE isused and datais updated or deleted in the referenced columns, the datain
the referencing columnsis updated or del eted.

If SET NULL isused and data is updated or deleted in the referenced columns, the values
in the corresponding referencing columns are set to null. Null values have to be supported
in the referencing columns for this option to work.

If SET DEFAULT isused and datais updated or deleted in the referenced columns, the
valuesin the corresponding referencing columns are set to their default values. Default
values must be assigned to the referencing columns for this option to work.

If RESTRICT isused and you try to update or delete datain your referenced columns that
would cause aforeign key violation, you are prevented from performing that action. Data
in the referencing columns can never violate the FOREIGN KEY constraint, not even
temporarily.

If NO ACTION isused and you try to update or delete datain your referenced columns
that would cause aforeign key violation, you are prevented from performing that action.
However, data violations can occur temporarily under certain conditions during the
execution of an SQL statement, but the datain the foreign key is never violated in itsfinal
state (at the end of that execution). The NO ACTION option is the default used for both
updates and deletes, if no referential triggered action is specified.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Infegrity 91

If you decide to use the <referential triggered action> clause, you simply add it to the end
of your FOREIGN KEY constraint definition, as shown in the following SQL statement:

CREATE TABLE ARTI STS_MJSI C_TYPES
(ARTI ST_NAME VARCHAR(60) ,
DOB DATE,
TYPE_I D I NT,
CONSTRAI NT FK_CD_ARTI STS FOREI GN KEY (ARTI ST_NAVE, DOB)
REFERENCES PERFORM NG _ARTI STS ON UPDATE CASCADE ON DELETE CASCADE);

If you update datain or delete data from the referenced columnsin PERFORMING _
ARTISTS, those changes will be made to the referencing columnsin the ARTISTS MUSIC
TYPEStable.

Adding NOT NULL, Unique,

and Referential Constraints

In Chapter 3, Try This3-1 and Try This 3-2, you created severa tablesthat you added to the
INVENTORY database (or the CD_INVENTORY schema). Inthis Try This exercise, you

will add anumber of constraints to the tables and create new tables that are also defined with
constraints. However, rather than use the ALTER TABLE statement to modify the tables that you
aready created, you will be recreating those tables. The advantage to thisisthat you'll be ableto
see the compl ete table definition as it relates to the updated data model, shown in Figure 4-7.

The data model incorporates a few more elements than you have seen before. It identifies
tables, columns within those tables, data types for those columns, constraints, and rel ationships
between tables. Y ou should already be familiar with how tables, columns, and data types are
represented, so let’s take alook at constraints and relationships:

The columns included in the primary key are in the top section of the table, and the other
columns lie in the bottom section. For example, in the COMPACT_DISCStable, the
COMPACT_DISC_ID column isthe primary key. In some cases, asin the COMPACT _
DISC_TYPEStable, all columns are included in the primary key.

Each foreign key is represented by an [FK].
Defaults, UNIQUE constraints, and NOT NULL constraints are identified with each
applicable column.

Relationships, as defined by foreign keys, are represented by lines that connect the foreign
key in onetable to the candidate key (usually the primary key) in another table.

You'll find this data model useful not only for this exercise, but for other Try This exercises
in the book, all of which will continue to build upon or use the INVENTORY database. Y ou
can aso download the Try_This_04.txt#file, which contains the SQL statements used in this
exercise.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

92 SQL: A Beginner's Guide

ARTIST_CDS ARTISTS

ARTIST_ID INT [FK] —» | ARTIST_ID INT
COMPACT_DISC_ID INT [FK]

ARTIST_NAME VARCHAR(60) NOT NULL
PLACE_OF_BIRTH VARCHAR(60)
DEFAULT 'Unknown' NOT NULL

COMPACT_DISCS COMPACT_DISC_TYPES MUSIC_TYPES
COMPACT_DISC_ID INT [«— COMPACT_DISC_ID INT [FK]_|—> TYPE_ID INT
MUSIC_TYPE_ID INT [FK]
CD_TITLE VARCHAR(60) NOT NULL TYPE_NAME VARCHAR(20)
LABEL_ID INT NOT NULL [FK] NOT NULL UNIQUE
CD_LABELS
LABEL_ID INT

COMPANY_NAME VARCHAR(60)
DEFAULT ‘Independent'
NOT NULL

Figure 4-7 Data model for the INVENTORY database

NOTE

Data models come in many varieties. The model | use here is specific to the needs of the
book. You'll find in the real world that the models will differ from what you see here.
For example, relationships between tables might be represented differently, and column
definition information might not be quite as extensive.

Step by Step
1. Open the client application for your RDBM S and connect to the INVENTORY database.

2. You first need to drop the four tables (COMPACT_DISCS, COMPACT_DISC_TYPES,
MUSIC _TYPES, and CD_LABELYS) that you aready created. Enter and execute the
following SQL statements:

DROP TABLE COVPACT_DI SCS CASCADE;
DROP TABLE COVPACT_DI SC_TYPES CASCADE;
DROP TABLE MJSI C_TYPES CASCADE;
DROP TABLE CD_LABELS CASCADE;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Infegrity 93

NOTE

If you created either the ARTISTS table or the ARTIST_CDS table when trying out
examples or experimenting with CREATE TABLE statements, be sure to drop those
as well.

NOTE

The CASCADE option is not supported by SQL Server, and in Oracle must be written
as CASCADE CONSTRAINTS.

Now you can begin to recreate these tables and create new ones. Y ou should create the
tables in the order outlined in this exercise because the tables referenced in foreign keys
will have to exist—with primary keys created—before you can create the foreign keys.
Be sure to refer to the data model in Figure 4-7 for details about each table that you create.

3. Thefirst table that you' re going to create isthe MUSIC_TYPES table. It contains two
columns: TYPE_ID and TYPE_NAME. You'll configurethe TYPE_ID column as the
primary key, and you'll configure a UNIQUE constraint and NOT NULL constraint on the
TYPE_NAME column. Enter and execute the following SQL statement:

CREATE TABLE MJSI C_TYPES

(TYPE_ID INT,
TYPE_NAME VARCHAR(20) NOT NULL,
CONSTRAI NT UN_TYPE_NAME UNI QUE (TYPE_NAME),
CONSTRAI NT PK_MUSI C_TYPES PRI MARY KEY (TYPE_ID));

4. The next table that you'll create isthe CD_LABEL S table. The table includes the LABEL _
ID column, which will be defined as the primary key, and the COMPANY _NAME column,
which will be defined with a default and the NOT NULL constraint. Enter and execute the
following SQL statement:

CREATE TABLE CD LABELS

(LABEL_ID I NT,
COVPANY_NAME VARCHAR(60) DEFAULT ' I ndependent’ NOT NULL,
CONSTRAI NT PK_CD LABELS PRI MARY KEY (LABEL_ID));

5. Now that you've created the CD_L ABEL S table, you can create the COMPACT _
DISCS table. The COMPACT _DISCS table contains aforeign key that references the
CD_LABELStable. Thisiswhy you created CD_L ABEL Sfirst. Enter and execute the
following SQL statement:

CREATE TABLE COVPACT DI SCS
(COWPACT DISC ID INT,

CD_TI TLE VARCHAR(60) NOT NULL,

LABEL_I D I NT NOT NULL,

CONSTRAI NT PK_COVPACT DI SCS PRI MARY KEY (COMPACT DI SC_ | D),

CONSTRAI NT FK_LABEL_| D FOREI GN KEY (LABEL_| D) REFERENCES CD_LABELS);

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

94 SQL: A Beginner's Guide

6. The next table, COMPACT_DISC_TYPES, includes two foreign keys, along with its primary
key. The foreign keys reference the COMPACT_DISCStable and the MUSIC_TYPES table,
both of which you've aready created. Enter and execute the following SQL statement:

CREATE TABLE COVPACT DI SC TYPES
(COMPACT DI SC I D INT,
MUSI C_ TYPE ID INT,
CONSTRAI NT PK_COMPACT DI SC_TYPES
PRI MARY KEY (COWPACT DI SC I D, MJSIC TYPE | D),
CONSTRAI NT FK_COMPACT DI SC | D 01
FOREI GN KEY (COMPACT DI SC | D) REFERENCES COMPACT DI SCS,
CONSTRAI NT FK_MUSI C_TYPE_I D
FOREI GN KEY (MUSI C_TYPE_I D) REFERENCES MUSI C_TYPES);

7. Now you can create the ARTISTS table. Enter and execute the following SQL statement:

CREATE TABLE ARTI STS

(ARTIST_I D I NT,
ARTI ST_NAVE VARCHAR(60) NOT NULL,
PLACE OF BI RTH VARCHAR(60) DEFAULT ' Unknown' NOT NULL,
CONSTRAI NT PK_ARTI STS PRI MARY KEY (ARTIST ID)) ;

8. Thelast table you'll create (at least for now) isthe ARTIST_CDS table. Enter and execute
the following SQL statement:

CREATE TABLE ARTI ST_CDS

(ARTIST ID I NT,
COVPACT DISC ID INT,
CONSTRAI NT PK_ARTI ST_CDS PRI MARY KEY (ARTIST_ID, COMPACT DISCID),
CONSTRAI NT FK_ARTI ST_| D FOREI GN KEY (ARTI ST I D) REFERENCES ARTI STS,
CONSTRAI NT FK_COMPACT DI SC | D_02 FOREI GN KEY (COMPACT DI SC | D)
REFERENCES COMPACT DI SCS) ;

9. Close the client application.

Try This Summary
Y our database now has six tables, each one configured with the necessary defaults and
constraints. In this Try This exercise, we followed a specific order for creating the tablesin
order to more easily implement the foreign keys. However, you could have created the tables
in any order, without their foreign keys—unless the referenced table was already created—and
then added in the foreign keys later, but this would have added extra steps. In fact, had you
wanted to, you could have atered the tables that had existed prior to this exercise (rather than
dropping them and then recreating them), as long as you created primary keys (or UNIQUE
constraints) on the referenced tables before creating foreign keys on the referencing tables.
Regardless of the approach you take, the end result should be that your database now has the
necessary tables to begin moving on to other components of SQL.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Infegrity 98

Define CHECK Constraints

Earlier in the chapter, in the “Understand Integrity Constraints’ section, | discussed the various
constraint categories and the types of constraints they support. (Refer back to Figure 4-1 for
an overview of these categories.) One type of constraint—, the CHECK constraint, —can be
defined as table constraints, column constraints, domain constraints, or within assertions.
A CHECK congtraint allows you to specify what values can be included in a column. Y ou can
define arange of values (for example, between 10 and 100), alist of values (for example, blues,
jazz, pop, country), or anumber of other conditions that restrict exactly what values are permitted
inacolumn.

CHECK constraints are the most flexible of all the constraints and are often the most
complicated. Despite this, the basic syntax used for a CHECK constraint isrelatively simple.
To create a column CHECK constraint, use the following syntax in a column definition:

<column name> { <datatype> | <domain>} CHECK (<search condition>)
To create atable CHECK constraint, use the following syntax in atable definition:
[CONSTRAINT <constraint name>] CHECK (<search condition>)

I'll be discussing domain constraints and assertions later in this section.

Asyou can see by the syntax, a CHECK constraint isrelatively straightforward. However,
the values used for the <search condition> clause can be very extensive and, consequently,
quite complex. The main concept is that the <search condition> is tested (one could say
“checked”) for any SQL statement that attempts to modify the datain a column covered
by the CHECK constraint, and if it evaluates to TRUE, the SQL statement is allowed
to complete; if it evaluates to FALSE, the SQL statement fails and an error message is
displayed. The best way for you to learn about the clause is by looking at examples. However,
most <search condition> components are based on the use of predicatesin order to create
the search condition. A predicate is an expression that operates on values. For example, a
predicate can be used to compare values (for instance, COLUMN_1 > 10). The greater- than
symbol (>) is acomparison predicate, sometimes referred to as a comparison operator. In this
case, the predicate verifies that any value inserted into COLUMN _1 is greater than 10.

Many <search condition> components also rely on the use of subqueries. A subquery is
an expression that is used as a component within another expression. Subqueries are used
when an expression must access or calculate multiple layers of data, such as having to search
a second table to provide data for the first table.

Both predicates and subqueries are complicated enough subjects to be beyond the scope of
adiscussion about CHECK constraints, and indeed each subject is treated separately in its own
chapter. (See Chapter 9 for information about predicates and Chapter 12 for information about
subqueries.) Despite the fact that both topics are discussed later in the book, | want to provide
you with at least a few examples of CHECK constraintsto give you afeel for how they're
implemented in an SQL environment.

Thefirst example we'll look at isa CHECK constraint that defines the minimum and
maximum values that can be inserted into a column. The following table definition in this

www.it-ebooks.info

http://www.it-ebooks.info/

96

SQL: A Beginner's Guide

example creates three columns and one CHECK constraint (as a table constraint) that restricts
the values of one of the columns to arange of numbers between 0 and 30:

CREATE TABLE CD_TI TLES
(COMPACT DISC ID INT,

CD_TI TLE VARCHAR(60) NOT NULL,

I N_STOCK | NT NOT NULL,

CONSTRAI NT CK_I N_STOCK CHECK (IN_STOCK > 0 AND I N _STOCK < 30));

If you wereto try to enter avalueinto the IN_STOCK column other than 1 through 29, you
would receive an error. Y ou can achieve the same results by defining a column constraint:

CREATE TABLE CD TI TLES
(COMPACT DISC ID INT,
CD_TITLE VARCHAR(60) NOT NULL,
I N_STOCK I NT NOT NULL
CHECK (IN_STOCK > 0 AND I N_STOCK < 30));

Let’stake acloser look at the <search condition> clause in these statements, which in
thiscaseis (IN_STOCK >0AND IN_STOCK < 30). The clausefirst tells us that any value
entered into the IN_STOCK column must be greater than O (IN_STOCK > 0). The AND
keyword tells us that the conditions defined on either side of AND must be applied. Finally,
the clause tells us that the value must be less than 30 (IN_STOCK < 30). Because the AND
keyword is used, the value must be greater than 0 and less than 30.

Another way that a CHECK constraint can be used isto explicitly list the values that can
be entered into the column. Thisis a handy option if you have alimited number of values and
they’re not likely to change (or will change infrequently). The following SQL statement creates
atable that includes a CHECK constraint that defines in which decade the music belongs:

CREATE TABLE CD_TI TLES
(COMPACT_DISC ID INT,
CD_TI TLE VARCHAR(60) NOT NULL,
ERA CHAR(5),
CONSTRAI NT CK_ERA CHECK (ERA IN ('1940s', '1950s',
'1960s', '1970s', '1980s', '1990s', '2000s')));

The value entered into the ERA column must be one of the seven decades represented
by the search condition. If you tried to enter a value other than a null value or one of these
seven, you would receive an error. Notice that the IN operator is used to designate that the
ERA column values must be one of the set of values enclosed by parentheses following
the keyword IN.

If the number of parentheses starts to confuse you, you can separate your code into lines
that follow the embedding of those parentheses. For example, the preceding statement can be
written as follows:

CREATE TABLE CD_TI TLES

(
COVPACT_DI SC_I D | NT,

CD_TITLE VARCHAR(60) NOT NULL,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Integrity 97

ERA CHAR(5),
CONSTRAI NT CK_ERA CHECK

(
ERA IN

(
)

'1940s', '1950s', '1960s', '1970s', '1980s', '1990s', '2000s’

Each set of parentheses and its content isindented to alevel that corresponds to the level
of embedding for that particular clause, just like an outline. Using this method tells you exactly
which clauses are enclosed in which set of parentheses, and the statement is executed just the
same asif you hadn’t separated out the lines. The downside isthat it takes up alot of room
(which iswhy | don’t use this method in this book), although it might be a helpful tool for you
for those statements that are a little more complicated.

Now let’slook at one other example of a CHECK constraint. This exampleis similar to the
first one we looked at, only this one is concerned with values between certain numbers:

CREATE TABLE CD_TI TLES
(COMPACT DISC ID INT,
CD_TITLE VARCHAR(60) NOT NULL,
I N_STOCK | NT NOT NULL,
CONSTRAI NT CK_I N_STOCK CHECK
((IN_STOCK BETWEEN 0 AND 30) OR
(IN_STOCK BETWEEN 49 AND 60))) ;

In this statement, you use the BETWEEN operator to specify arange which includes the
endpoints. Because you are creating two different ranges, you enclose each range specification in
parentheses. (IN_STOCK BETWEEN O AND 30) and (IN_STOCK BETWEEN 49 AND 60).
These two range specifications are then connected by an OR keyword, which indicates that either
one or the other condition must be met. Asaresult, any value entered into the IN_STOCK column
must be from 0 through 30 or from 49 through 60.

As| said earlier, you will learn more about search conditionsin Chapter 9. At that time,
you'll see just how flexible the CHECK constraint is. And when used with subqueries
(see Chapter 12), they provide a powerful tool for explicitly defining what values are permitted
in a particular column.

Defining Assertions

An assertion is merely atype of CHECK constraint that can be applied to multiple tables. For
this reason, an assertion must be created separately from atable definition. Unfortunately, most
vendor products, including Oracle 11g, SQL Server 2005, and MySQL 5.0, don’t yet support
assertions. To create an assertion, use the following syntax:

CREATE ASSERTION <constraint name> CHECK <search conditions>

www.it-ebooks.info

http://www.it-ebooks.info/

98

SQL: A Beginner's Guide

Creating an assertion is very similar to creating atable CHECK constraint. After the
CHECK keyword, you must provide the necessary search condition(s). Now let’s take alook
at an example. Suppose the CD_TITLES table includes a column for the number of compact
discsin stock. You want the total for that table to always be less than the maximum inventory
you want to carry. In the following example, | create an assertion that totals the valuesin the
IN_STOCK column and verifies that the total is|ess than 5000:

CREATE ASSERTI ON LI M T_I N_STOCK CHECK
((SELECT SUM (I N_STOCK) FROM CD_TITLES) < 5000);

In this statement, | am using a subquery, (SELECT SUM (IN_STOCK) FROM CD_
TITLES), and comparing it to 5000. The subquery begins with the SELECT keyword, which
is used to query data from atable. The SUM function adds the valuesin the IN_STOCK
column, and the FROM keyword specifies which table the column isin. The results of this
subquery are then compared (using the less than comparison operator) to 5000. If you try to
add avalue to the IN_STOCK column that would cause the total to exceed 5000, you will
receive an error.

Creating Domains and Domain Constraints

The last type of CHECK constraint is the kind that you insert into a domain definition. For the
most part, the constraint definition is similar to what you' ve seen before, except that you do
not tie the constraint to a specific column or table. In fact, domain constraints use the VALUE
keyword when referring to the value within a column defined with that particular domain.
Let’slook at the syntax for creating a domain:

CREATE DOMAIN <domain name> [AS] <data type>
[DEFAULT <default value> |
[CONSTRAINT <constraint name>] CHECK (<search condition>)

Y ou should already be familiar with most of the elementsin this syntax. | discuss data
types and default clauses in Chapter 3, and the constraint definition is similar to what you've
seen so far in this chapter.

In the following example, | create adomain that’s based on the INT data type and that
requires all values to be between 0 and 30:

CREATE DOVAI N STOCK_AMOUNT AS | NT
CONSTRAI NT CK_STOCK_AMOUNT CHECK (VALUE BETWEEN 0 AND 30);

The only really new item here (other than the CREATE DOMAIN clause) is the keyword
VALUE, which, as| said, refers to the value of the column defined with the STOCK _
AMOUNT domain. Asaresult, if you try to insert a value (into one of those columns) that is
not between 0 and 30, you will receive an error.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Infegrity 99

Adding a CHECK Constraint

Inthis Try This exercise, which is relatively short, you will be using the ALTER TABLE
statement to modify the COMPACT_DISCStable. Y ou will be adding a column to the table and
then defining a CHECK constraint that restricts the values that can be entered into the column.
The additional column and constraint will have no impact on other tablesin the INVENTORY
database or on the relationship between tables. Y ou can download the Try_This O4.txtfile,
which contains the SQL statements used in this exercise.

Step by Step
1. Open the client application for your RDBM S and connect to the INVENTORY database.
2. You're going to modify the COMPACT_DISCS table by adding the IN_STOCK column.
Enter and execute the following SQL statement:

ALTER TABLE COMPACT_DI SCS
ADD COLUWN | N_STOCK I NT NOT NULL;

NOTE
For Oracle and SQL Server, omit the keyword COLUMN

3. Now that the column exists, you can add a CHECK constraint to the table definition. Y ou
could have entered the constraint as a column constraint, but adding it separately as atable
constraint allows you to do each step separately so you can see the results of your actions.
The CHECK constraint limits the values that can be entered into the IN_STOCK column.
Each value must be greater than O, but less than 50. Enter and execute the following
SQL statement:

ALTER TABLE COMPACT DI SCS
ADD CONSTRAI NT CK_I N_STOCK CHECK (I N_STOCK > 0 AND I N_STOCK < 50);

4. Close the client application.

Try This Summary
The new column, IN_STOCK, tracks the number of each compact disc listed in the
COMPACT_DISCStable. The CK_IN_STOCK constraint restricts the number per row to
an amount between 0 and 50. Now that the table has been updated, you cannot add any values
that would violate the constraint.

www.it-ebooks.info

http://www.it-ebooks.info/

100

SQL: A Beginner's Guide

4 Chapter 4 Self Test

[« NS, B - N

11.
12.

13.

14.
15.

What are the three categories of integrity constraints?

. What are the differences between a column constraint and a table constraint?
. What types of constraints can you include in a column definition?

. What is the difference between atable constraint and an assertion?

. What does a null value signify?

. Which of the following types of constraints support NOT NULL constraints?

A Table constraints
B Column constraints
C Domain constraints

D Assertions

. You are creating a table that includes a column that allows null values but whose non-null

values should be unique. Which type of constraint should you use?

. You're creating atable that includes the TY PE_NAME column. The column is defined

with the CHAR(10) data type and requires a UNIQUE constraint, which you'll define as
a column constraint. What SQL code should you use for the column definition?

. What two restrictions apply to PRIMARY KEY constraints but not to UNIQUE constraints?
10.

You're creating aPRIMARY KEY constraint named PK_ARTIST_MUSIC_TYPES on
the ARTIST_MUSIC_TYPES table. The primary key includes the ARTIST_NAME and
ARTIST_DOB columns. What SQL code should you use for atable constraint?

How does areferential constraint differ from a unique constraint?

A(n) constraint enforces referential integrity between two tables by ensuring
that no action is taken to either table that affects the data protected by the constraint.

Y ou're creating atable that includes a column named BUSINESS TY PE_ID, with adata
type of INT. The column will be defined with a FOREIGN KEY constraint that references
the primary key in atable named BUSINESS_TY PES. The foreign key will be added as

a column constraint. What SQL code should you use for the column definition?

What three options can you use in the MATCH clause of a FOREIGN KEY constraint?

What are the two types of referential triggered actions that can be defined in a FOREIGN
KEY constraint?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Enforcing Data Infegrity 101

16. You're creating a FOREIGN KEY constraint and want the values in the referencing column
to be updated if values in the referenced column are updated. Which <referential triggered
action> clause should you use?

A ON UPDATE RESTRICT

B ON UPDATE NO ACTION

C ON UPDATE CASCADE

D ON UPDATE SET DEFAULT

17. What syntax should you use for a CHECK constraint that you' re defining as atable
constraint?

18. What types of constraints can you define within an assertion?

19. You're creating a CHECK constraint on the NUMBER_IN_STOCK column. Y ou want to
limit the values that can be entered into the column to the range of 11 through 29. What
should you use for the <search condition> clause of the constraint?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Creating SQL Views

103

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

104

SQL: A Beginner's Guide

Key Skills & Concepts

Add Viewsto the Database
Create Updateable Views
Drop Views from the Database

As you learned in Chapter 3, persistent base tables store the SQL datain your database.

However, these tables are not always in a useful form if you only want to look at specific
data from one table or data from multiple tables. For this reason, the SQL:2006 standard
supports the use of viewed tables, or views. A view is avirtual table whose definition exists
as a schema object. Unlike persistent base tables, there is no data stored in the view. In fact,
the viewed table does not actually exist—only the definition that definesit exists. It isthis
definition that allows you to select specific information from one or more tables, based on the
query statements in that definition. Once you create aview, you simply invoke it by calling
itsname in aquery as you would a base table. The datais then presented as though you were
looking at a base table.

Add Views to the Database

Before | go too deeply into the specifics of views, | want to quickly review some of what

| discussed in Chapters 2 and 3. A view, as you might recall, is one of three types of tables
supported by SQL, along with base tables and derived tables. Most base tables are schema
objects and come in four types: persistent base tables, global temporary tables, created local
temporary tables, and declared local temporary tables. Of these four types, it isthe persistent
base tables that hold the actual SQL data. Derived tables, on the other hand, are merely the
results you see when you query data from the database. For example, if you request data from
the COMPACT_DISCS table, the results of your request are displayed in atable-like format,
which is known as the derived table.

In some ways, aview is a cross between a persistent base table and a derived table. It
islike a persistent base table in that the view definition is stored as a schema object using a
unique name (within the schema) that can be accessed as you would a base table. However,
aview islike aderived table in that no data is stored in association with the view. Both derived
tables and views are types of virtual tables. The datais selected from one or more base tables
when you invoke the view. In fact, you can think of aview as merely a named derived table,
with the view definition stored in the schema. The data results that you see when you call a
view are not stored anywhere but are derived from existing base tables.

Views can be useful tools when accessing different types of data. One of the main
advantages of using views is that you can define complex queries and store them within the
view definition. Instead of recreating those queries every time you need them, you can simply

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Creating SQL Views 105

invoke the view. Moreover, views can be a handy way to present information to users without
providing them with more information than they need or information they should not see.

For example, you might want usersin your organization to have access to certain employee
records, but you might not want information such as Social Security numbers or pay rates
available to those users, so you can create a view that provides only the information that they
should see. Views can also be used to synthesize complex structures and present information in
away that is easier for some users to understand, which in effect hides the underlying structure
and complexity of the database from the users.

Now that you have an overview of what views are, let’ stake alook at afew examples that
illustrate how data is extracted from base tables into the type of derived table that is presented
by aview definition. The first example we'll ook at, shown in Figure 5-1, is based on the
COMPACT_DISC_INVENTORY table, which includes six columns. Suppose you want to
view only the CD_TITLE, COPYRIGHT, and IN_STOCK columns. Y ou can create a view
that extracts these three columns from the table and organizes them as if the data existed in
its own table, as shown in Figure 5-1. The COMPACT_DISCS IN_STOCK view contains a
query that defines exactly what data should be returned by the view.

Y ou might have noticed that the column names in the view are different from the column
names of the COMPACT_DISC_INVENTORY table, even though the data within the columns
isthe same. Thisis because you can assign names to view columns that are different from
the originating table if you wish. If you don’t assign any names, the view columns inherit the
names from the originating table. The same is true of data types. The view columns inherit
their data types from their respective table columns. For example, the COMPACT_DISC
column in the COMPACT_DISCS IN_STOCK view inherits the VARCHAR(60) datatype
from the CD_TITLE column of the COMPACT_DISC_INVENTORY table. You don't specify
the VARCHAR(60) data type anywhere within the view definition.

Asyou can see, aview alows you to define which columns are returned when you invoke
the view. The definition for the COMPACT_DISCS IN_STOCK view specifies three columns;
however, it could have specified any of the columns from the COMPACT_DISC_INVENTORY
table. In addition to columns, a view definition can specify which rows are returned. For
example, Figure 5-2 showsthe CDS_IN_STOCK _1990S view. Notice that it contains the same
columns as the COMPACT_DISCS IN_STOCK view (shown in Figure 5-1), but there are
fewer rows. In this case, the view definition not only specifies the same three columns from the
COMPACT_DISC_INVENTORY table, but also specifies that only rows with values between
1990 and 1999 (inclusive) in the COPYRIGHT column fall are to be returned.

In the previous two examples, we looked at views that derive data from only onetable;
however, you can create views based on multiple tables. Thisis particularly useful if you want
to display related information that spans more than one table. Let’ s take alook at Figure 5-3,
which includesthe CD_INVENTORY table and the LABEL Stable. The CD_INVENTORY
table contains alist of CDs in your inventory, and the LABEL Stable contains alist of
companies that publish CDs. | am briefly introducing multiple table access here becauseit is
agreat way to demonstrate how well views can hide query complexity. Thetopic is covered in
detail in Chapter 11.

www.it-ebooks.info

http://www.it-ebooks.info/

106 SQL: A Beginner's Guide

COMPACT_DISC_INVENTORY

COMPACT_DISC_ID:| CD_TITLE: COPYRIGHT:| LABEL_ID: | DISC_ID: |IN_STOCK:
INT VARCHAR(60) INT INT INT INT

99301 Famous Blue Raincoat 1991 5422 1299 6
99302 Blue 1971 5402 1232 26
99303 Court and Spark 1974 5270 1287 18
99304 Past Light 1983 5412 1292 2
99305 Kojiki 1990 5409 1255 5
99306 That Christmas Feeling 1993 5403 1216 3
99307 Patsy Cline: 12 Greatest Hits 1988 5403 1210 25
99308 Carreras Domingo Pavarotti in Concert| 1990 5312 1276 22
99310 Henryk Gorecki: Symphony No. 3 1992 5270 1266 8

COMPACT_DISCS_IN_STOCK

COMPACT_DISC COPYRIGHT [IN_STOCK

Famous Blue Raincoat 1991 6

Blue 1971 26

Court and Spark 1974 18

Past Light 1983 2

Kojiki 1990 5

That Christmas Feeling 1993 3

Patsy Cline: 12 Greatest Hits 1988 25

Carreras Domingo Pavarotti in Concert| 1990 22

Henryk Gorecki: Symphony No. 3 1992 8

Figure 5-1 The COMPACT_DISCS_IN_STOCK view, based on the COMPACT_DISC_
INVENTORY table

Suppose you have users who want to be able to see the names of the CD and the
publisher, but who are not interested in the COMPACT_DISC_ID or LABEL_ID values.
And they certainly aren’t interested in having to look in two different locations to compare
LABEL_ID vauesin order to match up CDs with company names. One solution isto create
aview that matches up thisinformation for them, while at the same time displaying only the

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-2 The CDS_IN_STOCK_1990S view, based on the COMPACT_DISC_INVENTORY

Chapter 5: Creating SQL Views

CDS_IN_STOCK_1990S

COMPACT_DISC COPYRIGHT |IN_STOCK|
Famous Blue Raincoat 1991 6

Kojiki 1990 5

That Christmas Feeling 1993 3
Carreras Domingo Pavarotti in Concert 1990 22
Henryk Gérecki: Symphony No. 3 1992 8

table
CD_INVENTORY LABELS
COMPACT _DISK_ID:| CD_TITLE: LABEL_ID: LABEL_ID: | COMPANY_NAME:
INT VARCHAR(60) INT INT VARCHAR(60)
11001 Famous Blue Raincoat 5422 5403 MCA Records
11002 Blue 5402 5402 Reprise Records
11003 Past Light 5412 5409 Geffen
11004 Kojiki 5409 5412 Windham Hill Records
11005 That Christmas Feeling 5403 5422 Private Music
11006 Patsy Cline: 12 Greatest Hits| 5403
COMPACT_DISC_PUBLISHERS
COMPACT_DISC PUBLISHER

Figure 5-3 The COMPACT_DISC_PUBLISHERS view, based on the LABELS and CD_INVENTORY

tables

Famous Blue Raincoat

Private Music

Blue Reprise Records
Past Light Windham Hill Records
Kojiki Geffen

That Christmas Feeling

MCA Records

Patsy Cline: 12 Greatest Hits

MCA Records

www.it-ebooks.info

107

http://www.it-ebooks.info/

108

SQL: A Beginner's Guide

information that is useful to them. In the case of the CD_INVENTORY and LABEL S table,
you can create aview (named COMPACT_DISC_PUBLISHERS in Figure 5-3) that bridges
(joins) this data for the users, while hiding the underlying structure and extraneous data.

A view of this sort is possible by taking advantage of the relationships between tables.
In the case of the CD_INVENTORY and LABEL S tables, aforeign key has been defined
onthe LABEL _ID column of the CD_INVENTORY table that references the LABEL 1D
column of the LABEL Stable. The query contained in the COMPACT_DISC_PUBLISHERS
view definition matches the valuesin the LABEL _ID column of the CD_INVENTORY table
to the valuesin the LABEL _ID column of the LABEL Stable. For every match that is found,
arow isreturned. For example, the Famous Blue Raincoat row includesa LABEL_ID value
of 5422. In the LABEL Stable, you can see that this value matches the Private Music row.
Asaresult, the view contains arow with the Famous Blue Raincoat value and the Private
Music value.

NOTE

You don’t necessarily have to use a foreign key relationship to join tables. Any two
columns from different tables that store the same information can be used. This might
mean using all the columns in a foreign key (if the foreign key includes multiple
columns), using only one of the columns, or not using a foreign key at all. | discuss
joining multiple tables in Chapter 11.

In addition to joining information from different tables, you can also use views to modify
the data that is pulled from atable column and presented in the view column. This allows you
to take such actions as performing calculations, finding averages, determining minimum and
maximum values, and completing countless other operations. Y ou can then take the results of
these operations and include them in a column within the view. In Figure 5-4, for example, the
CD_DISCOUNTS view deducts a 10 percent discount from the retail price and presents the
result in the DISCOUNT _PRICE column.

The CD_DISCOUNTS view includes three columns. The COMPACT _DISC column
pulls data directly from the CD_TITLE column. The RETAIL_PRICE and DISCOUNT _
PRICE columns in the view both pull their data from the RETAIL_PRICE column in the
INVENTORY table. The RETAIL_PRICE column in the view copies the values just as they
are. However, for the DISCOUNT _PRICE column, the values pulled from the RETAIL _
PRICE column in the INVENTORY table are multiplied by 0.9.

Asyou can see, you can specify many types of operationsin aview and then simply
invoke the view when you need the information. Most of what can be included in aregular
query can be included in aview. Infact, it isthe query, or query expression, that forms the
nucleus of the view. However, before we look at query expressions, | want to first discuss the
syntax used for creating views.

Defining SQL Views

The simplest type of view to create is one that references only one table and retrieves data
from columns within the table without modifying that data. The more complicated the view,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Creating SQL Views 109

INVENTORY
COMPACT_DISC_ID:| CD_TITLE: COPYRIGHT:| RETAIL_PRICE: IN_STOCK:
INT VARCHAR(60) INT NUMERIC(5,2) INT
99301 Famous Blue Raincoat 1991 16.99 6

99302 Blue 1971 14.99 26

99303 Court and Spark 1974 14.99 18

99304 Past Light 1983 15.99 2

99305 Kojiki 1990 15.99 5

99306 That Christmas Feeling 1993 10.99 3

99307 Patsy Cline: 12 Greatest Hits | 1988 16.99 25

CD_DISCOUNTS

COMPACT_DISC RETAIL_PRICE|DISCOUNT_PRICE
Famous Blue Raincoat 16.99 15.29

Blue 14.99 13.49

Court and Spark 14.99 13.49

Past Light 15.99 14.39

Kojiki 15.99 14.39

That Christmas Feeling 10.99 9.89

Patsy Cline: 12 Greatest Hits 16.99 15.29

Figure 5-4 The CD_DISCOUNTS view, based on the INVENTORY table

the more complicated the query expression underlying the view. At its most basic, the syntax
for aview isasfollows:

CREATE VIEW <view name> [(<view column names>) |
AS <query expression>
[WITH CHECK OPTION]

For now, we'll focus only on the first two lines of the syntax and leave the WITH
CHECK OPTION for later, in the “Create Updateable Views’ section. As shown in the first

www.it-ebooks.info

http://www.it-ebooks.info/

110

SQL: A Beginner's Guide

line of the syntax, you must provide a name for the view. In addition, you must provide
names for the columns in the following circumstances:

If any column values are based on some sort of operation that calculates the value to
be inserted in the column, rather than the value being copied directly from the table.
(SeeFigure 5-4.)

If table column names are duplicated, which can happen when joining tables together.

Even if you aren’t required to provide column names, you still can if you wish. For
example, you might find that you want to rename them so the names are more logical for your
particular users. If, however, you do provide column names using the <view column names>
syntax, you must provide names for al columns.

NOTE

There is also a way to provide alternate column names using the AS keyword within the
query expression itself, which | discuss in Chapter 7.

The second line of the syntax includes the AS keyword, which is required, and the
<query expression> placeholder. The <query expression> placeholder, although it appears
straightforward, can imply a complex structure of query statements that can perform a number
of operations, including retrieving data from multiple tables, calculating data, limiting the type
of datareturned, and performing virtually any other type of operation supported by a query
expression. Because of the complexity of query expressions, | spend the mgjority of Part I of
this book discussing various ways to query data. What thisimplies, then, isthat it would be
very difficult to condense a thorough discussion of query expressions into the topic of views.
Still, I want to provide you with anumber of examplesthat illustrate how you can create views
that perform various functions. With each example, I'll include a cursory explanation of the
query expression used in the view definition. Know, however, that | will be going into the
details of query expressionsin greater depth later in the book, beginning with Chapter 7. Also
note that the base tables used in these examples have not been created in previous Try This
exercises, so if you want to try the examples, you will have to create the base tablesfirst. The
figures show the information you need to do that.

Thefirst example we' Il 1ook at is based on the view shown in Figure 5-1. The COMPACT _
DISCS_IN_STOCK view derives datafrom the COMPACT_DISC_INVENTORY table and
includes three columns from that table. To create the view, use the following CREATE VIEW
statement:

CREATE VI EW COVPACT DI SCS_I N_STOCK
(COVPACT DI SC, COPYRI GHT, I N _STOCK) AS
SELECT CD_TI TLE, COPYRI GHT, | N_STOCK
FROM COMPACT_DI SC_| NVENTCRY;

Thisview isthe simplest of al types of viewsto create. It is based on one table and pulls
three of the six columns from that table. Keep in mind that while SQL usually requires clauses

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Creating SQL Views 111

to bein aparticular order, there are no restrictions as to spaces and line breaks. For example,
when creating views, | prefer to put the column name list (when present) on anew line and to
place the AS keyword at the end of the line that precedes the query expression. Others prefer
the AS keyword on aline by itself, and still others prefer to place it at the beginning of the
first line of the query expression. Y our RDBMS is not going to care which way you do it, but
adopting a style and sticking to it will make your SQL easier to read, understand, and maintain.

Dissecting the statement a bit, the first line provides a name for the view, COMPACT _
DISCS_IN_STOCK. The second line provides a name for each of the three columns:
COMPACT_DISC, COPYRIGHT, and IN_STOCK, and ends with the AS keyword. If the
column names were omitted, the view columns would inherit their names from the table
columns. Thethird and fourth lines of the CREATE VIEW statement contain the query
expression, which in this caseisthe following SELECT statement:

SELECT CD_TITLE, COPYRI GHT, | N_STOCK
FROM COVPACT_DI SC_| NVENTORY

The SELECT statement is one of the most common statements (if not the most common
statement) you' | be using as an SQL programmer. It also one of the most extensive and
flexible statements you' I be using, allowing you to form intricate queries that can return
exactly the type of datayou want to retrieve from your database.

The SELECT statement used in the COMPACT_DISCS IN_STOCK view definition
isa SELECT statement at its most basic. The statement is divided into two clauses: the
SELECT clause and the FROM clause. The SELECT clause identifies which columns to
return (CD_TITLE, COPYRIGHT, and IN_STOCK), and the FROM clause identifies the
table from which to pull the data (COMPACT_DISC_INVENTORY). When you invoke the
COMPACT _DISCS IN_STOCK view, you are essentially invoking the SELECT statement
that is embedded in the view definition, which in turn pulls data from the applicable base
table(s).

In the next example, which is based on the view in Figure 5-2, the CREATE VIEW
statement is nearly the same as the previous example, except that an additional clause has been
added to the statement:

CREATE VI EW CDS_I N_STOCK_1990S
(COVPACT DI SC, COPYRI GHT, I N _STOCK) AS
SELECT CD_TI TLE, COPYRI GHT, | N_STOCK
FROM COVPACT_DI SC_| NVENTORY
WHERE COPYRI GHT > 1989 AND COPYRI GHT < 2000;

The WHERE clause defines a condition that must be met in order for data to be returned.
Asin the previous example, you're still pulling datafrom the CD_TITLE, COPYRIGHT, and
IN_STOCK columns of the COMPACT_DISC_INVENTORY table, only thistime you're
limiting the data to those rows whose COPY RIGHT values are greater than 1989 but less
than 2000 (COPYRIGHT > 1989 AND COPY RIGHT < 2000). Y ou might recognize the
comparison operators greater than (>) and less than (<) from Chapter 4 in the discussion about
CHECK constraints. They’re used to limit which values will be included in the view.

www.it-ebooks.info

http://www.it-ebooks.info/

112

SQL: A Beginner's Guide

NOTE

The operators used in the WHERE clause (or any condition defined in the clause) have
no effect on the data stored in the base tables. They affect only the data returned when
the view is invoked. | discuss these types of operators in greater detail in Chapter 9.

Y ou can use the WHERE clause in a SELECT statement to define awide variety of
conditions. For example, the WHERE clause can be used to help join tables together, as shown
in the following CREATE VIEW statement:

CREATE VI EW COVPACT_DI SC_PUBLI SHERS
(COWPACT_DI SC, PUBLI SHER) AS
SELECT CD_I NVENTORY. CD_TI TLE, LABELS. COVPANY_NAME
FROM CD_| NVENTORY, LABELS
VWHERE CD_| NVENTORY. LABEL_I D = LABELS. LABEL_I D

This statement creates the view that you see in Figure 5-3. The name of the view is
COMPACT_DISC_PUBLISHERS and it includes the COMPACT_DISC column and the
PUBLISHER column. The view pullsinformation from two sources: the CD_TITLE column
inthe CD_INVENTORY table and the COMPANY _NAME column in the LABEL S table.

Let’'sfirst take alook at the SELECT clause. Notice that the name of each columnis
qualified by the name of its respective table (for example, CD_INVENTORY.CD_TITLE).
When joining two or more tables, you must qualify the column namesiif there' s any possibility
that the column names could be confused, which would be the case if you included columns
with the same name. If, however, there is no possibility the column names could be confused,
then you can omit the table names. For example, the SELECT clause could read as follows:

SELECT CD_TI TLE, COVPANY_NAVE

Despite the fact that the qualified names are not always necessary, many programmers prefer
to usethem in all cases because it’'s easier to know what table is being referenced if you ever
need to modify the database structure or the view definition at alater time.

The next clause in the SELECT statement isthe FROM clause. When joining tables together,
you must include the names of all the participating tables, separated by commas. Other than the
issue of multiple names, the FROM clauseis similar to what you’ ve seen in other examples.

The WHERE clause, which isthe final clause in the SELECT statement, is what matches
rows together. The WHERE clause is necessary because, without it, there would be no way of
knowing how to match up the values from the different tables. The WHERE clause specifies
how thisisto be done. Inthe COMPACT_DISC_PUBLISHERS view definition, the valuein
the LABEL_ID column of the CD_INVENTORY table must equal thevalueinthe LABEL_ID
column of the LABEL Stable for arow to be returned. For example, if you refer again to
Figure 5-3, you can see that the Past Light row in the CD_INVENTORY table has a value of
5412 inthe LABEL_ID column, which is matched up with the Windham Hill Records row in
the LABEL Stable. Notice that, once again, the column names are qualified by the table names,
which is essential in this case because the columns share the same name. Without the table
names, SQL would not know whether it was comparing values with itself or with the other table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Creating SQL Views 113

Y ou can a'so expand the WHERE clause to further qualify your query. In the following
example, the WHERE clause limits the rows returned to only those that contain a value of
5403 inthe LABEL _ID column of the CD_INVENTORY table:

CREATE VI EW COVPACT_DI SC_PUBLI SHERS
(COVPACT_DI SC, PUBLISHER) AS
SELECT CD_| NVENTORY. CD_TI TLE, LABELS. COVPANY_NAVE
FROM CD_| NVENTORY, LABELS
WHERE CD_| NVENTORY. LABEL_| D
AND CD_| NVENTORY. LABEL_| D

LABELS. LABEL_I D
5403;

If you were then to invoke the COMPACT_DISC_PUBLISHERS view, you would see only
the CDs that are produced by MCA Records.

Now let’slook at another example, which is based on the view in Figure 5-4. Like the first
two examples we looked at, this view derives data from only one table. However, this view
actually performs calculations that return data that has been modified. The CREATE VIEW
statement looks like this:

CREATE VI EW CD_DI SCOUNTS
(COMPACT_DI SC, RETAIL_PRICE, DI SCOUNT_PRICE) AS
SELECT CD_TI TLE, RETAIL_PRICE, RETAIL_PRICE * 0.9
FROM | NVENTORY;

The CD_DISCOUNTS view includes three columns: COMPACT _DISC, RETAIL _
PRICE, and DISCOUNT_PRICE. The DISCOUNT_PRICE column contains the calculated
values. The SELECT clause identifies the table columns that contain the source data. The first
two columns are defined in the same manner as you' ve seen in previous examples. Datais
copied from the CD_TITLE and RETAIL_PRICE columnsin the INVENTORY tableto the
COMPACT _DISC and RETAIL_PRICE columns of the CD_DISCOUNTS view. However,
the third column definition (RETAIL_PRICE * 0.9) isalittle different. Values are again taken
from the RETAIL_PRICE column, only this time the values are multiplied by 0.9 (90 percent)
to arrive at the discounted prices that appear in the DISCOUNT _PRICE column of the view.

Y ou can also add a WHERE clause to the SELECT statement used inthe CD_DISCOUNTS
view definition:

CREATE VI EW CD_DI SCOUNTS
(COMPACT_DI SC, RETAIL_PRICE, DI SCOUNT PRICE) AS
SELECT CD_TITLE, RETAIL_PRICE, RETAIL_ PRICE * 0.9

FROM | NVENTORY
WHERE | N_STOCK > 10;

The WHERE clause restricts the query to only those rows whose IN_STOCK valueis greater
than 10. Notice that you can use a comparison operator on atable column (IN_STOCK) whose
values are not even returned by the view.

Asyou can see from al these examples of view definitions, there are a great many things that
you can do with views as aresult of the flexibility and extensibility of the SELECT statement.

www.it-ebooks.info

http://www.it-ebooks.info/

114

SQL: A Beginner's Guide

Later in the book, when you become more familiar with the various types of SELECT statements
you can create and the operations you can perform, you will be able to create views that are far
more complex than anything we' ve looked at so far.

Create Updateable Views

In SQL, some types of views are updateable. In other words, you can use the view to modify
the data (change existing data and/or insert new rows) in the underlying table. Whether aview
is updateable depends on the SELECT statement that is defined within the view definition.
Typicaly, the more complex the statement, the less likely the view will be updateable. There
is no syntax within the CREATE VIEW statement that explicitly designates aview as being
updateable. Instead, it is determined strictly by the nature of the SELECT statement, which
must adhere to specific standards in order for the view to be updateable.

Up to this point in the chapter, | have implied that the <query expression> placeholder in
the CREATE VIEW syntax is made up of a SELECT statement. To be more precise, aquery
expression can be one of several types of expressions. The most common of these, and the
one you' |l be concerned with in this book, is the query specification. A query specification is
an SQL expression that begins with the SELECT keyword and includes a number of elements
that form that expression, as you have seen in the view examples we' ve looked at. A query
specification is updateable if it meets the numerous guidelines outlined in the SQL :2006
standard. For the sake of simplicity, | refer to the query specification as the SELECT
statement, which is often how it’ s referred to in various types of SQL-related and product-
related documentation.

Theissue of query specifications and the complexity of the SQL standards aside, the
point I’'m trying to make is that the syntax rules that determine the updatability of aview are
not simple, clear-cut guidelines, particularly in light of the fact that | have yet to cover the
SELECT statement in depth (which | do beginning in Chapter 7). However, there are some
logical underpinnings that can be gleaned from these guidelines:

Data within the view cannot be summarized, grouped together, or automatically eliminated.
At least one column in the source table must be updateable.
Each column in the view must be traceable to exactly one source column in one table.

Each row in the view must be traceable to exactly one source row in one table. However,
note that many vendor products permit modifications (but not inserts) to views created
from multiple tables provided that the update only references columns that trace to asingle
base table.

In many cases, you'll be able to determine the updatability of aview simply by applying
common sense. Let’stake alook at an example. Suppose that you decide to add information
about your employees to your database because you want to track CD sale commissions
earned. Y ou decide to create the EMPLOY EE_COMMISSIONS table, shown in Figure 5-5,
which lists the total amount of commissions each employee made during a 3-year period.

www.it-ebooks.info

http://www.it-ebooks.info/

EMPLOYEE_COMMISSIONS

Chapter 5: Creating SQL Views

EMPLOYEE_ID:| YEAR_1999: YEAR_2000: YEAR_2001:
INT NUMERIC(7,2) NUMERIC(7,2) NUMERIC(7,2)
99301 126.32 11.28 16.86

99302 16.27 90.20 198.14
99303 354.34 16.32 1237.56
99304 112,11 87.56 14.14

115

Figure 5-5 Annual commission earnings in the EMPLOYEE_COMMISSIONS table

Now suppose you want to know the average commission for each year for all the employees.
Y ou can create aview that determines the average for each year and displays those averagesin
three separate columns. To do so, you would use the following CREATE VIEW statement:

CREATE VI EW EMP_COMM (AVG 1999, AVG 2000, AVG 2001) AS
SELECT AVG(YEAR 1999), AVG(YEAR 2000), AVG YEAR 2001)
FROM EMPLOYEE_COMM SSI ONS;

Asyou can see from the statement, the EMP_COMM view contains three columns:
AVG_1999, AVG_2000, and AVG_2001. The SELECT clause pullsinformation from three
columns in the EMPLOY EE_COMMISSIONS table—YEAR_1999, Y EAR_2000, and
Y EAR_2001—and uses the AV G function to find the average for all the values in each
column, as shown in Figure 5-6. For example, the AV G function first averages the four
valuesin the YEAR_1999 column and then enters that average in the AVG_1999 column
of the EMP_COMM view.

Now suppose you want to update the commission amountsin the EMPLOY EE_
COMMISSIONS table. Y ou could not do so through the view because valuesin the view are
based on calculations performed on valuesin the table. For example, if you tried to update the
value in the AVG_1999 column, the RDBM S would not know how many rows were affected
or how to distribute the values within those rows. In other words, the row in the view is not
traceable back to exactly one source row.

EMP_COMM

AVG_1999 | AVG_2000|AVG_2001

152.26 51.34 366.68

Figure 5-6 The EMP_COMM view, based on the average of quarterly earnings

www.it-ebooks.info

http://www.it-ebooks.info/

116

SQL: A Beginner's Guide

EMP_COMM

EMPLOYEE_ID | YEAR_1999 |YEAR_2000
99301 126.32 11.28
99302 16.27 90.20
99303 354.34 16.32
99304 112.11 87.56

Figure 5-7 The EMP_COMM view, based on first and second quarterly earnings

Y ou could, however, create aview that simply extracts information from the
EMPLOYEE _COMMISSIONS table:

CREATE VI EW EMP_COWM AS
SELECT EMPLOYEE_I D, YEAR 1999, YEAR 2000
FROM EMPLOYEE_COMM SSI ONS;

In this statement, you are creating a view that displays only three of the four columns of
the table. No calculations are performed and only one table is used. Figure 5-7 shows how this
view would look.

Thisview, unlike the last one, is updateable. Y ou can modify and insert data because
no data has been summarized or grouped together, each column is traceable to exactly one
source column in one table, and each row is traceable to exactly one source row in one table.
In addition, no datais summarized or grouped together. Of course, if you were to update or
insert data through the view, it is the datain the underlying table that is actually modified.
That means any data modifications must still adhere to the constraints placed on that table.

For example, you could not insert arow through the EMP_COMM view if null values were
not allowed in the YEAR_2001 column of the table. The view would not have the capacity

to accept avalue for that column, and the table would not alow you to insert a row without
supplying that value.

Y ou can often determine whether atable is updateable just by looking at the outcome of
any modification attempts. If your goal isto create views that allow users to update datain the
underlying tables, then you must consider the complexities of those views and the functions
that they are to perform. Also keep in mind that the constraints placed on the underlying tables
affect your ability to modify and insert data through a view.

Using the WITH CHECK OPTION Clause

Now let’ s return to the CREATE VIEW syntax that | introduced earlier in the section
“Defining SQL Views.” Thelast line of the syntax includes the following clause:

[WITH CHECK OPTION]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Creating SQL Views 117

The WITH CHECK OPTION clause applies to updateable views that include a WHERE
clausein the SELECT statement. The best way to illustrate how this worksis through an
example. Let’s modify the last view definition we looked at:

CREATE VI EW EMP_COMW AS
SELECT EMPLOYEE_I D, YEAR 1999, YEAR 2000
FROM EMPLOYEE_COWM SSI ONS
WHERE YEAR 1999 > 100;

The WHERE clause specifies that only rows with YEAR_1999 values greater than 100 should
be returned. Thisin itself is straightforward enough. However, suppose you want to update
thisview by setting a Y EAR_1999 value to be less than or equal to 100. Because the view is
updateable, it will allow you to do so. However, if you were to then invoke the view, the row
you updated would no longer be visible nor could you update it further.

To work around this problem, you can add the WITH CHECK OPTION clause to your
view definition, asin the following example:

CREATE VI EW EMP_COW AS
SELECT EMPLOYEE | D, YEAR 1999, YEAR 2000
FROM EMPLOYEE_COVM SSI ONS
WHERE YEAR 1999 > 100
W TH CHECK OPTI ON,

Now if you tried to update a Y EAR_1999 value to an amount less than or equal to 100, you
would receive an error message telling you that the change could not be made. Asyou can see,
the WITH CHECK OPTION is ahandy way to ensure that your users don’t perform updates
that will prevent them from effectively using the views that you create.

Drop Views from the Database

Y ou will no doubt run into situations when you want to remove a view definition from your
database. The syntax for doing thisis quite simple:

DROP VIEW <view name>

When you execute the DROP VIEW statement, the view definition is removed; however,
none of the underlying data (which is stored in the base tables) is affected. Once the view is
dropped, you can recreate the view or create a different view with the same name. Now let’s
look at aquick example:

DROP VI EW EMP_COWM

This statement removes the EMP_COMM view from your database but |eaves the underlying
data untouched.

www.it-ebooks.info

http://www.it-ebooks.info/

118 SQL: A Beginner's Guide

Ask the Expert

Q: You discuss creating views and dropping views, but you do not mention altering
views. Does SQL support any sort of ALTER VIEW statement?

A: No, the SQL :2006 standard does not support altering views. However, some RDBM Ss
support an ALTER VIEW statement. Be aware, though, that the functionality supported
by these statements can vary from product to product. For example, SQL Server and
MySQL have ALTER VIEW statements that are fairly robust and allow you to change
many aspects of the view definition, including the SELECT statement. On the other hand,
the ALTER VIEW statement in Oracle is used to manually recompile aview to avoid
runtime overhead or to modify certain constraints that Oracle supports on views. To
actually alter an Oracle view, you must first drop it and then recreate it, asis the case with
the SQL standard. However, Oracle hasa CREATE OR REPLACE VIEW statement that
essentially allows you to drop and recreate aview in asingle step.

Q: inthe examplesthat you use to show how views are created, you use one or two tables
for your source data. Can views be based on more than two tables?

A: Yes, aview can be based on as many tables as can be logically queried in the SELECT
statement. For example, suppose you want to create aview in the INVENTORY database.
(The INVENTORY database is the one you’ ve been working with for the Try This
exercises in thisbook.) The view might display artists names alongside CD titles. To
do that, however, your SELECT statement would have to join together three tables. Y ou
would have to match the ARTIST _ID valuesin the ARTISTS table and the ARTIST_CDS
table, and you would have to match the COMPACT_DISC ID valuesinthe COMPACT _
DISCStable and the ARTIST_CDS table. The result would be aview that displays alist of
artists and their CDs. (In Chapter 11, | will discuss how you can join these tables together
inyour SELECT statement.)

Q: inthe examplesthat you use to show how views are created, all the viewsreference
basetables. Areall views created only on base tables?

A: No, views can be created using query expressions that pull datafrom other views. Also,
it ispossible to create aview that contains only calculated data and thus has no data that
maps back to a base table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Creating SQL Views

Adding Views to Your Database

Inthis Try This exercise, you will create two viewsin the INVENTORY database. The views
will be based on tables you created in previous Try This exercises. Thefirst view will be based
on asingle table, and the second view will be based on two tables. You'll create the second
view two different times. You'll create it once, then drop the view definition from the database,
and then recreate amodified version of the view. Y ou can download the Try_This 05.txt file,
which contains the SQL statements used in this exercise.

Step by Step
1. Open the client application for your RDBM S and connect to the INVENTORY database.

2. Thefirst view that you'll create isnamed CDS IN_STOCK. The view is based on the
CD_TITLE and IN_STOCK columnsin the COMPACT_DISCS table. Y ou want the view
to include only those rows whose values in the IN_STOCK column are greater than 10.
The view will use the same column names as the table and will include the WITH CHECK
OPTION to prevent values less than or equal to 10 from being added to the IN_STOCK
column. Enter and execute the following SQL statement:

CREATE VI EW CDS_| N_STOCK AS
SELECT CD_TI TLE, | N_STOCK
FROM COMPACT_DI SCS
WHERE | N_STOCK > 10 W TH CHECK OPTI ON,;

3. Next, you will create aview named CD_PUBLISHERS that will containthe CD_TITLE
column and the PUBLISHER column. The view will be based on the CD_TITLE column
in the COMPACT_DISCS table and the COMPANY _NAME column of the CD_LABELS
table. Y ou will need to use a WHERE clause to match rows in the two tables. The WHERE
clause will aso limit the rows included in the view to those whose LABEL _ID valuein the
CD_LABELStableiseither 5403 or 5402. Enter and execute the following SQL statement:

CREATE VI EW CD_PUBLI SHERS
(CD_TITLE, PUBLISHER) AS
SELECT COVPACT DI SCS. CD_TI TLE, CD_LABELS. COMPANY NANE
FROM COVPACT DI SCS, CD_LABELS
WHERE COMPACT DI SCS. LABEL_I D = CD_LABELS. LABEL_I D
AND CD LABELS. LABEL | D = 5403 OR CD LABELS. LABEL | D = 5402;

4. Y ou decide that you do not want to limit the rows to specific valuesinthe LABEL_ID
column, so you must drop the view definition from the database and recreate the view
without the value restrictions. Enter and execute the following SQL statement:

DROP VI EW CD_PUBLI SHERS;
(continued)

www.it-ebooks.info

119

http://www.it-ebooks.info/

120

SQL: A Beginner's Guide

5. Now you can recreate the CD_PUBLISHERS view. Enter and execute the following
SQL statement:

CREATE VI EW CD_PUBLI SHERS
(CD_TITLE, PUBLISHER) AS
SELECT COMPACT DI SCS. CD_TI TLE, CD_LABELS. COMPANY NANE
FROM COVPACT DI SCS, CD_LABELS
WHERE COVPACT DI SCS. LABEL_| D = CD LABELS. LABEL_| D;

6. Close the client application.

Try This Summary

In addition to the six tables created in earlier Try This exercises, your database should now
include the CDS IN_STOCK view and the CD_PUBLISHERS view. Later in this book,
you'll use those views to query data from the base tables and update that data. Once you
have a better understanding of how to create SELECT statements, you' |l be able to define
views that are even more extensive and provide an even greater level of detail than the views
you've created so far.

Chapter 5 Self Test

1. What are two advantages of using views?

. What are the three types of stored tables supported by SQL?

. What happensif you don’t assign column namesto aview?

. How do you assign data types to view columns?

. Inwhat circumstances must you provide the view column namesin aview definition?

. You're creating aview named EMP_BIRTHDAY S. The view is based on the EMP_NAME
column and the BIRTHDAY column of the EMPLOY EES table. The view column names will
be the same as the table column names. What SQL code should you use to creste the view?

7. You're creating aview based on the COMPACT_DISCStable in the INVENTORY
database. Y ou want the view to include only those rows whose value in the LABEL _ID
column is 546. What clause—in addition to the SELECT clause and the FROM clause—
should be included in the SELECT statement for the view?

8. You're creating aview that references the EMPLOY EE table and the JOB_TITLE table.
The datain the two tables is matched together by the JOB_TITLE _ID column in each table.
How should you write the WHERE clause in the view’s SELECT statement?

[« NS, B -

www.it-ebooks.info

http://www.it-ebooks.info/

10.
11.

12.

13.
14.

15.

16.

17.

Chapter 5: Creating SQL Views

. You're creating aview that references the EMPLOY EE table and the JOB_TITLE table.

The datain the two tables is matched together by the JOB_TITLE _ID column in each table.
Y ou want the view to display only those rows whose valuein the JOB_TITLE_ID column
of the JOB_TITLE table is 109. How should you write the WHERE clause in the view’s
SELECT statement?

What isaquery specification?
Which guidelines should you follow if you want to create an updateable view?

A Datawithin the view cannot be summarized, grouped together, or automatically
eliminated.

B At least one column in the source table must be updateable.
C Each columnin the view must be traceable to exactly one source column in one table.
D Eachrow inthe view must be traceable to exactly one source row in onetable.

Y ou create the following view based on the COMPACT_DISCS table in the INVENTORY
database;

CREATE VI EW | N_STOCK_AVERAGE AS
SELECT AVG(| N_STOCK)
FROM COVPACT_DI SCS;

How do you insert data through this view?
Wheat type of view doesthe WITH CHECK OPTION clause apply to?
Y ou create the following view definition:

CREATE VI EW EMP_COW AS
SELECT EMPLOYEE_ | D, YEAR 1999, YEAR 2000
FROM EMPLOYEE_COWM SSI ONS
WHERE YEAR 1999 > 100;

Y ou want to use the view to update data. What happensif you change the YEAR_1999
value to an amount less than or equal to 100?

Y ou want to alter the EMP_COMM view definition in your database. How do you alter that
definition?

Y ou want to drop the EMP_BIRTHDAY S view definition from your database. What SQL
statement should you use?

What happens to the SQL data when you drop aview from the database?

www.it-ebooks.info

121

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Managing
Database Security

123

http://www.it-ebooks.info/

124

SQL: A Beginner's Guide

Key Skills & Concepts

Understand the SQL Security Model
Create and Delete Roles
Grant and Revoke Privileges

Grant and Revoke Roles

critical component of any database is the ability to protect the data from unauthorized

access and malicious attacks. A database must ensure that no unauthorized users can view
or change data that they should not be viewing or changing. At the same time, authorized users
should not be prevented from accessing any information that should be available to them. The
ideal balanceisto give every database user exactly the privileges they need to do their job,
nothing more and nothing less. In order to support these capabilities, SQL defines a security
model that allows you to determine which users can access specific data and what they can
do with that data. At the core of this model is the authorization identifier. An authorization
identifier, as you learned in Chapter 2, is an object in the SQL environment that represents a
user or group of usersthat are granted specific access privileges to objects and data within the
SQL environment. Privileges on schema objects are granted to authorization identifiers. The
type of privilege granted determines the type of access. In this chapter, we will look at the SQL
security model, how it uses authorization identifiers, and how to set up privileges on objectsin
your SQL database.

Understand the SQL Security Model

Authorization identifiers provide the foundation for your database’ s security. Accessto all
objects is permitted through these identifiers. If the authorization identifier doesn’t have the
appropriate privileges to access a specific object, such as atable, the data within that table
is unavailable to that user. In addition, each authorization identifier can be configured with
different types of privileges. For example, you can permit some authorization identifiers to
view the data within a specific table, while permitting other authorization identifiers to both
view and modify that data.

SQL supports two types of authorization identifiers: user identifiers (or users) and
role names (or roles). A user identifier is an individual security account that can represent
an individual, an application, or a system service (all of which are considered database
users). The SQL standard does not specify how an SQL implementation should create a
user identifier. The identifier might be tied to the operating system on which the relational
database management system (RDBMS) is running, or it might be explicitly created within
the RDBMS environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Managing Database Security 125

A role name is adefined set of privileges that can be assigned to a user or to another role.
If arole nameis granted access to a schema object, then all user identifiers and role names
that have been assigned the specified role name are granted the same access to that object
whenever the role name is the current authorization identifier. For example, in Figure 6-1
the MRKT_DEPT role name has been assigned to the ACCT_DEPT role name and to four
user identifiers: Ethan, Max, Linda, and Emma. If the MRKT_DEPT role name is the current
authorization identifier and it has been granted access to the PERFORMERS table, the
ACCT_DEPT role name and all four user identifiers have access to the PERFORMERS table.
Note that, unlike a user identifier, SQL does specify how to create arole name, which | discuss
in the “Create and Delete Roles’ section later in this chapter.

Role names are commonly used as a mechanism for granting a uniform set of privileges
to authorization identifiers that should have the same privileges, such as people who work in
the same department. They a so have the distinct advantage of existence independent of user
identifiers, which means they can be created prior to the user identifiers, and they persist even
after the user identifiers referencing them are deleted. Thisis very helpful when administering
privileges for afluid workforce.

In addition to user identifiers and role names, SQL supports a special built-in authorization
identifier named PUBLIC, which includes everyone who uses the database. Just as with
any other authorization identifier, you can grant access privileges to the PUBLIC account.
For example, suppose you wanted all potential customers to be able to view your list of CDs.

PERFORMERS
PERFORMER_ID: | FULL_NAME:
INT VARCHAR(60)
10001 Jennifer Warnes Role name
(ACCT_DEPT)
10002 Joni Mitchell
10005 Bing Crosby
" Authorization identifier
10006 Patsy Cline " (MRKT_DEPT role name)
User identifier
10008 Placido Domingo (Emma)
10009 Luciano Pavarotti

User identifier
(Linda)

User identifier
(Ethan)

User identifier
(Max)

Figure 6-1 The MRKT_DEPT role assigned to four user identifiers and one role

www.it-ebooks.info

http://www.it-ebooks.info/

126

SQL: A Beginner's Guide

Y ou could grant the necessary privileges to the PUBLIC account for the appropriate tables and
columns. Obviously, PUBLIC should be used with great care because it can open the door for
people with ill intentions. In fact, many organizations ban its use completely.

SQL Sessions

Each SQL session is associated with a user identifier and role name. An SQL session isthe
connection between some sort of client application and the database. The session provides
the context in which the authorization identifier executes SQL statements during asingle
connection. Throughout this connection, the SQL session maintains its association with a user
identifier/role name pair.

Let'stake alook at Figure 6-2, which shows the user identifier/role name pair associated
with asession. When a session isfirst established, the user identifier is always the SQL session
user identifier, which is a special type of user identifier that remains associated with the session
throughout the connection. It is up to the SQL implementation to determine how a specific
account becomes the SQL session user identifier, although it can be an operating system user
account or an account specific to the RDBMS. Whatever method is used to associate an account
with the SQL session user identifier, it is this account that acts as the current user identifier.

Asyou can aso seein Figure 6-2, therole nameisanull value. Therole nameis aways
null when a session isfirst established. In other words, whenever you log onto an SQL database
and establish asession, theinitial user identifier will always be the SQL session user identifier
and the role name will always be anull value.

SQL session
User identifier Role name
. Initial
SQL session Null identifier
user identifier .
pair

Implementation
defined

Figure 6-2 SQL session with user identifier and role name

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Managing Database Security 127

At any instance during a connection, the session is associated with a user identifier/role
name pair; however, it is not always the same pair throughout the length of the session. For
example, embedded SQL statements, SQL client modules, and SQL -invoked routines can specify
an authorization identifier. If anew identifier is specified, it becomes the current authorization
identifier until the transactions have completed, and access to objects is granted based on the
current user identifier/role name pair.

For any user identifier/role name pair that is current, one of the two valuesis almost
aways null. In other words, if a user identifier is specified, then the role name must be null; if
arole nameis specified, then the user identifier must be null. Whichever valueis not null isthe
authorization identifier.

When more than one user identifier/role name pair is used during a session, an authorization
stack is created that reflects the current authorization identifier. The pair at the top of the stack is
the current authorization identifier. Figure 6-3 shows an example of an authorization stack that
can be created during a session.

In this example, the initial user identifier/role name pair is at the bottom of the stack. As
you would expect, the user identifier isthe SQL session user identifier and the role nameis
anull value. Access to database objects is based on the privileges granted to the SQL session
user identifier when it is current.

During the session, an embedded SQL statement specifies an authorization identifier of
App_User, which isauser identifier. When the embedded statement is executed, App_User
becomes the current authorization identifier, and access privileges are based on that account.

Suppose one of the embedded SQL statements then calls an SQL -invoked routine that
specifies an authorization of ROUTINE_ROLE, whichisarole name. ROUTINE_ROLE
then becomes the current authorization identifier and is at the top of the authorization stack.

Current
authorization
identifier

Current
role name

Current

user identifier

Null ROUTINE_ROLE SQLrinvoked
= routine
Embedded
App_User Null sQL
SQL session Null Initial
user identifier identifier pair
User identifiers Role names

Figure 6-3 Authorization stack created during an SQL session

www.it-ebooks.info

http://www.it-ebooks.info/

128

SQL: A Beginner's Guide

Once the routine runs, the current authorization identifier revertsto App_User, until the
embedded statements run, after which the authorization identifier reverts to the SQL session
user identifier.

Notice that in each user identifier/role name pair shown in Figure 6-3, there is exactly one
null value. The other value, the one that is not null, is the authorization identifier.

Ask the Expert

Q: You statethat the current authorization identifier can change. How can you deter mine
the current authorization user and role name at any time during a session?

A: SQL supports several special values that allow you to determine the current values of
the various types of users. The special values act as placeholders for the actual user-
related value. Y ou can use these special valuesin expressions to return the value of the
specific type of user. For example, you can use the CURRENT_USER special value to
return the value of the current user identifier. SQL supports five of these specia values:
CURRENT_USER, USER, CURRENT_ROLE, SESSION_USER, and SYSTEM_USER.
CURRENT_USER and USER mean the same thing and return a value equal to the current
user identifier. CURRENT _ROLE returns the current role name, and SESSION_USER
returns the SQL session user identifier. If the SQL session user identifier isthe current user
identifier, then CURRENT _USER, USER, and SESSION_USER all have the same value,
which can occur if theinitial identifier pair isthe only active user identifier/role name
pair (the pair at the top of the authorization stack). The last function, SYSTEM_USER,
returns the operating system user who invoked an SQL module. Aswe get further into
this chapter, you'll see how the CURRENT_USER and CURRENT_ROLE special values
are used to identify the current authentication identifier when creating roles and granting
privileges. (See the sections “ Create and Delete Roles,” “Grant and Revoke Privileges,”
and “Grant and Revoke Roles.”) In addition, you’ll find more information about special
valuesin Chapter 10.

Accessing Database Objects

Now that you have a better understanding of what an authorization identifier is—along with
user identifiers and role names—let’ s take alook at what you can do with these identifiers.
Access to datain a database is based on being able to access the objects that contain the
data. For example, you might grant some users access to a specific set of tables, while other
users have access only to specific columns within atable. SQL allows you to define access
privileges on the following schema objects:

Base tables

Views

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6:

Columns

Domains

Character sets

Collations

Trandations

User-defined types

Sequences

Triggers
SQL-invoked routines

Managing Database Security

129

For each type of object, you can assign specific types of privileges that vary by object
type. These assigned privileges are associated with specific authorization identifiers. In other
words, you can assign one or more privileges for an object to one or more authorization
identifiers. For example, you can assign the SELECT privilege for atable to the PUBLIC
authorization identifier. Thiswould allow &l database users to view the contents of that table.

SQL defines nine types of privileges that you can assign to a schema object. Table 6-1
describes each of these privileges and lists the types of objects to which the privilege can

be assigned.

Privilege Description Objects

SELECT Allows specified authorization identifiers to query data in the Tables
object. For example, if UserA is granted the SELECT privilege on | Views
the CD_ARTISTS table, that user can view data in that table. Columns

Methods (in
structured types)

INSERT Allows specified authorization identifiers to insert data into the Tables
obiject. For example, if UserA is granted the INSERT privilege on | Views
the CD_ARTISTS table, that user can add data to that table. Columns

UPDATE Allows specified authorization identifiers to update data in the Tables
obiject. For example, if UserA is granted the UPDATE privilege on | Views
the CD_ARTISTS table, that user can modify data in that tdb?e. Columns
However, this privilege does not allow the user to change the
table definition.

DELETE Allows specified authorization identifiers to delete data from the | Tables
object. For example, if UserA is granted the DELETE privilege on | Views
the CD_ARTISTS table, that user can remove data from that table.

However, this privilege does not allow the user to drop the table
definition from the database.
Table 6-1 Security Privileges Assigned to Database Obijects

www.it-ebooks.info

http://www.it-ebooks.info/

130 SQL: A Beginner's Guide

Privilege Description Objects

REFERENCES | Allows specified authorization identifiers to define objects (such | Tables

as referential constraints) that reference the table conﬂigured with | Views
the REFERENCES privilege. For example, if UserA is granted Columns
the REFERENCES privilege on the CD_ARTISTS table, that user
can create other objects that reference the CD_ARTISTS table, as
would be the case with foreign keys. (Note that UserA must also
have the authorization to create the other object.)

TRIGGER Allows specified authorization identifiers to create triggers on the | Tables
table. For example, if UserA is granted the TRIGGER privilege on
the CD_ARTISTS table, that user can create triggers on that table.

USAGE Allows specified authorization identifiers to use the object in a Domains
column definition. For example, if UserA is granted the USAGE | Character sets
privilege on the MONEY domain, that user can include the Collations
domain in a column definition when creating a table. (Note that | Translations
UserA must also have the authorization fo create a table.) User-defined types
Sequences
EXECUTE Allows specified authorization identifiers to invoke an SQL- SQL-invoked

invoked routine. For example, if UserA is granted the EXECUTE | routines
privilege on the UPDATE_CD_LISTING stored procedure, that
user would be able to invoke that stored procedure.

UNDER Allows specified authorization identifiers to define a direct Structured types
subtype on a structured type. A direct subtype is a structured type
that is associated with another structured type as a child object of
that type. For example, if UserA is granted the UNDER privilege
on the EMPLOYEE structured type, that user can define direct
subtypes such as MANAGER or SUPERVISOR.

Table 6-1 Security Privileges Assigned to Database Obijects (continued)

Privileges are granted on database objects by using the GRANT statement to specify the
objects as well as the authorization identifier that will acquire the privileges. Y ou can also
revoke privileges by using the REV OKE statement. | will be going into greater detail about
both these statements as we move through the chapter. However, before | discuss how to grant
or revoke privileges, | want to first discuss how to create a role name. (Remember, the SQL
standard doesn’t support the creation of a user identifier, only role names. The process for
creating user identifiersisimplementation specific.)

Create and Delete Roles

For the most part, creating aroleisavery straightforward process. The statement includes only
one mandatory clause and one optional clause, as shown in the following syntax:

CREATE ROLE <role name>
[WITH ADMIN { CURRENT_USER | CURRENT_ROLE }]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Managing Database Security 131

Notice that the only required part of the syntax isthe CREATE ROLE clause, which
means that all you really need to do is specify a name for your role. The WITH ADMIN
clauseis optional and you will rarely need to use this. It is necessary only if the current user
identifier/role name pair contains no null values. The clause allows you to designate either the
current user identifier (CURRENT_USER) or the current role name (CURRENT_ROLE) as
the authentication identifier allowed to assign the role to user identifiers or role names. If the
WITH ADMIN clauseis not specified, the current authentication identifier, whether the current
user identifier or the current role name, is allowed to assign therole.

NOTE

You'll probably find that you rarely need to use the WITH ADMIN clause of the CREATE
ROLE statement, particularly as a beginning SQL programmer, and it isn’t widely
supported in RDBMS products. As a result, | keep my discussion of the clause brief.

Now let’slook at creating arole. In the following example, | use the CREATE ROLE
statement to create the CUSTOMERS role:

CREATE ROLE CUSTQOMERS;

That's all thereisto it. Oncetheroleis created, you can grant the role to user identifiers or
other role names. | discuss granting and revoking roles in the “ Grant and Revoke Roles’
section later in this chapter.

Dropping aroleisjust as easy as creating one. The syntax you useis as follows:

DROP ROLE <role name>

In this case, you merely need to identify the name of the role, asin the following example:
DROP ROLE CUSTOMERS;

Theroleisremoved from the database. However, before removing arole, be surethat itisarole
that you no longer need or that it is one you specifically want to delete (for security reasons).
Asyou can see, creating and dropping rolesis avery simple process, and it can make
managing your users alot easier. Roles essentially alow you to group together those users who
reguire the same privileges on the same objects. Now let’ stake alook at granting and revoking
privileges to authentication identifiers, including both user identifiers and role names.

NOTE

Support for the CREATE ROLE and DROP ROLE statements varies from implementation
to implementation. For example, Oracle and SQL Server (2005 and 2008) support both
statements, but not the WITH ADMIN option. MySQL 5.0 does not appear to support

the concept of roles.

Grant and Revoke Privileges

When you grant privileges on an object, you are associating one or more privileges with one
or more authorization identifiers. This set of privileges and authorization identifiersis assigned

www.it-ebooks.info

http://www.it-ebooks.info/

132

SQL: A Beginner's Guide

to the object, which allows the authorization identifiers to have access to the object according
to the type of privileges defined. To grant privileges, you must use the GRANT statement, as
shown in the following syntax:

GRANT { ALL PRIVILEGES | <privilegelist>}

ON <object type> <object name>

TO { PUBLIC | <authorization identifier list>} [WITH GRANT OPTION]
[GRANTED BY { CURRENT_USER | CURRENT_ROLE}]

The statement, as you can see, includes three required clauses—GRANT, ON, and
TO—and two optional clauses—WITH GRANT OPTION and GRANTED BY. | will discuss
each clause individually except for the GRANTED BY clause. The GRANTED BY clause
issimilar to the WITH ADMIN clause in the CREATE ROLE statement. Like that clause,
the GRANTED BY clause applies only in those situations where the current user identifier/
role name pair contains no null values, and it is not widely implemented in RDBMSs. Asa
beginner in SQL programming, you do not need to be concerned with the GRANTED BY clause.

NOTE

Many vendor implementations contain provisions for assigning system privileges such
as starting and stopping the database to authorization identifiers using the GRANT
statement. Since the syntax of these variants is entirely implementation-specific, | will not
cover them here.

Y ou must have the necessary privileges on an object to grant privileges on that object. If
you created the object, then you are the owner, which means that you have complete access to
the object. (All privileges have been granted to you, including the ability to assign privileges
to other authorization identifiers.)

Now let’stake alook at the GRANT clause. The clause includes two options: ALL
PRIVILEGES and the <privilege list> placeholder. If you use the ALL PRIVILEGES
keywords, you are granting all available privileges to that object according to the privileges
that you have been granted on the object. For example, assume for a moment that you created
atable and are the owner. As aresult, you are automatically granted the SELECT, INSERT,
UPDATE, DELETE, TRIGGER, and REFERENCES privileges. (These are the only privileges
that apply to atable. Refer back to Table 6-1 for alist of privileges and the objects to which
they apply.) You are also automatically granted the ability to assign these privileges. In this
situation, if you usethe ALL PRIVILEGES keywords, you would be granting these six
privileges to the authorization identifiersin the GRANT statement.

If you decide not to use the ALL PRIVILEGES option, you must then list each privilege
that should be applied to the user identifiers. However, you can list only those privileges that
can be applied to the specific object. For example, you cannot list the DELETE privilege if
you are granting a privilege on a domain. Also note, if you list more than one privilege, you
must separate the privilege names with commas.

The next clause we'll look at isthe ON clause, which includes two placeholders: <object
type> and <object name>. The <object type> placeholder simply refers to the type of object

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Managing Database Security 133

on which you're granting permissions. SQL supports the following values for the <object
type> placehol der:

TABLE (includes views)

DOMAIN

COLLATION

CHARACTER SET

TRANSLATION

TYPE

SEQUENCE

Specia designator for SQL-invoked routines

A vaue for the <object type> designator is required, unless the value is TABLE, in which
case you can leave that off. If you provide the name of an object without specifying atype,
SQL assumes that the <object type> valueis TABLE. Asnoted in thelist, the TABLE keyword
also includes views. And of course, not all implementations support al the object types
included in the SQL standard, and some include types not covered by the standard—all of
which leads to implementation-specific SQL variations.

NOTE

In Oracle, the TABLE keyword must be omitted. On the other hand, in DB2 it is optional,
but highly recommended by the vendor. SQL Server does not support any of the <object
type> keywords from the SQL standard in the GRANT statement, but instead permits

a class keyword followed by a separator <::>, so instead of TABLE, you can write
OBJECT:: (OBJECT being the keyword for database objects such as tables and views).
The obvious lesson here is to always consult the documentation for your specific SQL
implementation.

The <object name> placeholder in the ON clause refers to the name of the specific object.
Thisvalueis aways required.

The next clauseisthe TO clause. Like the GRANT clause, the TO clause has two options:
PUBLIC and the <authorization identifier list> placeholder. If you use PUBLIC, al database
users are granted access to the object. If you use the <authorization identifier list> option, then
you must provide the name of one or more authorization identifiers. If you provide more than
one, they must be separated by commas.

Thelast clause that | am going to discussisthe WITH GRANT OPTION clause. This
clause grants the authorization identifiers permission to grant whatever privileges they’re
being granted in the GRANT statement. For example, suppose you' re granting the Emmaw
user identifier the SELECT privilege on one of your tables. If you use the WITH GRANT
OPTION, EmmaWw will be able to grant the SELECT privilege to another user. If you do not

www.it-ebooks.info

http://www.it-ebooks.info/

134

SQL: A Beginner's Guide

use the WITH GRANT OPTION, EmmaWw will not be able to grant the privilege to another
user. Incidentally, most security experts recommend that you never use this option because you
quickly lose control over who has which privileges.

Now that we' ve taken alook at the syntax, let’slook at afew examples. In the first
example, we'll look at a GRANT statement that grants the SELECT privilege to the PUBLIC
authorization identifier. The privilege is granted on aview named AVAILABLE_CDS,
which lists the CDs that you currently have in stock. To grant the privilege, use the following
statement:

GRANT SELECT ON TABLE AVAI LABLE_CDS TO PUBLI C;

The SELECT privilege allows all database users (PUBLIC) to view datain the
AVAILABLE_CDS view. However, because PUBLIC has not been granted any other
privileges, users can view the data, but not take any action. In addition, because the WITH
GRANT OPTION clause is not included in the statement, users cannot assign the SELECT
privilege to any other users (which is amoot point in this case because everyone can
already accessthe AVAILABLE_CDSview).

Now let’slook at another example. Thistime, I'm granting the SELECT, UPDATE, and
INSERT privilegesto the SALES role and the ACCOUNTING role so that they have access to
the CD_INVENTORY table:

GRANT SELECT, UPDATE, | NSERT
ON TABLE CD_I NVENTORY
TO SALES, ACCOUNTI NG W TH GRANT OPTI ON,

Notice that the privileges are separated by commas, as are the roles. As aresult of this
statement, the users associated with the SALES role and the ACCOUNTING role can view,
update, and insert information into the CD_INVENTORY table. In addition, these users can
assign the SELECT, UPDATE, and INSERT privileges to other users who need to access the
CD_INVENTORY table.

The next example we will examine isadlight variation on this last one. Everything isthe
same, except that thistime, | specify which column can be updated:

GRANT SELECT, UPDATE(CD TI TLE), | NSERT
ON TABLE CD_| NVENTORY
TO SALES, ACCOUNTI NG W TH GRANT OPTI ON;

Notice that you can add a column name after the specific privilege. Y ou can add column names
only to the SELECT, INSERT, UPDATE, and REFERENCES privileges. If you add more than
one column name, you must separate them with commas.

The GRANT statement in this example still allows the Sales and Accounting usersto view
and insert information into the CD_INVENTORY table, but they can only update valuesin
the CD_TITLE column. They cannot update any other column values in the table. In addition,
although they can till assign privileges to other users, they can assign the UPDATE privilege
only on the CD_TITLE column.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Managing Database Security

Let'stake alook at one more example that grants SELECT privileges to the PUBLIC
authorization identifier:

GRANT SELECT(CD_TI TLE, I N_STOCK) ON CD_I NVENTORY TO PUBLI C;

The PUBLIC authorization identifier allows all usersto view datainthe CD_TITLE and IN_
STOCK columns of the CD_INVENTORY table, but they cannot view any other information
in that table and they cannot modify the datain any way. Notice in this statement that the
keyword TABLE isn't included. As| said earlier, TABLE is not required.

The GRANT statement, when used in conjunction with the available privileges and the
authorization identifiers, provides a strong foundation for your database security. However, each
SQL implementation is different with regard to how security isimplemented and maintained.
Therefore, when it comes to matters of security, it isimportant that you work closely with
network and database administrators and carefully read the product documentation.

Revoking Privileges

Now that you know how to grant privileges to authorization identifiers, it's time to learn how
to revoke those privileges. The statement that you use to revoke privileges is the REVOKE
statement, as shown in the following syntax:

REVOKE [GRANT OPTION FOR] { ALL PRIVILEGES| <privilegelist>}
ON <object type> <object name>

FROM { PUBLIC | <authorization identifier list>

[GRANTED BY { CURRENT_USER | CURRENT_ROLE}]

{ RESTRICT | CASCADE}

Y ou probably recognize many of the syntax elements from the GRANT statement or from
other statements. In fact, the only new component, other than the REV OKE keyword, is the
GRANT OPTION FOR clause. Let’ stake alook at that one first, sinceit’s at the beginning of
the REV OKE statement. This clause applies only when the WITH GRANT OPTION clause
was used in the GRANT statement. If a privilege was granted with this clause, you can use
the GRANT OPTION FOR clause to remove that particular permission. If you do useit,
the privileges are preserved, but the user can no longer grant those privileges to other users.
However, very few RDBMS products support this clause.

Forgetting the GRANT OPTION FOR clause for amoment, let’ s look at the REVOKE
clauseitself, which is used to revoke either all privileges on an object (ALL PRIVILEGES)
or only the defined privileges (<privilege list>). Both of these options have the same meaning
they did in the GRANT statement; you can either use ALL PRIVILEGES or you can list each
privilege separated by a comma.

The ON clause and GRANTED BY clause in the REVOKE statement are exactly the same
asthe ON clause and GRANTED BY clausein the GRANT statement. For the ON clause,
you must specify values for the <object type> placeholder and the <object name> placehol der;
however, if the <object type> value is TABLE, then you can leave that off (and as before you
must omit it in Oracle and SQL Server). Asfor the GRANTED BY clause, assuming your
RDBMS supportsit (most do not), you can choose one of two options (CURRENT_USER or
CURRENT_ROLE).

www.it-ebooks.info

135

http://www.it-ebooks.info/

136

SQL: A Beginner's Guide

The FROM clause in the REV OKE statement can also be compared to the GRANT
statement. The only difference isthat in the GRANT statement, you use the TO keyword,
but in the REVOKE statement you use the FROM keyword. In either case, you must either
use PUBLIC as your authorization identifier, or you must list the specific user identifiers
and role names.

The last elements of the statement to discuss are the RESTRICT keyword and the
CASCADE keyword. Y ou might recall these keywords from Chapters 2, 3, and 4. If you specify
RESTRICT, the privilege will not be revoked if it had been passed on to other users—in other
words, if there are any dependent privileges. (This would mean that the WITH GRANT OPTION
had been used in the GRANT statement and that the authorization identifier that had been
granted the privilege had then granted the privilege to someone else.) If you specify CASCADE,
the privilege will be revoked aswill any privileges that were passed on to other users.

NOTE

Vendor implementations vary. In Oracle, CASCADE must be specified as CASCADE
CONSTRAINTS. In both Oracle and SQL Server, RESTRICT cannot be specified, but
rather is the default behavior when CASCADE is not specified. MySQL does not allow
either to be specified.

Now let’stake alook at some examples of revoking privileges. The following statement
revokes a SELECT privilege that was granted to the PUBLIC authorization identifier on the
AVAILABLE_CDSview:

REVOKE SELECT ON TABLE AVAI LABLE CDS FROM PUBLI C CASCADE;

Asyou can seg, this statement is very similar to a GRANT statement. Y ou must identify
the privileges, the authorization identifiers, and the object. In addition, you must specify
RESTRICT or CASCADE.

The next example is based on privileges that have been granted on a table named
CD_INVENTORY. The SALESrole and ACCOUNTING role have been granted the following
privileges on thistable: GRANT, SELECT, and INSERT. To revoke these privileges, use the
following REV OKE statement:

REVOKE SELECT, UPDATE, | NSERT ON TABLE CD_I NVENTCRY
FROM SALES, ACCOUNTI NG CASCADE;

Notice that you simply specify the privileges you want to revoke, the name of the
objects, and the name of the authorization identifiers. However, since you are revoking all the
privileges that had been granted, you could have ssimplified the statement by using the ALL
PRIVILEGES keywords, as shown in the following example:

REVOKE ALL PRI VI LEGES ON TABLE CD_I NVENTCRY
FROM SALES, ACCOUNTI NG CASCADE;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Managing Database Security 137

If you do not want to revoke all privileges, but instead want to revoke only the UPDATE
and INSERT privileges, you can specify only those privileges, as shown in the following
example:

REVOKE UPDATE, | NSERT ON TABLE CD_| NVENTORY
FROM SALES, ACCOUNTI NG CASCADE;

Y ou can aso choose to revoke privileges for only one of the role names, rather than both. In
addition, you can use the RESTRICT keyword rather than CASCADE.

Now suppose the same privileges had been granted as in the preceding example but in
addition to those, the WITH GRANT OPTION had been specified when granting privileges.
If you want to revoke only the ability of the Sales and Accounting roles to grant privilegesto
other users, you can use the following statement:

REVOKE GRANT OPTI ON FOR ALL PRI VI LEGES ON CD_|I NVENTORY
FROM SALES, ACCOUNTI NG CASCADE;

This statement revokes only the ability to grant privileges, the Sales and Accounting roles
still have accessto the CD_INVENTORY table. If you want to revoke all their privileges, you
would have to execute this statement without the GRANT OPTION FOR clause. Noticein this
statement that the TABLE keyword wasn’t used before the name of the table. The REVOKE
statement, like the GRANT statement, doesn’t require the TABLE keyword when specifying a
table or view.

NOTE

The vendor implementation variances noted with the use of the TABLE keyword in
the GRANT statement (earlier in this chapter) apply in the same way to the REVOKE
statement. In general, vendors support identical syntax between their GRANT and
REVOKE statements except that TO in the GRANT statement becomes FROM in the
REVOKE statement.

Grant and Revoke Roles

Now that you know how to create and delete roles and grant and revoke privileges, let’s look
at granting and revoking roles. We'll start with granting roles. To grant arole, you must use a
GRANT statement to assign one or more role names to one or more authorization identifiers,
as shown in the following syntax:

GRANT <role name list>
TO { PUBLIC | <authorization identifier list>} [WITH ADMIN OPTION]
[GRANTED BY { CURRENT_USER | CURRENT_ROLE}]

By now, most of this syntax should look quite familiar to you, except for afew variations.
The GRANT clause allows you to specify alist of one or more role names. If you specify more
than one name, you must separate them with commas. The TO clause allows you to specify
one or more authorization identifiers. Again, if there are more than one, you must separate

www.it-ebooks.info

http://www.it-ebooks.info/

138

SQL: A Beginner's Guide

them with commas. Y ou can also specify the PUBLIC authorization identifier to grant arole
to al database users. The WITH ADMIN OPTION clause, which is optional, allows the
authorization identifiers to grant the role to other users. And the GRANTED BY clause, which
isalso optional (and only supported in afew RDBMS products), is used in those rare instances
when the user identifier/role name pair does not contain anull value.

Let’slook at an example. Suppose you have created a role named MANAGERS and you
want to assign that role to auser identifier named LindaN. Y ou would use the following syntax:

GRANT MANAGERS TO Li ndaN;

Now suppose you want to give LindaN the ability to grant the MANAGERS role to other users.
To do this, you simply add the WITH ADMIN OPTION clause, asin the following example:

GRANT MANACERS TO Li ndaN W TH ADM N OPTI ON,

You can aso grant multiple roles to multiple user identifiers. The user identifiers can be
user identifiers or other role names. In the following example, | grant the MANAGERS role
and ACCOUNTING role to the LindaN user identifier and the MARKETING role name:

GRANT MANAGERS, ACCOUNTI NG TO Li ndaN, MARKETI NG W TH ADM N OPTI ON;

Now that you know how to grant roles to authorization identifiers, it'stime to learn how to
revoke those roles.

Revoking Roles
Revoking rolesisalot like revoking privileges. The statement that you use to revoke
privilegesisthe REV OKE statement, as shown in the following syntax:

REVOKE [ADMIN OPTION FOR] <role name list>

FROM { PUBLIC | <authorization identifier list>}

[GRANTED BY { CURRENT_USER | CURRENT_ROLE}]
{ RESTRICT | CASCADE}

Asyou can see, there is nothing new in the syntax except for the ADMIN OPTION FOR
clause, which is similar to the GRANT OPTION FOR clause used when revoking privileges. It
allows you to revoke the ability to assign roles to other users, without revoking the role itself.

NOTE

The same Oracle, SQL Server, and MySQL variances mentioned with revoking
privileges apply to this use of the REVOKE statement.

Let'stake alook at an example of revoking arole. Suppose you’ ve granted the
MANAGERS role to the LindaN user identifier. Y ou can revoke that role by using the
following REVOKE statement:

REVOKE MANAGERS FROM Li ndaN CASCADE;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Managing Database Security 139

If you had granted the MANAGERS role and the ACCOUNTING roleto LindaN and the
MARKETING role, your REVOKE statement would look like the following:

REVOKE MANAGERS, ACCOUNTI NG FROM Li ndaN, MARKETI NG CASCADE;

Now that we' ve looked at how to grant and revoke roles, you can see how similar this
isto granting and revoking privileges. Again, | must stress that not all implementations are
alike with regard to how they grant and revoke privileges and roles, so be sure to review your
product documentation and work closely with the database administrator.

Managing Roles and Privileges

Inthis Try Thisexercise, you will create two rolesin the INVENTORY database, grant
privileges to the PUBLIC authorization identifier and to one of the roles you created, grant one
of the rolesto the other role, and then revoke all the privileges and roles. Finally, you will drop
the two roles that you created. Y our ability to follow all the stepsin this exercise will depend
on the type of security-related statements supported in the SQL implementation you're using.
However, the exercise is designed so that any roles you create or privileges you assign are
dropped by the end of the exercise. Y ou will not be using these roles for any Try This exercises
later in the book. If for any reason this exercise might affect the security of the system on
which you' re working, you should discuss this exercise with a database administrator or skip

it altogether. Y ou can download the Try_This 06.txt file, which contains the SQL statements
used in this Try This exercise.

Step by Step
1. Open the client application for your RDBM S and connect to the INVENTORY database.

2. Thefirst thing you'll do is create the MRKT role. Enter and execute the following
SQL statement:

CREATE ROLE MRKT;
3. Next you'll createthe SALES STAFF role. Enter and execute the following SQL statement:
CREATE ROLE SALES STAFF;

4. You'll now grant the SELECT privilege on the CDS_IN_STOCK view. The privilege
will be assigned to the PUBLIC authorization identifier. Enter and execute the following
SQL statement:

GRANT SELECT ON CDS_I N_STOCK TO PUBLI C;

5. Thenext privileges you grant will be to the SALES _STAFF role that you created in step 3.
You'll be granting the SELECT, INSERT, and UPDATE privileges on the COMPACT _
DISCS table. For the UPDATE privilege you will specify the CD_TITLE column. Y ou will

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

140

SQL: A Beginner's Guide

also allow the SALES _STAFF role to grant these privileges to other users. Enter and
execute the following SQL statement:

GRANT SELECT, | NSERT, UPDATE(CD TITLE) ON COVPACT_DI SCS
TO SALES_STAFF W TH GRANT OPTI ON;

6. You'll now grant the SALES STAFF role to the MRKT role. Enter and execute the
following SQL statement:

GRANT SALES_STAFF TO NRKT;

7. Your next step isto revoke the SELECT privilege that you granted to the PUBLIC authorization
identifier. Enter and execute the following SQL statement:

REVOKE SELECT ON CDS_I N_STOCK FROM PUBLI C CASCADE;

8. Now you'll revoke the privileges that you granted to the SALES STAFF role. Because
you'rerevoking al privileges, you can usethe ALL PRIVILEGES keyword. Y ou also want
to ensure that any dependent privileges are revoked, so you'll use the CASCADE keyword.
Enter and execute the following SQL statement:

REVOKE ALL PRI VI LEGES ON COVPACT_DI SCS FROM SALES_STAFF CASCADE;

9. You can now revoke the SALES STAFF role from the MRKT role. Enter and execute the
following SQL statement:

REVOKE SALES STAFF FROM MRKT CASCADE;
10. Your next step isto drop the MRKT role. Enter and execute the following SQL statements:
DROP ROLE MRKT;

11. Finally, you need to drop the SALES_STAFF role. Enter and execute the following
SQL statements:

DROP ROLE SALES STAFF;
12. Close the client application.

Try This Summary
The INVENTORY database should now be set up the same way it was before you started
this Try This exercise. The permissions and roles you granted should have been revoked, and
the roles you created should have been dropped. Thisway, you will not have to worry about
security considerations for other Try This exercises. For the remaining Try This exercisesin
the book, you should continue to work within the same security context in which you' ve been
working for this exercise and for al Try This exercises preceding this one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Managing Database Security 141

b Chapter 6 Self Test

OV 00 N O O

10.

11.
12.

13.

14.

What is the difference between a user identifier and arole name?

2. What isthe name of the specia authorization identifier that grants accessto al database users?
3.
4

. An SQL session is associated with which of the following?

Each is associated with auser identifier and role name.

A Privilege
B User identifier
C PUBLIC

D Role name

. When an SQL session isfirst established, the user identifier is always the

. What is the value of the current role name when an SQL session isfirst established?
. What is an authorization identifier?

. What two types of authorization identifiers does SQL support?

. Which privilege should you grant on an object if you want to allow an authorization

identifier to query datain that object?

Y ou establish an SQL session with your database. The current user identifier is EthanW.
The current role name is null. What is the current authorization identifier?

On which schema objects can you define access privileges?
On which types of database objects can you assign the DELETE privilege?
A Tables
B Views
C Columns
D Domains
On which types of database objects can you assign the TRIGGER privilege?
A Tables
B Views
C Columns
D Domains
You're creating arole named ACCOUNTING. Which SQL statement should you use?

www.it-ebooks.info

http://www.it-ebooks.info/

142 SQL: A Beginner's Guide

15. You're granting al privileges on the CD_NAMES view to everyone who uses the database.
Which SQL statement should you use?

16. You're granting the SELECT privilegeto the SALES _CLERK role on atablein your database.
Y ou want the SALES CLERK roleto be ableto assign the SELECT privilege to other users.
What clause should you include in your GRANT statement?

17. You want to grant the ACCT role to the MaxN user authorization. Y ou do not want the
user to be able to grant the role to other users. What SQL statement should you use to
grant the role?

www.it-ebooks.info

http://www.it-ebooks.info/

Part ”

Data Access and
Modification

. IC ere 1or terms o
www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Querying SQL Data

145

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

146

SQL: A Beginner's Guide

Key Skills & Concepts

Use a SELECT Statement to Retrieve Data

Use the WHERE Clause to Define Search Conditions

Use the GROUP BY Clause to Group Query Results

Use the HAVING Clause to Specify Group Search Conditions
Usethe ORDER BY Clause to Sort Query Results

Once the objects in a database have been created and the base tables populated with data,

you can submit queries that allow you to retrieve specific information from the database.
These queries, which usually take the form of SELECT statements, can range in complexity
from asimple statement that returns all columns from atable to a statement that joins multiple
tables, calculates values, and defines search conditions that restrict exactly which rows of
data should be returned. The SELECT statement is made up of aflexible series of clauses that
together determine which data will be retrieved. In this chapter, you will learn how to use each
of these clauses to perform basic dataretrieval, define search conditions, group query results,
specify group search conditions, and order search results.

Use a SELECT Statement to Retrieve Data

In Chapter 5, when discussing views, | introduce you to the SELECT statement. Asyou might
recall, the SELECT statement allows you to form intricate queries that can return exactly the
type of data you want to retrieve. It is one of the most common statements you'll be using as
an SQL programmer, and it is also one of the most flexible and extensive statementsin the
SQL standard.

The SELECT statement is a query expression that begins with the SELECT keyword and
includes a number of elements that form the expression. The basic syntax for the SELECT
statement can be split into several specific clauses that each help to refine the query so that only
the required dataiis returned. The syntax for the SELECT statement can be shown as follows:

SELECT [DISTINCT |ALL] { * | <select list>}
FROM <tablereference> [{ , <tablereference>} ...]
[WHERE <search condition>]

[GROUP BY <grouping specification>]

[HAVING <search condition>]

[ORDER BY <order condition>]

Asyou can see, the only required clauses are the SELECT clause and the FROM clause.
All other clauses are optional.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data 147

The FROM, WHERE, GROUP BY, and HAVING clauses are referred to asthe table
expression. This portion of the SELECT statement is always evaluated first when a SELECT
statement is processed. Each clause within the table expression is evaluated in the order listed
in the syntax. The result of that evaluation is avirtual table that is used in the subsequent
evaluation. In other words, the results from the first clause evaluated are used in the next
clause. The results from that clause are then used in the following clause, until each clausein
the table expression is evaluated. For example, the first clause to be evaluated in a SELECT
statement is the FROM clause. Because this clause is required, it is always the first clause
evaluated. The results from the FROM clause are then used in the WHERE clausg, if a
WHERE clause is specified. If the clause is not specified, then the results of the FROM clause
are used in the next specified clause, either the GROUP BY clause or the HAVING clause.
Once the final clause in the table expression is evaluated, the results are then used in the
SELECT clause. After the SELECT clauseis evaluated, the ORDER BY clause is evaluated.

To sum all this up, the clauses of the SELECT statement are applied in the following order:

FROM clause

WHERE clause (optional)
GROUP BY clause (optional)
HAVING clause (optional)
SELECT clause

ORDER BY clause (optional)

Having a basic understanding of the order of evaluation isimportant as you create more
complex SELECT statements, especially when working with joins and subqueries (discussed
in Chapter 11 and Chapter 12, respectively). This understanding is also helpful when
discussing each clause individually because it explains how one clause relates to other clauses.
Asaresult, itisagood ideafor you to keep this order of evaluation in mind throughout this
chapter and in subsequent chapters that build upon various aspects of the SELECT statement.

The SELECT Clause and FROM Clause

Now that you have a basic overview of how the SELECT statement is executed, let’ stake
acloser look at the SELECT clause and the FROM clause, the two required clausesin the
statement. I'll discuss the other clauses in separate sections throughout the remainder of the
chapter.

Let’sbegin with the SELECT clause. The SELECT clause includes the optional DISTINCT
and ALL keywords. The DISTINCT keyword is used if you want to eliminate duplicate rows
from the query results, and the ALL keyword is used if you want to return al rowsin the query
results. For example, suppose your database includes a table named PERFORMER_CDS. The
table includes the PERFORMER_NAME column and the CD_NAME column. Because a
CD can include more than one performer, the CD name can appear more than onetimein the
table. Now suppose that you want to query the table for the name of the CDs only, but you don’t

www.it-ebooks.info

http://www.it-ebooks.info/

148

SQL: A Beginner's Guide

want the names repeated. Y ou can use the DISTINCT keyword to ensure that your query returns
the name of each CD only onetime, or you can usethe ALL keyword to specify that al rowsbe
returned, even if there are duplicates. If you don't specify either of the keywords, the ALL keyword
is assumed.

Ask the Expert

Q: You state that you can use an asterisk toincludeall columnsin the query result. Does

thisever present a problem if the number of columns changes?

A: Y es, this can present a problem. In fact, it is generally recommended that you use the

asterisk only when you’ re accessing an SQL database through direct invocation. If you use
the asterisk in embedded SQL and the number of columns changes, you might find that
your application no longer responds correctly because the application program was coded
to expect a specific response. If an asterisk is used and specific columns are expected

to be returned, then you could run into a number of surprises if the database has been
changed. For this reason, you should avoid the asterisk unless directly invoking a SELECT
statement. However, in the case of direct invocation, the asterisk is a handy way to return
al columns without having to specify the name of each one. In fact, many of the examples
in the chapter use the asterisk to avoid having to repeat column names unnecessarily.

In addition to the DISTINCT and ALL keywords, the SELECT clause includes the asterisk
(*) and the <select list> placeholder. Y ou must specify one of these optionsin the clause. If
you specify the asterisk, all applicable columns are included in the query result.

If you don’t specify an asterisk in the SELECT clause, you must specify each column as it
is derived fromits source. The <select list> placeholder can be broken down into the following
syntax:

<derived column> [[AS] <column name>]
[{, <derived column>[[AS] <columnname>]} ...]

Let'stake alook at the first line of this syntax. (The second line is merely a repeat—as
many times as necessary—of the first line.) The <derived column> placeholder in most cases
refersto the name of the column in the source table. If more than one column is specified,
then they must be separated with commas. However, the <derived column> placeholder
might also refer to a column or set of columns that are in some way part of an expression. For
instance, in Chapter 5, | discuss the AV G function, which averages the values in a specified
column. The example | show in that chapter uses a SELECT statement to query data from
the EMPLOY EE_COMMISSIONS table, which lists the total amount of commissions each

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data 149

employee made during a three-year period. The SELECT statement averages the valuesin
three different columns, as shown in the following SELECT statement:

SELECT AVG(YEAR 1999), AVG YEAR 2000), AVG YEAR 2001)
FROM EMPLOYEE_COWM SSI ONS;

In this case, there are three expressions that are used for the <derived column>
placeholder: AVG(Y EAR_1999), AVG(YEAR_2000), and AVG(Y EAR_2001). Notice that
each derived column expression is separated by a comma, as would be the case if each value
were simply a column name. The following example shows the same SELECT statement asin
the preceding example, except that it uses only column names as the derived columns:

SELECT YEAR 1999, YEAR 2000, YEAR 2001
FROM EMPLOYEE_COMM SSI ONS;

If you were to execute this SELECT statement, your query would return al the valuesin
the three columns, rather than averaging those values.

The SELECT clause also allows you to provide a column name for each derived column.
To do this, add the AS keyword and the new column name after the derived column, as shown
in the following example:

SELECT AVG YEAR 1999) AS AVERAGE 1999
FROM EMPLOYEE_COMM SSI ONS;

Inthis SELECT statement, the value that is returned from the YEAR 1999 column is
placed in a column named AVERAGE_1999. Thisis the name of the column that’s returned
as part of avirtual tablein the query results. If you don’t specify an AS subclause, the column
name in the virtua table is the same as the column name in the source table. If a column name
cannot be inherited naturally (for example, when adding two column values together), you
must use the AS subclause.

Notice that in the previous examples the FROM clause is used to specify the table
(EMPLOYEE_COMMISSIONS) that contains the columns referred to in the SELECT clause.
The FROM clause includes the FROM keyword and one or more table references. If there
are multiple table references, they must be separated using commas. In most cases, the table
reference is either the name of atable or of joined tables, athough it can aso be atype of
subquery. | discuss joined tables in Chapter 11 and subqueriesin Chapter 12. For this chapter,
the FROM clause is used primarily to reference table names, as | have defined the clause in the
two previous examples (where <table reference> equals EMPLOY EE_COMMISSIONS).

Together the SELECT clause and the FROM clause form the foundation for the SELECT
statement, which can be as simple as querying every row and every column of atable, as
shown in the following example:

SELECT * FROM PERFCRVERS,;

In this statement, | specify that every column the PERFORMERS table should be
returned. In addition, every row will be returned because no other clauses have been specified.

www.it-ebooks.info

http://www.it-ebooks.info/

150

SQL: A Beginner's Guide

PERFORMER_ID: | PERFORMER_NAME:| PLACE_OF_BIRTH:

INT VARCHAR(60) VARCHAR (60)

2001 Jennifer Warnes Seattle, Washington, USA

2002 Joni Mitchell Fort MacLeod, Alberta, Canada
2003 William Ackerman | Germany

2004 Kitaro Toyohashi, Japan

2005 Bing Crosbhy Tacoma, Washington, United Stateg
2006 Patsy Cline Winchester, Virginia, United States
2007 Jose Carreras Barcelona, Spain

2008 Luciano Pavarotti Modena, Italy

2009 Placido Domingo Madrid, Spain

Figure 7-1
PERFORMERS table

The PERFORMER_ID, PERFORMER_NAME, and PLACE_OF_BIRTH columns of the

Let’stake acloser ook at this. The PERFORMERS table includes the PERFORMER _ID,
PERFORMER_NAME, and PLACE_OF_BIRTH columns, as shown in Figure 7-1.
If you execute the SELECT statement shown in the previous example, your query results

would look similar to the following:

PERFORMER_| D PERFORMER_NAME

2001 Jenni f er War nes
2002 Joni M tchell
2003 W liam Acker man
2004 Kitaro

2005 Bi ng Croshy

2006 Patsy dine

2007 Jose Carreras
2008 Luci ano Pavarotti
2009 Pl aci do Doni ngo

PLACE_OF BI RTH

Seattl e, Washington, USA

Fort MaclLeod, Al berta, Canada
Ger many

Toyohashi, Japan

Taconma, Washi ngton, USA

W nchester, Virginia, USA

Bar cel ona, Spain

Modena, ltaly

Madri d, Spain

Notice that every row and every column is returned in the query results. If you use the
asterisk in your SELECT clause, you do not have to specify the column names.

Now suppose you want to return only the PERFORMER_NAME and PLACE_OF BIRTH
columns. Y ou could modify your SELECT statement to look like the following:

SELECT PERFORVMER_NAME AS NAME, PLACE_OF_BI RTH

FROM PERFORVERS;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data 151

Y our query results will now contain only two columns, as shown in the following:

NAVE PLACE_OF BI RTH

Jenni fer Warnes Seattl e, Washington, USA

Joni M tchell Fort MaclLeod, Al berta, Canada
W liam Acker man Ger many

Kitaro Toyohashi, Japan

Bi ng Croshy Tacoma, Washington, USA
Patsy dine W nchester, Virginia, USA
Jose Carreras Bar cel ona, Spain

Luci ano Pavarotti Mbdena, Italy
Pl aci do Domi ngo Madri d, Spain

Notice that the name of the first column is NAME, rather than PERFORMER_NAME.
Thisis because the AS subclause (specifying NAME) is defined as part of the PERFORMER _
NAME derived column. If you were to specify the DISTINCT keyword in this particular
situation, you would still receive the same number of rows, although they might not be
returned in the same order as they were when you didn’t use the keyword, depending on the
SQL implementation. The reason that the DISTINCT keyword would make no differencein
the query resultsis that there are no duplicate rows in the table. However, using the DISTINCT
keyword can affect performance, particularly if your RDBMS hasto sort through alarge
number of rows, so be sure to use the keyword only when necessary.

Now let’stake alook at an example that uses the DISTINCT keyword. Suppose your
database includes a table that matches performersto types of music, as shown in Figure 7-2.

PERFORMER_NAME:| PERFORMER_TYPE:

VARCHAR(60) VARCHAR(10)
Jennifer Warnes Folk
Jennifer Warnes Pop
Joni Mitchell Pop
Joni Mitchell Folk
Joni Mitchell Jazz

William Ackerman New Age

Kitaro New Age

Kitaro International

Figure 7-2 The PERFORMER_NAME and PERFORMER_TYPE columns of the PERFORMER _
TYPE table

www.it-ebooks.info

http://www.it-ebooks.info/

152 SQL: A Beginner's Guide

If your SELECT statement includes both (all) columnsin the SELECT clause, as shown in
the following example, your query will return al rows:

SELECT * FROM PERFORVMER_TYPE;

It does not matter if you specify the DISTINCT keyword in this case because your query
results include no duplicate rows. The results would be the same whether you include the ALL
keyword, rather than DISTINCT, or whether you specify neither of the two qualifiers. In either
case, the query results would include the same information that is shown in the table in Figure 7-2.

Now let’stake alook at the same statement, only thistime it specifies the DISTINCT
keyword and only one of the two columns:

SELECT DI STI NCT PERFORVMER_NAME
FROM PERFORMER _TYPE;

Notice that this statement includes only the PERFORMER_NAME column, which
includes duplicate values. By using the DISTINCT keyword, your query results will include
only one instance of each value. If you execute the SELECT statement in the preceding
example, your query results will look similar to the following:

PERFORVER_NAME

Jenni fer War nes
Joni M tchell
Kitaro

W I 1liam Acker man

Although there are seven rows in the PERFORMER_TY PE table, only four rows are
returned because there are only four unique values in the PERFORMER_NAME column and
the other values are duplicates.

Asyou can see, the SELECT clause and the FROM clause are fairly straightforward,
at least at thislevel of coding. Once we get into more complex structures, you'll find that
both these clauses can at times become more complicated. However, the important thing to
remember right now is that these clauses act as the foundation for the rest of the SELECT
statement. In terms of execution, the SELECT statement, for all practical purposes, begins
with the FROM clause and ends with the SELECT clause. (The ORDER BY clauseis used
primarily for display purposes and doesn’t affect which information is actually returned. The
ORDER BY clauseis discussed in more detail in the “Use the ORDER BY Clause to Sort
Query Results” section later in this chapter.)

Use the WHERE Clause to Define Search Conditions

The next clause in the SELECT statement is the WHERE clause. The WHERE clause takes
the values returned by the FROM clause (in avirtual table) and applies the search condition
that is defined within the WHERE clause. The WHERE clause acts as afilter on the results
returned by the FROM clause. Each row is evaluated against the search condition. Those rows

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data

that evaluate to true are returned as part of the query result. Those that evaluate to unknown or
false are not included in the results.

For a better understanding of how each row is evaluated, let’ s take a closer look at the
<search condition> placeholder. The search condition is made up of one or more predicates
that are used to test the contents returned by the FROM clause. A predicateis an SQL
expression that defines a fact about any row returned by the SELECT statement. Y ou have
already seen examples of predicates in Chapters 4 and 5. For instance, one example of aview
definition (in Chapter 5) includes the following SELECT statement:

SELECT CD_TI TLE, COPYRI GHT, | N_STOCK
FROM COVPACT_DI SC_| NVENTORY
WHERE COPYRI GHT > 1989 AND COPYRI GHT < 2000;

This statement is querying three columnsin the COMPACT_DISC_INVENTORY table.
The SELECT clause specifies the columns to be returned, and the FROM clause specifies
the source table. The WHERE clause determines which rows (based on the FROM clause)
areincluded in the results. In this case, the WHERE clause contains two predicates that are
connected by the AND keyword. The first predicate (COPYRIGHT > 1989) specifies that all
rows included in the query results must contain avalue greater than 1989 in the COPY RIGHT
column. The second predicate (COPY RIGHT < 2000) specifiesthat all rowsincluded in the
query results must contain avalue less than 2000 in the COPYRIGHT column.

Asrows are evaluated, each predicate is evaluated on an individual basisto determine
whether the row meets the condition defined by that predicate. Returning to the last example,
the first predicate sets the condition that values must be greater than 1989. If the COPY RIGHT
value for a particular row is more than 1989, the condition is met and the predicate evaluates
to true. If the value is not greater than 1989, the predicate evaluates to false. If SQL cannot
determine whether or not the value meets the condition (as would be the case if the valueis
null), the predicate evaluates to unknown.

Every predicate evaluatesto true, false, or unknown. If more than one predicate isincluded
in the WHERE clause, they are joined together by the OR keyword or the AND keyword. If OR
isused, then at least one of the predicates on either side of OR must evaluate to true for the row
to passthe filter, and therefore appear in the query results. If AND is used, then predicates on
either side must evaluate to true for the row to passthe filter. For instance, the WHERE clause
in the last example includes two predicates that are connected by the AND keyword. This means
that the first predicate must evaluate to true and the second predicate must evaluate to true. If OR
had been used instead of AND, then only one of the predicates must evaluate to true, which isa
bit nonsensical in this case because all values except null are either above 1989 or below 2000.

Ultimately, the WHERE clause as awhole must evaluate to true in order for arow to be
included in the query results. If the WHERE clause includes more than one predicate, SQL
follows specific guidelines for how the statement as awhole is evaluated. Let’s start by looking
at the OR keyword. Table 7-1 lists the evaluation of a search condition if the OR keyword
is used to separate two predicates. To use the table, match a condition in the left columnto a
condition in the top row. The result (where arow and column intersect to form a cell) shows
how the search condition is evaluated based on how each predicate is evaluated.

www.it-ebooks.info

153

http://www.it-ebooks.info/

154

SQL: A Beginner's Guide

True False Unknown
True True True True
False True False Unknown
Unknown True Unknown Unknown
Table 7-1 Evaluating Predicates Connected by OR

Asthe table shows, if both predicates evaluate to true, then the search condition evaluates
to true. If both are false, then the search condition evaluatesto false. A condition is provided
for each possible match. For example, suppose your SELECT statement includes the following
WHERE clause:

VWHERE PERFORMER_TYPE = ' Fol k' OR PERFORMVER_TYPE = 'Jazz'

Now suppose that the first predicate in this example (PERFORMER_TY PE = ‘Folk’)
evaluates to true and the second predicate (PERFORMER_TY PE = *Jazz’) evaluates to false.
This means that the row being evaluated contains the Folk value in the PERFORMER_TY PE
column, but does not contain the Jazz value in that column. Now refer back to Table 7-1. If
you select True from the first column, select False from the top row, and then match these
two values together (by picking where they intersect), you can see that the search condition
evaluates to true, so the row will be included in the query results.

Y ou can do the same thing with the AND keyword as you did with the OR keyword.
Table 7-2 matches the nine possible outcomes of two predicates.

Again, you simply match up how each predicate is evaluated to determine whether the
search condition will be evaluated to true, false, or unknown. Remember, the search condition
must evaluate to true for the row to be included in the query results. As you can see, the AND
keyword isalot less forgiving than the OR keyword. The only way for the search condition to
evaluate to true is for both predicates to evaluate to true.

True False Unknown
True True False Unknown
False False False False
Unknown Unknown False Unknown

Table 7-2 Evaluating Predicates Connected by AND

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data 188

NOTE

Comparison operators and predicates in general are discussed in greater detail in

Chapter 9.

If a search condition includes more than two predicates, the predicates are evaluated in
an order chosen by the RDBMS, unless parentheses are used to separate combinations of
predicates. While the SQL standard does not specify the order in which multiple predicates are
to be evaluated, most RDBMSS products evaluate AND before OR. For example, you might
have a SELECT statement that includes the following WHERE clause:

WHERE | N_STOCK = 6 OR I N_.STOCK = 27 AND LABEL_ID = 833 OR LABEL_ID = 829

Notice that there are four predicates in this clause and no parentheses. Assuming that AND is
evaluated before OR, the above WHERE clause would be evaluated asiif it was written this way:

WHERE | N_STOCK = 6 OR (I N_STOCK = 27 AND LABEL_ID = 833) OR LABEL_ID = 829
In order to evaluate to true, arow must contain one of the following values or set of values:

IN_STOCK value of 6
IN_STOCK value of 27 and LABEL_ID value of 833
LABEL_ID value of 829

When you include both the AND and OR keywords in the same WHERE clausg, it is
always a good idea to include parentheses to make sure you are getting the filtering you intend,
keeping in mind that predicates within parentheses are always evaluated first. If the RDBMS
makes other assumptions, or if parentheses are used around other sets of predicates, the results
will be different from what we' ve seen. For example, suppose you use parentheses as follows:

WHERE (I N_STOCK = 6 OR I N_STOCK = 27) AND (LABEL_ID = 833 OR LABEL_I D = 829)

The predicates are first evaluated within the context of the parentheses and then compared
to other predicates accordingly. In this case, arow must contain one of the two IN_STOCK
values and the row must contain one of thetwo LABEL _ID values. Asaresult, arow must
contain one of the following sets of values to evaluate to true:

IN_STOCK value of 6 and LABEL_ID vaue of 833
IN_STOCK value of 6 and LABEL_ID vaue of 829
IN_STOCK vaue of 27 and LABEL_ID value of 833
IN_STOCK value of 27 and LABEL_|D value of 829

www.it-ebooks.info

http://www.it-ebooks.info/

156

SQL: A Beginner's Guide

NOTE

SQL includes three operators that you can use if a search condition becomes too
complicated. These operators are IS TRUE, IS FALSE, and IS UNKNOWN. For example,
you can specify the following search condition: (FIRST_NAME = ‘Joni’” AND LAST_
NAME = ‘Mitchell’) IS TRUE. This means that the FIRST_NAME value of a returned row
must be Joni and the LAST_NAME value must be Mitchell. In other words, they must
evaluate to true. If you specify IS FALSE in this situation, the predicate pair would have
to evaluate to false, meaning that at least one of the two predicates had to be false
(could not be Joni or could not be Mitchell).

Another keyword that you might find useful isthe NOT keyword, which can be used alone
or along with the AND keyword and the OR keyword to specify the inverse of a predicate. For
example, your SELECT statement might include the following WHERE clause:

VWHERE PERFORMER NAME = 'Joni Mtchell' OR NOT PERFORMER_NAME = 'Kitaro'

In this case, the PERFORMER_NAME value can be Joni Mitchell or it can be any value other
than Kitaro. Of course, Joni Mitchell is not equal to Kitaro, so that predicate is redundant and you
get the same result if you remove it. Furthermore, you would get the same result if you used the
not equal (<>) comparison operator, so the entire WHERE clause can be rewritten more simply as:

WHERE PERFORMER _NAME <> 'Kitaro'

Defining the WHERE Clause

Now that you have an overview of how to define a WHERE clause, let’s put it together with the
SELECT clause and FROM clause and take alook at afew examples. The examplesthat we'll
be looking at are based on the INVENTORY table, shown in Figure 7-3. The INVENTORY
table contains five columns, some of which we' |l be using to define our search conditions.

Thefirst example that we'll be looking at includes a WHERE clause that defines which
rows can be returned based on the IN_STOCK values:

SELECT * FROM | NVENTORY
VWHERE | N_STOCK < 20;

If you execute this statement, your query results will be similar to the following:

COWPACT_DISC ID CD TITLE COPYR GHT RETAIL_PRICE | N_STOCK
99301 Fanous Bl ue Rai ncoat 1991 16. 99 6

99303 Court and Spark 1974 14. 99 18

99304 Past Li ght 1983 15.99 2

99305 Koj i Ki 1990 15.99 5

99306 That Christnas Feeling 1993 10. 99 3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data 187

COMPACT_DISC_ID: | CD_TITLE: COPYRIGHT:| RETAIL_PRICE: IN_STOCK:
INT VARCHAR(60) INT NUMERIC(5,2) INT
99301 Famous Blue Raincoat 1991 16.99 6

99302 Blue 1971 14.99 26
99303 Court and Spark 1974 14.99 18
99304 Past Light 1983 15.99 2

99305 Kojiki 1990 15.99 5

99306 That Christmas Feeling 1993 10.99 3

99307 Patsy Cline: 12 Greatest Hits 1988 16.99 25

Figure 7-3 The INVENTORY table containing CD-related data

Asyou can seg, all but two rows are included in the query results. The rows not included
contain IN_STOCK values greater than 20. In other words, these two rows evaluated to false.

Now let’stake that same SELECT statement and refine the WHERE clause even further. In
the new statement, the WHERE clause includes two predicates that are connected by the AND
keyword, as shown in the following example:

SELECT * FROM | NVENTORY
WHERE | N_STOCK < 20 AND RETAIL_PRI CE < 15. 00;

When you execute this statement, you receive the following results:

COVPACT_DISC ID CD TITLE COPYRI GHT RETAIL_PRICE | N_STOCK
99303 Court and Spark 1974 14. 99 18
99306 That Christnmas Feeling 1993 10. 99 3

Notice that only two rows meet the search condition. In other words, only these two rows
have an IN_STOCK value of lessthan 20 and a RETAIL_PRICE value of less than 15.00.
Because the AND keyword is used, both predicates must evaluate to true, which they do for
these two rows.

Now let’s make one small modification to the SELECT statement. In the WHERE clause,
I have changed the AND keyword to the AND NOT keywords, as shown in the following
example:

SELECT * FROM | NVENTORY
WHERE | N_STOCK < 20 AND NOT RETAIL_PRI CE < 15. 00;

www.it-ebooks.info

http://www.it-ebooks.info/

158 SQL: A Beginner's Guide

The NOT keyword changes the query results. Asyou can see, three rows are returned:

COWPACT_DISC ID CD TITLE COPYRI GHT RETAIL_PRICE | N_STOCK
99301 Fanous Bl ue Rai ncoat 1991 16. 99 6
99304 Past Li ght 1983 15. 99 2
99305 Koj i ki 1990 15. 99 5

The returned rows each contain an IN_STOCK value of lessthan 20 and aRETAIL _
PRICE value that is not less than 15.00, or 15.00 or greater.

Next we'll ook at the same SELECT statement, only this time the two predicates are
connected by the OR keyword, as shown in the following example:

SELECT * FROM | NVENTORY
VWHERE | N_STOCK < 20 OR RETAIL_PRI CE < 15. 00;

The query results for this statement include many more rows than when the AND keyword
was used. By its very nature, the OR keyword permits greater opportunities for a search clause
to evaluate to true. Asyou can see, six rows have now been returned:

COWPACT_DISC ID CD TITLE COPYRI GHT RETAIL_PRICE | N_STOCK
99301 Fanous Bl ue Rai ncoat 1991 16. 99 6

99302 Bl ue 1971 14. 99 26

99303 Court and Spark 1974 14. 99 18

99304 Past Li ght 1983 15. 99 2

99305 Koj i ki 1990 15. 99 5

99306 That Christnas Feeling 1993 10. 99 3

Each row in the query results contains an IN_STOCK value of lessthan 20 or aRETAIL _
PRICE value of less than 15.00. Because the OR keyword is being used, only one of the
predicates needs to evaluate to true, although it’s acceptable if both predicates evaluate to true.

In the next example, | add one more predicate that limits the rows returned to those with an
IN_STOCK value greater than 5, along with parentheses to make my intentions clear:

SELECT * FROM | NVENTORY
WHERE (I N_STOCK < 20 AND I N_STOCK > 5) OR RETAIL_PRICE < 15.00;

For arow to bereturned, the IN_STOCK value must fall between the range of 5 and 20
or the RETAIL_PRICE value must be less than 15.00. The query results from this SELECT
statement would be as follows:

COWPACT_DISC ID CD TITLE COPYRI GHT RETAIL_PRICE | N _STOCK
99301 Fanous Bl ue Rai ncoat 1991 16. 99 6

99302 Bl ue 1971 14. 99 26

99303 Court and Spark 1974 14. 99 18

99306 That Christnas Feeling 1993 10. 99 3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data

Now let’ s make one more change to the WHERE clause. Suppose you want the IN_STOCK
value to be less than 20 and greater than 5 or the IN_STOCK value to be less than 20 and the
RETAIL_PRICE vaueto be less than 15. One way to do thisis to place parentheses around the
last two predicates:

SELECT * FROM | NVENTORY
WHERE | N_STOCK < 20 AND (I N_STOCK > 5 OR RETAIL_PRICE < 15.00);

The results you receive this time are slightly different because the Blue row no longer

evaluates to true:
COWPACT_DISC ID CD TITLE COPYRI GHT RETAIL_PRICE | N_STOCK
99301 Fanous Bl ue Rai ncoat 1991 16. 99 6
99303 Court and Spark 1974 14. 99 18
99306 That Christnas Feeling 1993 10. 99 3

By combining predicates together, you can create a variety of search conditions that allow
you to return exactly the data you need. The key to writing effective search conditionsisa
thorough understanding of predicates and the operators used to form those predicates. Chapter 9
takes you through many of the operators you can use and the types of predicates you can create.
With that information, you can create effective, concise search conditions.

Use the GROUP BY Clause to Group Query Results

The next clause in the SELECT statement is the GROUP BY clause. The GROUP BY clause
has a function very different from the WHERE clause. As the name implies, the GROUP
BY clauseis used to group together types of information in order to summarize related data.
The GROUP BY clause can beincluded in a SELECT statement whether or not the WHERE
clause is used.

Asyou saw inthe“Use a SELECT Statement to Retrieve Data” section, the syntax for the
GROUPBY clause, asit appearsin the SELECT statement syntax, looks like the following:

[GROUP BY <grouping specification>]
However, the <grouping specification> placeholder can be broken down into smaller elements:

<column name> [{ , <column name>1} .. .]
[{ ROLLUP|CUBE} (<columnname>[{ , <columnname>} ...])

In actuality, the <grouping specification> syntax, like some of the other syntax in this
book, is even more complex than what I’ m presenting here; however, for the purposes of
this chapter, this syntax will provide you with al the details you need to use the GROUP BY
clause effectively.

Now let’slook at the syntax itself. The first line should be self-explanatory. Y ou
specify one or more column names that contain values that should be grouped together.
This normally applies to columns that represent some sort of categories whose values

www.it-ebooks.info

159

http://www.it-ebooks.info/

160

SQL: A Beginner's Guide

are repeated within the table. For example, your database might include a table that lists
the employees in your organization. Suppose that the table includes ajob title for each
employee. You might find that you want to group together information in the table by job
title, with one row in the result set for each job title value, perhaps to determine such things
as the average salary of each job or number of employees holding each job title. If you need
to specify more than one column name, be sure to separate them with a comma following
each name (except the last).

Asyou can see from the syntax, you can specify the second line rather than the first. In
this case, you can use either the ROLLUP or CUBE keyword, along with the list of column
names, enclosed in parentheses. Again, be sure to separate column names with commas.

With regard to ROLLUP and CUBE, the best way to understand these operators is through
the use of examples. In fact, the best way to understand the entire GROUP BY clauseis
through examples. However, before we get into those, let’s take alook at the table on which
the examples will be based. Figure 7-4 shows the COMPACT_DISC_STOCK table, which
contains alist of CDs, whether they’re vocal or instrumental, the price, and how many of each
title are currently in stock.

Now we can get on with the examples. In the first one we'll ook at, | use the GROUP BY
clause to group rows based on the CATEGORY column of the COMPACT_DISC_STOCK
table, as shown in the following SELECT statement:

SELECT CATEGORY, SUM ON_HAND) AS TOTAL_ON_HAND
FROM COVPACT_DI SC_STOCK
GROUP BY CATEGORY;

First, let’ stake alook at the GROUP BY clause, which specifies that the rows should
be grouped together based on the CATEGORY column. If you look at Figure 7-4, you'll see
that the column contains only two values: VVocal and Instrumental. As aresult, the SELECT
statement will return only two rows, one for Instrumental and one for Vocal:

CATEGORY TOTAL_ON_HAND

| nstrunmental 78
Vocal 217

Now let’slook at the SELECT clause in the preceding SELECT statement example.
Notice that the select list includes the SUM function, which adds datain the ON_HAND
column. The resulting column is then named TOTAL_ON_HAND. The only other
column included in the select list isthe CATEGORY column. The select list can include
only those columns that are specified in the GROUP BY clause or that can somehow be
summarized.

What this statement does, then, is add together the total ON_HAND values for each value
inthe CATEGORY column. In this case, there are 217 total CDs in stock that are categorized
asVocal, and 78 in stock that are categorized as Instrumental. If there were another category,
then arow would appear for that one as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data

COMPACT_DISC: CATEGORY: PRICE: ON_HAND:
VARCHAR(60) VARCHAR(15) NUMERIC(5,2) INT
Famous Blue Raincoat Vocal 16.99 13
Blue Vocal 14.99 42
Court and Spark Vocal 14.99 22
Past Light Instrumental 15.99 17
Kojiki Instrumental 15.99 6
That Christmas Feeling Vocal 14.99 8
Patsy Cline: 12 Greatest Hits Vocal 16.99 32
Carreras Domingo Pavarotti in Concert Vocal 15.99 27
After the Rain: The Soft Sounds of Erik Satie Instrumental 16.99 21
Out of Africa Instrumental 16.99 29
Leonard Cohen The Best of Vocal 15.99 12
Fundamental Vocal 15.99 34
Blues on the Bayou Vocal 14.99 27
Orlando Instrumental 14.99 5

161

Figure 7-4 CD information in the COMPACT_DISC_STOCK table

Ask the Expert

Q: Arethere performance consider ations regar ding the use of GROUP BY?

A: Yes, the use of GROUP BY can cause performance issues because the RDBM S usually
must perform a sort in order to properly group the rows, and sorts of large numbers of rows
(tens of thousands or more) can consume considerable resources. But also be aware that
the ORDER BY clause (presented later in this chapter) and the DISTINCT keyword also
usually require sorts and thus have similar performance considerations. That doesn’'t mean
you should be afraid to use them, but rather that you should strive to learn the performance
impact of your SQL statements as you gain experience, and thus become more skilled at
writing statements that perform best on your particular vendor implementation. For example,
in Oracle, a GROUP BY that lists all columnsin the SELECT clause is more efficient than
using the DISTINCT keyword, and yet the query results of the two approaches are identical.

www.it-ebooks.info

http://www.it-ebooks.info/

162

SQL: A Beginner's Guide

As| said earlier, you can till use the WHERE clausein a SELECT statement that includes
aGROUPBY clause. For example, suppose you want to view totals only for CDs that sell for
less than $16.00. To do this, simply modify your SELECT statement as follows:

SELECT CATEGORY, SUM ON_HAND) AS TOTAL_ON HAND
FROM COVPACT_DI SC_STOCK

WHERE PRI CE < 16. 00

GROUP BY CATEGORY;

Y our query results from this statement will be slightly different than if the WHERE clause
had not been included:

CATEGORY TOTAL_ON_HAND
| nst runent al 28
Vocal 172

Notice that with CDs that sell for $16.00 or more excluded, your results now show only 28
instrumental CDs and 172 vocal CDs.

In the previous two examples, the GROUP BY clause specified only one column. However,
you can specify additional columns as necessary. This allows you to create subgroups that group
data within the scope of the main groups. For example, suppose you want to group data not
only according to the values in the CATEGORY column, but also according to the valuesin the
PRICE column. To do this, you should include the PRICE column in the select list aswell asthe
GROUPBY clause, as shown in the following SELECT statement:

SELECT CATEGORY, PRI CE, SUM ON HAND) AS TOTAL_ON HAND
FROM COMPACT_DI SC_STOCK
GROUP BY CATEGORY, PRI CE;

Now your query results will include six rows, rather than two:

CATEGORY PRI CE TOTAL_ON_HAND
I nstrunental 14.99 5
Vocal 14.99 99
I nstrunmental 15.99 23
Vocal 15.99 73
Instrumental 16.99 50
Vocal 16.99 45

Notice that for each CATEGORY value, there are three rows, one for each of the PRICE
values. For example, in the Vocal group, there are 99 CDs at 14.99, 73 CDs at 15.99, and 45
CDs at 16.99. The number of rows depends on how many different values there are in the
columns specified in the GROUP BY clause. In this example, there are two different valuesin
the CATEGORY column and three different values in the PRICE column, which means that
six (two times three) rows will be returned.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data 163

NOTE

The order in which your query results are returned can vary from implementation to
implementation. For example, some products might return all the Instrumental rows
together, followed by all the Vocal rows. However, regardless of how the information
appears in your user interface, the end results should be the same. Also, most
implementations permit you to add an ORDER BY clause (discussed later in this chapter)
to sort the summarized rows.

Now let’ s take alook at the ROLLUP and CUBE operators. Both operators are similar in
function in that they return additional datain your query results when added to the GROUP
BY clause. The main difference between the two is that the CUBE operator returns more
information than the ROLLUP operator. Let’s start with an example of the ROLLUP operator
so | can demonstrate the difference.

In the following SELECT statement, the GROUP BY clause applies the ROLLUP operator
to the CATEGORY and PRICE columns:

SELECT CATEGORY, PRI CE, SUM ON HAND) AS TOTAL_ON HAND
FROM COMPACT_DI SC_STOCK
GROUP BY ROLLUP (CATEGORY, PRI CE);

NOTE

Implementations can vary with regard to how they support the ROLLUP and CUBE
operators. For example, in SQL Server, you must add WITH ROLLUP or WITH CUBE
to the end of the GROUP BY clause, rather than defining the clause in the way

the SQL:2006 standard specifies. Be sure to check your product documentation to
determine how these operators are supported.

Now when you execute the SELECT statement, the query results include an additional
row for each value in the CATEGORY column, plus a grand total row at the end:

CATEGORY PRI CE TOTAL_ON_HAND
Instrunmental 14.99 5

Instrunmental 15.99 23
Instrunmental 16.99 50
Instrunmental NULL 78

Vocal 14.99 99
Vocal 15.99 73
Vocal 16.99 45
Vocal NULL 217
NULL NULL 295

The two additional CATEGORY rows provide totals for each value in the CATEGORY
column. In the preceding example, the Instrumental group includes atotal of 78 CDs, and
the Vocal group includes atotal of 217 CDs. Notice that the PRICE column includes a null

www.it-ebooks.info

http://www.it-ebooks.info/

164

SQL: A Beginner's Guide

value for these particular rows. A value cannot be calculated for this column because all three
subgroups (from the PRICE column) are represented here. The last row (the one with NULL
for both the CATEGORY and PRICE columns) contains a grand total of all CDs counted by
the query (both category groups and all three price subgroups).

The CUBE operator returns the same data as the ROL L UP operator, and then some. Notice
that, in the following SELECT statement, I’ ve merely replaced the CUBE keyword for ROLLUP:

SELECT CATEGORY, PRICE, SUM ON _HAND) AS TOTAL_ON_HAND
FROM COMPACT_DI SC_STOCK
GROUP BY CUBE (CATEGORY, PRI CE);

This statement returns the following query results:

CATEGORY PRI CE TOTAL_ON_HAND
Instrunental 14.99 5

Instrunental 15.99 23
Instrunental 16.99 50
Instrunmental NULL 78

Vocal 14.99 99
Vocal 15.99 73
Vocal 16.99 45
Vocal NULL 217
NULL NULL 295
NULL 14.99 104
NULL 15.99 96
NULL 16.99 95

Y ou can see that three additional rows have been added to the query results, one row for
each different value in the PRICE column. Unlike the ROLLUP operator, the CUBE operator
summarizes the values for each subgroup. Also notice that anull value is shown for the
CATEGORY column for these rows. Thisis because both Vocal and Instrumental values are
included in each subgroup summary.

Asyou can see, the GROUP BY clause can be a valuable tool when trying to summarize
data, particularly when you make use of the many functions availablein SQL, such as SUM
and AVG. In Chapter 10, | discuss these and many other functions that you can use to make
your SELECT statement more robust and applicable to your needs.

Use the HAVING Clause to Specify
Group Search Conditions

The HAVING clauseis similar to the WHERE clause in that it defines a search condition.
However, unlike the WHERE clause, the HAVING clause is concerned with groups, not
individual rows:

If aGROUPBY clauseis specified, the HAVING clause is applied to the groups created
by the GROUP BY clause.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data

If aWHERE clauseis specified and no GROUP BY clauseis specified, the HAVING clause
is applied to the output of the WHERE clause and that output is treated as one group.

If no WHERE clause and no GROUP BY clause are specified, the HAVING clauseis
applied to the output of the FROM clause and that output is treated as one group.

The best way to understand the HAVING clause is to remember that the clausesin a
SELECT statement are processed in a definite order. A WHERE clause can receive input only
from aFROM clause, but aHAVING clause can receive input from a GROUP BY, WHERE,
or FROM clause. Thisisasubtle, yet important, distinction, and the best way to illustrate it is
to look at a couple of examples.

In thefirst example, which is based on the COMPACT _DISC STOCK tablein Figure 7-4, |
use a WHERE clause to specify that the query results should include only rowswhose ON_HAND
valueislessthan 20, as shown in the following SELECT statement:

SELECT CATEGORY, AVQE PRI CE) AS AVG PRI CE
FROM COVPACT_DI SC_STOCK
WHERE ON_HAND < 20
GROUP BY CATEGORY,

The statement returns two columns: CATEGORY and AVG_PRICE, which isthe average
of al pricesfor each category. The averages include only those rows where ON_HAND values
are less than 20. If you executed this statement, the results would look similar to the following:

CATEGORY AVG_PRI CE

I nstrunental 15. 656666
Vocal 15. 990000

Asyou would expect, the query result returns two rows—one for the Instrumental group
and one for the Vocal group.

If you were to use the HAVING clause, rather than the WHERE clause, to limit values to
less than 20, you might use the following SELECT statement:

SELECT CATEGORY, AVQE PRI CE) AS AVG PRI CE
FROM COVPACT_DI SC_STOCK
GROUP BY CATEGORY
HAVI NG ON_HAND < 20

However, if you were to try to execute this statement, you would receive an error because
you cannot apply individual ON_HAND values to the groups. For a column to be included in
the HAVING clause, it must be a grouped column or it must be summarized in some way.

Now let’stake alook at another example that uses the HAVING clause. In this case, the
clause includes a summarized column:

SELECT PRI CE, CATEGORY, SUM ON HAND) AS TOTAL_ON HAND
FROM COVPACT DI SC_STOCK

GROUP BY PRI CE, CATEGORY

HAVI NG SUM ON_HAND) > 10;

www.it-ebooks.info

165

http://www.it-ebooks.info/

166

SQL: A Beginner's Guide

The HAVING clause in this statement will work because the ON_HAND values are being
added together, which means they can work within the group structure. The query results
would be asfollows:

PRI CE CATEGORY TOTAL_ON_HAND

15.99 Instrunental 23
16.99 Instrunental 50

14.99 Vocal 99
15.99 Vocal 73
16.99 \Vocal 45

The HAVING clause is applied to the results after they have been grouped together
(inthe GROUP BY clause). For each group, the ON_HAND values are added together,
but only groups with TOTAL_ON_HAND values over 10 are included. If the HAVING
clause were not included, the query results would include an additional row for the 14.99/
Instrumental group.

For the most part, you'll probably find that you'll be using the HAVING clause in
conjunction with the GROUP BY clause. By using these two together, you can group together
relevant data and then filter that data to refine your search even further. The HAVING clause
also has the advantage of alowing you to use set functions such as AVG or SUM, which you
cannot use in a WHERE clause unless you place them within a subquery. The important points
to keep in mind with the HAVING clause are that it is the last clause in the table expression to
be applied and that it is concerned with grouped data, rather than individual rows.

Use the ORDER BY Clause to Sort Query Results

The ORDER BY clause, when it isused in a SELECT statement, isthe last clause to be
processed. The ORDER BY clause takes the output from the SELECT clause and orders the
query results according to the specifications within the ORDER BY clause. The clause does
not group rows together, as they’re grouped by the GROUP BY clause, nor does it filter out
rows, as they’'re filtered by the WHERE clause or the HAVING clause. Y ou can, however,
specify whether the rows are organized in an ascending order (by using the ASC keyword) or
in descending order (by using the DESC keyword).

To usethe ORDER BY clause, simply specify one or more columns and the optional ASC
or DESC keywords (one per column). If akeyword is not specified, ASC is assumed. The rows
are organized according to the column you specify. If you define more than one column in the
ORDER BY clause, the rows are organized in the order in which the columns are specified.

Let'stake alook at afew examplesto clarify how the ORDER BY clause works. (The
examples are based on the COMPACT_DISC_STOCK tablein Figure 7-4.) In the first
example, | order the rows based on the PRICE column:

SELECT * FROM COWPACT_DI SC_STOCK
WHERE PRI CE < 16. 00
ORDER BY PRI CE;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data

Notice that the PRICE column is specified in the ORDER BY clause. Also notice that
neither the ASC nor the DESC keyword has been specified, so the ASC keyword will be
assumed. If you execute this query, you will receive results similar to the following:

COVPACT_DI SC CATEGORY PRICE ON_HAND
Bl ue Vocal 14.99 42
Court and Spark Vocal 14.99 22
That Christnas Feeling Vocal 14.99 8
Bl ues on the Bayou Vocal 14.99 27
O | ando Instrumental 14.99 5
Carreras Domi ngo Pavarotti in Concert Vocal 15.99 27
Leonard Cohen The Best O Vocal 15.99 12
Fundanent al Vocal 15.99 34
Past Li ght Instrunental 15.99 17
Koj i ki Instrunental 15.99 6

Therows are listed according to the PRICE column. The values in the PRICE column
appear in ascending order (lowest price to highest price). Because the WHERE clause was
specified, no rows with prices above 15.99 are included in the query results. Also, since only
the PRICE column was included in the ORDER BY, the order of rows that have the same price
is unpredictable. For example, the five rows with a PRICE of 14.99 will all appear before
those with a PRICE of 15.99, but those five rows might appear in any order.

In the next example, the SELECT statement is nearly the same as the last statement, except
that an additional column is specified in the ORDER BY clause:

SELECT * FROM COWPACT_DI SC_STOCK
WHERE PRI CE < 16. 00
ORDER BY PRI CE, ON_HAND DESC,

In this case, the ON_HAND column is followed by the DESC keyword, which means that
the rows will be listed in descending order. However, because there are two columns, the rows
are first ordered by the PRICE column and then by the ON_HAND column. If you execute this
SELECT statement, you'll receive the following results:

COMPACT_DI SC CATEGORY PRI CE ON_HAND
Bl ue Vocal 14.99 42
Bl ues on the Bayou Vocal 14.99 27
Court and Spark Vocal 14.99 22
That Christnas Feeling Vocal 14.99 8
O | ando Instrumental 14.99 5
Fundanent al Vocal 15.99 34
Carreras Domi ngo Pavarotti in Concert Vocal 15.99 27
Past Li ght Instrunental 15.99 17
Leonard Cohen The Best O Vocal 15.99 12
Koj i ki Instrunental 15.99 6

www.it-ebooks.info

167

http://www.it-ebooks.info/

168

SQL: A Beginner's Guide

Ask the Expert

Q: How doesthe ORDER BY clause affect query resultsin embedded SQL and SQL

A

modules?

+ You can use the ORDER BY clause only in direct invocation and when defining cursors.
(I discuss cursorsin Chapter 15.) Y ou cannot use an ORDER BY clausein other situations.
Thisis because of limitations in application languages—they cannot handle an unknown
number of rowsin a query result. Application languages do not know what to do with
this sort of uncertainty. And because the ORDER BY clause applies only to multirow
query results, the clause is not applicable to environments that require rows to be returned
one at atime. However, cursors offer away for application languages to deal with that
uncertainty, allowing the ORDER BY clause to be used in cursor definitions. Cursors are
discussed in more detail in Chapter 15.

Asyou can see, the rows are listed according to the order of the PRICE values, which
are in ascending order. In addition, the ON_HAND values are listed in descending order
for each price. So for the set of 14.99 PRICE values, the rows start with avalue of 42 in the
ON_HAND column and end with avalue of 5. Then we jump to the next group of PRICE
values: 15.99. Once again, the largest ON_HAND value for the 15.99 PRICE rangeislisted
first and the last row contains the smallest ON_HAND value for the 15.99 PRICE range.

Whenever you' re using the ORDER BY clause, you must be aware of the order in which
you list column names within that clause. In the preceding example, the PRICE columnis
listed first, so the rows are ordered first by the PRICE column and then by the ON_HAND
column. However, you can reverse the column names, as shown in the following SELECT
Statement:

SELECT * FROM COVPACT_DI SC_STOCK
WHERE PRI CE < 16. 00
ORDER BY ON_HAND, PRI CE DESC

Thistime, the ON_HAND column islisted first and the PRICE column listed second, and
the PRICE column is assigned the DESC keyword. As aresult, the rows will be sorted by the
ON_HAND column first, as shown in the following query results:

COMPACT_DI SC CATEGORY PRICE ON_HAND
Ol ando Instrunental 14.99 5

Koj i ki Instrunental 15.99 6

That Christnmas Feeling Vocal 14.99 8
Leonard Cohen The Best Of Vocal 15.99 12

Past Li ght Instrunental 15.99 17
Court and Spark Vocal 14.99 22
Carreras Domingo Pavarotti in Concert Vocal 15.99 27

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data 169

Bl ues on the Bayou Vocal 14.99 27
Fundanent al Vocal 15.99 34
Bl ue Vocal 14.99 42

Notice that the ON_HAND values are in ascending order. The rows are then ordered
according to the PRICE value. However, because there are only two rows that share the same
ON_HAND value (27), these are the only rows that the ORDER BY column affects, with
regard to the PRICE column.

The ORDER BY clause is a convenient tool for organizing your query results, but remember,
it doesn’t affect which datais displayed. Only the other clauses can actually name, filter, and
group data. The ORDER BY clause is merely an organizer for what aready exists. And in fact,
whileit isnot avery sound practice, you can include columnsin the ORDER BY clausethat are
not inthe SELECT clause, thereby sorting on columnsthat are not visible in the query results.

Querying the Inventory Database

For the Try This exercises in previous chapters, you created a number of persistent base tables
that are capable of storing data. In this chapter, you learned how to create SELECT statements
that allow you to query datain base tables. As aresult, this exercise focuses on creating
SELECT statements that query datain the tables that you created. However, before you can
actually query those tables, data must be stored within them. While | do not cover inserting
data until Chapter 8, | do provide the statements you need to insert the datain the Try_This
07.txt file, which you can download from our web site. The file contains a series of INSERT
statements that allow you to populate the tables, along with the SELECT statements used in
this exercise. Y ou can also view these statementsin Appendix C.

If you look at the Try_This 07.txt file, you'll see a series of INSERT statements that are
grouped together according to the tables that you created in the INVENTORY database. For
example, thefirst set of INSERT statements are for the CD_L ABEL Stable, as shown in the
following statements:

--lInsert data into the CD LABELS table

I NSERT | NTO CD_LABELS VALUES (827, 'Private Music');

I NSERT | NTO CD_LABELS VALUES (828, 'Reprise Records');

I NSERT | NTO CD_LABELS VALUES (829, 'Asylum Records');

I NSERT | NTO CD_LABELS VALUES (830, 'Wndham Hi Il Records');
I NSERT | NTO CD_LABELS VALUES (831, 'Geffen');

I NSERT | NTO CD_LABELS VALUES (832, 'MCA Records');

I NSERT | NTO CD_LABELS VALUES (833, 'Decca Record Conpany');
I NSERT | NTO CD_LABELS VALUES (834, 'CBS Records');

I NSERT | NTO CD_LABELS VALUES (835, 'Capitol Records');

| NSERT | NTO CD_LABELS VALUES (836, 'Sarabande Records');
--End inserts for the CD LABELS table

Y ou will need to copy these statements into your client application and execute
them. Each INSERT statement adds one row of data to the applicable table. For example,
the first INSERT statement listed in the preceding code adds one row of datato the

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

170

SQL: A Beginner's Guide

CD_LABELStable. The values that are added are 827 (for the LABEL _ID column)

and Private Music (for the COMPANY _NAME column). Again, | present the INSERT
statement in greater detail in Chapter 8. If you are uncomfortable inserting this data before
reading about the INSERT statement, | suggest that you review the information in Chapter
8 before working on this Try This exercise and then return here to perform each step.
However, if you decide to do this exercise now, then you simply need to execute each
statement, as described in the following steps.

NOTE

As you probably noticed, each block of INSERT statements begins and ends with a line
that starts off with double hyphens (--). Double hyphens indicate that the line of text that
follows is a comment. Your SQL implementation will simply skip over these lines. The
comments are there only to provide information to the SQL programmers so they can
better understand the code.

Step by Step

1. Open the client application for your RDBM S and connect to the INVENTORY database.

2. Openthe Try_This 07.txt file and copy the INSERT statements into your client application.
Most applications will allow you to execute blocks of statements, rather than having to
enter the data one row at atime. If your application supports executing multiple statements,
execute the statements one table at atime by copying and pasting blocks of statementsinto
your client application. Y ou should enter data for each table in the order that the data appears
inthe Try_This 07.txt file. For example, you should insert valuesinto the CD_LABELS
table before the COMPACT _DISCStable.

For each INSERT statement that you execute, you should receive a message acknowledging
that the row has been inserted into the table. After you’ ve populated each table with data,
you're ready to move on to the next step.

3. Youwill now query all the datain the ARTISTS table. Enter and execute the following SQL
statement:

SELECT *
FROM ARTI STS;

Y our query results should include the ARTIST_ID, ARTIST_NAME, and PLACE_OF _
BIRTH columns. There should be 18 rows of datain all.

4. Now let’s create a query that specifies which columns to include in the query results. For
the next SELECT statement, you will query the COMPACT_DISC table, but return only the
CD_TITLE and IN_STOCK columns. Enter and execute the following SQL statement:

SELECT CD TITLE, | N_STOCK
FROM COMPACT_DI SCS;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Querying SQL Data

Y our query results should include only the two columns you specified in the SELECT
statement. In addition, the query should return 15 rows of data.

. In Chapter 5, Try This 5-1, you created the CD_IN_STOCK view. The view returns the
same data as specified in the SELECT statement in step 4, except that it limits the results
to rowswith IN_STOCK values greater than 10. Y ou will now query that view. Enter and
execute the following SQL statement:

SELECT *
FROM CDS_| N_STOCK;

Notice that your SELECT statement is the same as it would have been for a persistent

base table. Y ou can even specify the view column names if you want. (In fact, you should

if you're querying the view in any way other than through direct invocation.) In the last
SELECT statement, the query returned 15 rows, but this query returns only 12 rows because
the IN_STOCK values must be over 10. The nice part about the view isthat it is already set
up to return exactly the information you want, without having to define the WHERE clause.

. Now let’s query the COMPACT _DISCS table but refine our SELECT statement by using a
WHERE clause. Enter and execute the following SQL statement:

SELECT CD TITLE, | N_STOCK
FROM COMPACT_DI SCS
WHERE | N_STOCK > 10 AND | N_STOCK < 30;

Because the WHERE clause has been added, your query results should now include only
nine rows, and each row should contain an IN_STOCK value between 10 and 30.

. The next SELECT statement that you create groups together information in the
COMPACT_DISCStable. Enter and execute the following SQL statement:

SELECT LABEL_|I D, SUM I N STOCK) AS TOTAL_| N _STOCK
FROM COMVPACT_DI SCS
GROUP BY LABEL_I D;

Onerow isreturned for each different LABEL _|D value, and for each of those values, the
total for the IN_STOCK valuesisreturned. There are 10 rowsin all. Notice that, in your
query results, the name of the column with the IN_STOCK totalsis TOTAL_IN_STOCK.
When you learn more about joining tables, you'll be able to group data based on more
complex queries. Joining tablesis discussed in Chapter 11.

. Now you'll add aHAVING clause to the SELECT statement you just executed. Enter and
execute the following SQL statement:

SELECT LABEL_ID, SUM I N _STOCK) AS TOTAL_I N STOCK
FROM COVPACT_DI SCS

GROUP BY LABEL_ID

HAVI NG SUM | N_STOCK) > 10;

(continued)

www.it-ebooks.info

171

http://www.it-ebooks.info/

172

SQL: A Beginner's Guide

The HAVING clause limits the rows that are returned to those whose TOTAL _IN_STOCK

values are greater than 10. Now only eight rows are returned.

9. You can aso execute a SELECT statement that orders the data returned by your query.
Enter and execute the following SQL statement:

SELECT *

FROM COVPACT_DI SCS
VWHERE | N_STOCK > 10
ORDER BY CD_TI TLE DESC,

Y our query results should be organized according to the CD_TITLE column, with the
columns listed in descending order. Because the WHERE clause is used, only 12 rows
should have been returned.

10. Close the client application.

Try This Summary

Inthis Try This exercise, you inserted data into the tables of the INVENTORY database.
Y ou then created SELECT statements that allowed you to query datain those tables. Y ou
should feel free to experiment with SELECT statements and try different types of queries.
As you become more comfortable with using the SELECT statement and learn more
advanced techniques for querying data, you'll be able to write SELECT statements that
access multiple tables, calculate data, and summarize information. However, even the more

advanced techniques rely on the basic foundation that you have demonstrated in this exercise.

Everything else builds on this.

J Chapter 7 Self Test

1. Which clausesin a SELECT statement are part of the table expression?
A SELECT
B FROM
C WHERE
D ORDERBY
2. Inwhat order are the clauses of a SELECT statement applied?

3. You arewriting a SELECT statement that retrievesthe CD_TITLE column and all rows
from the INVENTORY table. Which SELECT statement should you use?

www.it-ebooks.info

http://www.it-ebooks.info/

10.

Chapter 7: Querying SQL Data 173

. You arewriting a SELECT statement that retrieves the CD_TITLE column and all rows

from the INVENTORY table. Y ou want the column in the query results to be named
COMPACT_DISC. Which SELECT statement should you use?

. Which clausesin a SELECT statement are required?

A SELECT

B FROM

C WHERE

D GROUPBY

. Which keyword should you add to the SELECT clause to ensure that each row of the query

result is unique?
A ALL

B ROLLUP

C DISTINCT
D CUBE

. You're creating a SELECT statement for the INVENTORY table and you want to ensure

that only rows with a RETAIL_PRICE value of less than $16.00 are included in the query
results. What WHERE clause should you use?

. You're creating a SELECT statement that includes a WHERE clause. The WHERE clause

contains two predicates. Y ou want the condition of either one of the predicates to be met,
but it's not necessary for both conditions to be met. What keyword should you use to
connect the two predicates?

. Each predicatein a WHERE clause is evaluated to which of the following?

A True
B Not
C False
D Unknown
Which clause alows you to group together valuesin a specified column?
A ROLLUP
B HAVING
C ORDERBY
D GROUPBY

www.it-ebooks.info

http://www.it-ebooks.info/

174

SQL: A Beginner's Guide

11.

12.

13.

14.

15.
16.
17.

Which two operators can you use in a GROUP BY clause to return additional summary data
in aquery result?

A ROLLUP
B HAVING
C CUBE

D DISTINCT

You'rewriting a SELECT statement that retrieves the CATEGORY and PRICE columns
from the COMPACT_DISC_STOCK table. Y ou want to group data together first by the

CATEGORY column and then by the PRICE column. Which SELECT statement should

you use?

You'rewriting a SELECT statement that retrieves the CATEGORY and PRICE columns
from the COMPACT_DISC_STOCK table. Y ou want to group together datafirst by the
CATEGORY column and then by the PRICE column. Y ou then want to filter out any groups
that have a PRICE value over 15.99. Which SELECT statement should you use?

You're creating a SELECT statement that includes a SELECT clause, FROM clause,
WHERE clause, GROUP BY clause, and HAVING clause. From which clause will the
HAVING clause receive output?

A SELECT

B FROM

C WHERE

D GROUPBY
How doesthe HAVING clause differ from the WHERE clause?
From which clause does the ORDER BY clause receive output?

Which keyword should you add to an ORDER BY clause to sort datain descending order?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Modifying SQL Data

175

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

176

SQL: A Beginner's Guide

Key Skills & Concepts

Insert SQL Data
Update SQL Data
Delete SQL Data

One of the primary functions of any database is to be able to manipulate the data stored

within its tables. Designated users must be able to insert, update, and del ete data as
necessary in order to keep the database current and ensure that only the appropriate datais
being stored. SQL provides three statements for basic data manipulation: INSERT, UPDATE,
and DELETE. In this chapter, | will examine each of these statements and demonstrate how
they can be used in an SQL environment to modify data in the database.

Insert SQL Data

In Chapter 7, Try This 7-1, | introduce you briefly to the INSERT statement. As you can see
from that exercise, the INSERT statement allows you to add data to the various tables in your
database. | present the basic syntax in this section and an aternate syntax in the next section
(“Inserting Vaues from a SELECT Statement”). The syntax for abasic INSERT statement is
relatively straightforward:

INSERT INTO <table name>
[(<column name>[{ , <columnname>}...])]
VALUES (<vaue>[{,<vaue>} ...])

Only the first and last lines in the syntax are required. The second line is optional. Both the
first and second lines are part of the INSERT INTO clause. In this clause, you must identify
the name of the table (or view) into which you will be inserting data. The table name follows
the INSERT INTO keywords. Y ou then have the option of identifying the column namesin the
table that will be receiving the data. Thisis the purpose of the second line in the syntax. Y ou
can specify one or more columns, all of which must be enclosed in parentheses. If you specify
more than one column, they must be separated using commas.

NOTE

Most SQL implementations support inserts into views. However, there are restrictions.
For example, you cannot insert into a view if there are table columns that are not
included in the view and those columns do not allow null values and do not have a
default value defined. Furthermore, if the view has more than one base table, you may
not be able to insert into it at all, but if you can, you will be required to name columns
from only one of the base tables because an insert can affect only one base table.
Always check your vendor documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Modifying SQL Data 177

In the third line of syntax, which isthe VALUES clause, you must specify one or more
values that will be inserted into the table. The list of values must be enclosed in parentheses
and, if more than oneis specified, they must be separated using commas. In addition, the
values must meet the following requirements:

If the column names are not specified in the INSERT INTO clause, then there must be one
value for each column in the table and the values must be in the same order asthey are
defined in the table.

If the column names are specified in the INSERT INTO clause, then there must be exactly
one value per specified column and those values must be in the same order in which they
are defined in the INSERT INTO clause. However, the column names and values do not
have to be in the same order as the columns in the table definition.

Y ou must provide avalue for each column in the table except for columns that either allow
null values or have a default value defined.

Each value with a character string data type must be enclosed in single quotes.

Y ou may use the keyword NULL (or null) asthe datavalue in the VALUES clause to
assign anull value to any column that allows nulls.

NOTE

Many SQL programmers prefer to specify the column names in the INSERT INTO clause,
whether or not it's necessary to do so, because it provides a method for documenting
which columns are supposed to be receiving data. This practice also makes the INSERT
statement less prone to errors and other problems should columns be added or the
column order be changed at some future time. For these reasons, many organizations
require the use of the column names in all INSERT statements.

Now let’stake alook at some examples of the INSERT statement. For these examples,
I will usethe CD_INVENTORY table. The table is based on the following table definition:

CREATE TABLE CD_| NVENTORY
(CD_NAME VARCHAR(60) NOT NULL,
MUSI C TYPE VARCHAR(15),
PUBLI SHER VARCHAR(50) DEFAULT ' Independent’ NOT NULL,
IN STOCK INT NOT NULL);

Thefirst example I’ll show you inserts values into every column in the CD_INVENTORY
table:

I NSERT | NTO CD_I NVENTORY
VALUES ('Patsy Cline: 12 Greatest Hits', 'Country', 'MCA Records', 32);

Notice that the INSERT INTO clause includes only the name of the CD_INVENTORY table,
but does not specify any columns. In the VALUES clause, four values have been specified.
The values are separated by commas, and the values with character string data types are

www.it-ebooks.info

http://www.it-ebooks.info/

178

SQL: A Beginner's Guide

enclosed in single quotes. If you refer back to the table definition, you'll see that the values
specified in the VALUES clause are in the same order as the column definitions.

When you execute the INSERT statement shown in the example, the datais added to the
CD_INVENTORY table, as shown in Figure 8-1.

If you had tried to execute an INSERT statement like the last example, but included only
three values, rather than four, you would have received an error. For example, you would not
be able to execute the following statement:

I NSERT | NTO CD_| NVENTORY
VALUES ('Patsy Cline: 12 Greatest Hits', 'MCA Records', 32);

In this example, only three values have been specified. In this case, the missing valueis for the
MUSIC_TY PE column. Even though this column accepts null values, the SQL implementation
has no way of knowing which value is being omitted, so an error is returned.

Instead of leaving the value out of the VALUES clause, you can specify anull value, as
shown in the following example:

I NSERT | NTO CD_I NVENTORY
VALUES ('CQut OF Africa', null, 'MCA Records', 29);

If you execute the INSERT statement, your table will now include an additional row. Figure 8-2
shows what the table would look like, assuming that the two INSERT statements have been
executed.

The null value was inserted into the MUSIC_TY PE column, and the other values were
inserted into the appropriate columns. If anull value were not permitted in the MUSIC_TY PE
column, you would have had to specify avalue.

NOTE

Figure 8-2 shows the new row being inserted after the existing row in the table.
However, the row might be inserted at any place in a table, depending on how the SQL
implementation inserts rows. The SQL standard does not specify where a row should

be inserted in a table. In fact, you should never rely on the rows in a table being in

any particular order—you should use the ORDER BY clause whenever the results of a
SELECT need to be in a particular sequence.

Rather than having to provide avalue for every column when you insert arow, you can
specify which columns receive values. For example, you can specify values for the CD_NAME,

CD_NAME: MUSIC_TYPE: PUBLISHER: IN_STOCK:
VARCHAR(60) VARCHAR(15) VARCHAR(50) INT
Patsy Cline: 12 Greatest Hits Country MCA Records 32

Figure 8-1 The CD_INVENTORY table with the new row of data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Modifying SQL Data 179

CD_NAME: MUSIC_TYPE: PUBLISHER: IN_STOCK:
VARCHAR(60) VARCHAR(15) VARCHAR(50) INT
Patsy Cline: 12 Greatest Hits Country MCA Records 32
Out of Africa NULL MCA Records 29

Figure 8-2 The CD_INVENTORY table with two rows of data

PUBLISHER, and IN_STOCK columns of the CD_INVENTORY table, as shown in the
following example:

I NSERT | NTO CD_I NVENTORY (CD_NAME, PUBLI SHER, | N_STOCK)
VALUES (' Fundanental', 'Capitol Records', 34);

In this case, one value has been specified for each of the columnsidentified in the INSERT
INTO clause, and the values are specified in the same order as the columnsin the INSERT
INTO clause. Notice that the INSERT statement doesn’t include the MUSIC_TY PE column
inthe INSERT INTO clause or in the VALUES clause. Y ou can omit this column because
null values are permitted in that column. If you were to execute this statement, your
CD_INVENTORY table would now have athird row (shown in Figure 8-3).

Once again, the null value is automatically added to the MUSIC_TY PE column. If
a default value had been defined for the column, that value would have been added. For
example, the following INSERT statement omits the PUBLISHER column, rather than the
MUSIC_TY PE column:

I NSERT | NTO CD_I NVENTCORY (CD_NAME, MJSIC TYPE, | N _STOCK)
VALUES ('Ol ando', 'Soundtrack', 5);

When the row is added to the CD_INVENTORY table, the default value (Independent) is
added to the PUBLISHER column, as shown in Figure 8-4.

CD_NAME: MUSIC_TYPE: PUBLISHER: IN_STOCK:
VARCHAR(60) VARCHAR(15) VARCHAR(50) INT
Patsy Cline: 12 Greatest Hits Country MCA Records 32
Out of Africa NULL MCA Records 29
Fundamental NULL Capitol Records 34

Figure 8-3 The CD_INVENTORY table with three rows of data

www.it-ebooks.info

http://www.it-ebooks.info/

180

SQL: A Beginner's Guide

CD_NAME: MUSIC_TYPE: PUBLISHER: IN_STOCK:
VARCHAR(60) VARCHAR(15) VARCHAR(50) INT

Patsy Cline: 12 Greatest Hits Country MCA Records 32

Out of Africa NULL MCA Records 29
Fundamental NULL Capitol Records 34
Orlando Soundtrack Independent 5

Figure 8-4 The CD_INVENTORY table with four rows of data

If you try to execute an INSERT statement that omits a column that does not permit null
values and is not defined with a default value, you will receive an error. When you insert a
new row, the RDBM S must get a value for each column from somewhere, so if nulls are not
permitted, then the value must come from either a default value (if defined) or the VALUES
clause of the INSERT statement.

NOTE

The values that you specify in the VALUES clause must conform to all restrictions placed
on a table. This means that the values must conform to the data types or domains
associated with a column. In addition, the values are limited by any constraints defined
on the table. For example, a foreign key constraint would prevent you from adding any
values that violate the constraint, or a check constraint may limit the range of values that
can be inserted into the table. Be sure that you're familiar with the restrictions placed on
a table before trying to insert data into that table. You can learn more about data types
in Chapter 3. You can learn more about domains and constraints in Chapter 4.

Y ou can, of course, specify all columnsin the INSERT INTO clause. If you do this,
you must be sure to specify the same number of values, in the same order in which the
columns are specified. The following INSERT statement inserts values into all columns of
the CD_INVENTORY table:

I NSERT | NTO CD_I NVENTORY (CD_NAME, MJSI C TYPE, PUBLISHER, | N _STOCK)
VALUES (' Court and Spark', 'Pop', 'Asylum Records', 22);

When you execute this statement, arow is added to the CD_INVENTORY table, with avalue for
each column. Figure 8-5 shows the new row, along with the other four rows we have inserted. If
you were to omit one of the values from the VALUES clause—even if null values were alowed
for the related column—you would receive an error when you executed that statement.

Inserting Values from a SELECT Statement

Earlier in this chapter, at the beginning of the “Insert SQL Data’ section, | say that the VALUES
clause is mandatory and that you need to specify at least one value. There is, however, an
aternative to the VALUES clause. You can use a SELECT statement to specify the values that

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Modifying SQLData 181

CD_NAME: MUSIC_TYPE: PUBLISHER: IN_STOCK:
VARCHAR(60) VARCHAR(15) VARCHAR(50) INT

Patsy Cline: 12 Greatest Hits Country MCA Records 32

Out of Africa NULL MCA Records 29
Fundamental NULL Capitol Records 34
Orlando Soundtrack Independent 5

Court and Spark Pop Asylum Records 22

Figure 8-5 The CD_INVENTORY table with five rows of data

you want to insert into atable. The key to using a SELECT statement, just as with using the
VALUES clause, isto make sure that the number of values returned by the SELECT statement
matches the required number of values and that those values conform to any restriction on the
target table. Let’slook at an example.

Suppose that, in addition to the CD_INVENTORY table I’ ve been using in previous
examples, your database includes a second table named CD_INVENTORY _2, which includes
two columns, as shown in the following table definition:

CREATE TABLE CD_| NVENTORY_2
(CD NAME 2 VARCHAR(60) NOT NULL,
IN_STOCK 2 INT NOT NULL);

The CD_NAME_2 column in the CD_INVENTORY _2 table has the same data type
asthe CD_NAME columnin the CD_INVENTORY table, and the IN_STOCK_2 column
inthe CD_INVENTORY _2 table has the same datatype asthe IN_STOCK columnin the
CD_INVENTORY table. Asaresult, values taken from the two columnsin one table can be
inserted into the two columnsin the second table.

NOTE

A column in one table does not have to be the same data type as a column in another
table for values to be copied from one to the other, as long as the values inserted into
the target table conform to the data restrictions of that table.

By using an INSERT statement, you can copy values from the CD_INVENTORY table
tothe CD_INVENTORY _2 table. The following INSERT statement includes a SELECT
statement that queries the CD_INVENTORY table:

I NSERT | NTO CD_| NVENTORY_2
SELECT CD_NAME, | N_STOCK
FROM CD_| NVENTORY;

www.it-ebooks.info

http://www.it-ebooks.info/

182 SQL: A Beginners Guide

CD_NAME: IN_STOCK:
VARCHAR(60) INT

Patsy Cline: 12 Greatest Hits 32

Out of Africa 29
Fundamental 34
Orlando 5

Court and Spark 22

Figure 8-6 The CD_INVENTORY_2 table with five rows of data

Asyou can see, no columns are specified in the INSERT INTO clause; as aresult, values
will be inserted into both columnsin the CD_INVENTORY _2 table. In the second line of the
statement, a SELECT statement is used to pull values from the CD_NAME and IN_STOCK
columns of the CD_INVENTORY table. The values will then be inserted into their respective
columnsinthe CD_INVENTORY _2 table, as shown in Figure 8-6.

Notice that the CD_INVENTORY _2 table contains the same five rows of datathat are
shown in Figure 8-5, only the CD_INVENTORY _2 table contains only two columns:
CD_NAME_2 and IN_STOCK _2.

Like any other SELECT statement, the SELECT statement that you use in an INSERT
statement can contain a WHERE clause. In the following INSERT statement, the SELECT
statement contains a WHERE clause that limitsthe IN_STOCK values to an amount greater
than 10:

I NSERT | NTO CD_| NVENTORY_2
SELECT CD_NAME, | N_STOCK
FROM CD_| NVENTORY
WHERE | N_STOCK > 10;

If you were to execute this statement, only four rows would be added to the CD_
INVENTORY _2 table, rather than the five rows we saw in the previous example. The WHERE
clausein this case works just like the WHERE clause in any SELECT statement. As aresult,
any row with an IN_STOCK value that is not greater than 10 is eliminated from the query
results. Those new filtered results are then inserted into the CD_INVENTORY _2 table.

Update SQL Data

Asits name implies, the UPDATE statement allows you to update datain your SQL database.
With the UPDATE statement, you can modify datain one or more rows for one or more
columns. The syntax for the UPDATE statement can be shown as follows:

UPDATE <table name>
SET <set clause expression> [{ , <set clause expression>1} .. .|
[WHERE <search condition>]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Modifying SQL Data 183

Asyou can see, the UPDATE clause and the SET clause are required, and the WHERE
clauseis optional. In the UPDATE clause, you must specify the name of the table (or view)
that you' re updating. In the SET clause, you must specify one or more set clause expressions,
which | discussin more detail later in this chapter. In the WHERE clause, as with the WHERE
clausein a SELECT statement (see Chapter 7), you must specify a search condition. The
WHERE clause works here in much the same way it does in the SELECT statement. Y ou
specify a condition or set of conditions that act as afilter for the rows that are updated. Only
the rows that meet these conditions are updated. In other words, only rows that evaluate to true
are updated.

NOTE

SQL supports using view names in UPDATE statements. However, if the view is based
on mu|tip|e tables, all columns being updoted must come from a single base table, and
there may be other restrictions as described in your DBMS documentation.

Now let’s return to the SET clause. Asyou can see, the clause includes the <set clause
expression> placeholder. Y ou must specify one or more set clause expressions. If you
specify more than one, you must separate them with acomma. The syntax of the <set clause
expression> placeholder can be broken down as follows:

<column name> = <value expression>

Basically, you must specify a column name (from the table that you' re updating) and
provide a value that the value in the column should equal. For example, suppose you want
avalueintheIN_STOCK column to be changed to 37. (It doesn’t matter what the current
valueis.) The set clause expression would be as follows: IN_STOCK = 37. In this case, the
value expression is 37; however, the value expression can be more complicated than that. For
example, you can base the new value on an old value: IN_STOCK = (IN_STOCK + 1). Inthis
case, the value expression isIN_STOCK + 1, which adds the current value in the IN_STOCK
columnto 1 to give you anew value. In this case, if the origina value was 37, the new value
will be 38.

Now that we' ve taken alook at the various parts of the UPDATE statement, let’s put it
all together using some examples. The examples we'll be looking at are based on the CD_
INVENTORY table, which is shown in Figure 8-5.

In the first example, | use the UPDATE statement to change the values of the IN_STOCK
column to 27, as shown in the following SQL statement:

UPDATE CD_| NVENTORY
SET I N_STOCK = 27,

This statement does exactly what you might expect: changes every row inthe CD_
INVENTORY table so that the IN_STOCK column for each row contains avalue of 27. This
isfineif that’s what you want, but it is unlikely that you' [l want to change every row in atable
so that one of the column valuesis the samein every row. More likely than not, you'll want to
qualify the update by using a WHERE clause.

www.it-ebooks.info

http://www.it-ebooks.info/

184 SQL: A Beginner's Guide

In the next example, | modify the previous UPDATE statement to include a WHERE clause:

UPDATE CD_| NVENTORY
SET IN_STOCK = 27
WHERE CD_NAME = 'Qut of Africa';

The UPDATE statement still changesthe IN_STOCK column to avalue of 27, but it does so
only for the rows that meet the search condition in the WHERE clause. In this case, only one
row meets that condition: Out of Africa

Y ou might find that you want to change a value based on a value that already exists,
such as the amount of inventory in stock. For example, you can add 2 to the value in the
IN_STOCK column:

UPDATE CD_| NVENTORY
SET I N_STOCK = (I N_STOCK + 2)
WHERE CD NAME = 'Qut of Africa';

If the Out of Africarow containsthe value 27 in the IN_STOCK column, and you execute
this UPDATE statement, the new value will be 29. If you execute this statement without the
WHERE clause, 2 will be added to the IN_STOCK value for every row in the table.

The WHERE clause aso allows you to specify more than one predicate, as you can do
with aWHERE clausein a SELECT statement. In the following example, | subtract 2 from
the IN_STOCK value for any row that containsaMUSIC_TY PE value of Country and an
IN_STOCK value greater than 30:

UPDATE CD_| NVENTORY
SET IN_STOCK = (I N_STOCK - 2)
WHERE MUSI C TYPE = ' Country' AND | N _STOCK > 30;

Only one row (Patsy Cline: 12 Greatest Hits) conforms to the search conditions specified in
the WHERE clause. The IN_STOCK value for that row has been changed from 32 to 30.

Y ou can also specify multiple expressionsin the SET clause. In other words, you can
change the values of more than one column at atime. For example, suppose you want to
change the PUBLISHER value and IN_STOCK value for the Orlando row. Your UPDATE
statement might look something like the following:

UPDATE CD_| NVENTORY
SET PUBLI SHER = ' Sar abande Records',
IN_STOCK = (IN_STOCK * 2)
WHERE CD NAME = 'Ol ando';

Notice that the two expressions in the SET clause are separated by a comma. When you
execute this statement, the PUBLISHER value is changed from Independent to Sarabande
Records, and the IN_STOCK value is changed from 5 to 10. (The 5 value is multiplied by 2.)

One thing you cannot do, however, is change the value for the same column for two
different rowsif you're trying to put different valuesin those rows. Let’slook at an example to
make this clearer. Suppose you want to update the MUSIC_TY PE value for the Out of Africa
row and the Fundamental row, but you want to update these rows with different values.
The Out of Africarow should have aMUSIC_TY PE value of Soundtrack, and the Fundamental

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Modifying SQL Data 185

row should have aMUSIC_TY PE value of Blues. As aresult, you might try to execute
a statement similar to the following:

UPDATE CD_| NVENTORY
SET MJSI C_TYPE = ' Soundtrack',
MJSI C_TYPE = ' Bl ues'
WHERE CD NAME = 'CQut of Africa’' OR CD_NAME = ' Fundanental ';

If you tried to execute this statement, the SQL implementation would not know which
MUSIC_TY PE value to put into which row, and you would receive an error. To handle a
situation like this, you would need to create two separate UPDATE statements:

UPDATE CD_| NVENTORY

SET MJSI C_TYPE = ' Soundtrack'
WHERE CD NAME = ' Ol ando’;
UPDATE CD_| NVENTORY

SET MJSI C_TYPE = ' Bl ues'
WHERE CD_NAME = ' Fundanental ';

Updating Values from a SELECT Statement

In the “Inserting Values from a SELECT Statement” section earlier in this chapter, | told
you that you can use a SELECT statement in place of the VALUES clause. Y ou can also use
a SELECT statement in the SET clause of the UPDATE statement. The SELECT statement
returns the value that is defined in the <value expression> portion of the set clause expression.
In other words, the SELECT statement is added to the right of the equal sign.

Let'stake alook at a few examplesto see how this works. The following examples
are based on the original datain the CD_INVENTORY table (shown in Figure 8-5) and the
CD_INVENTORY _2 table (shown in Figure 8-6). Suppose you want to update datain the
CD_INVENTORY _2 table by using values from the CD_INVENTORY table. Y ou might
create an UPDATE statement that is similar to the following:

UPDATE CD_| NVENTORY_2
SET IN_STOCK 2 =
(SELECT AVGE | N_STOCK)
FROM CD_| NVENTORY) ;

The SELECT statement calcul ates the average of the IN_STOCK valuesin the
CD_INVENTORY table, which is 24, so the set clause expression can be interpreted as
follows: IN_STOCK_2=24. Asaresult, all IN_STOCK_2 valuesinthe CD_INVENTORY _2
table are set to 24. Of course, you probably don't want all your IN_STOCK 2 valuesto
be the same, so you can limit which rows are updated by adding a WHERE clause to the
UPDATE statement:

UPDATE CD_| NVENTORY_2
SET IN_STOCK 2 =
(SELECT AVGE | N_STOCK)
FROM CD_| NVENTORY)
WHERE CD_NAME 2 = ' Ol ando' ;

Now only the Orlando row will be updated and the IN_STOCK _2 value will be changed to 24.

www.it-ebooks.info

http://www.it-ebooks.info/

186

SQL: A Beginner's Guide

Y ou can even add a WHERE clause to the SELECT statement, as shown in the following
example:

UPDATE CD_| NVENTORY_2
SET IN_STOCK 2 =
(SELECT I N_STOCK
FROM CD_| NVENTORY
VWHERE CD_NAME = 'Ol ando')
VWHERE CD_NAME 2 = 'Ol ando';

In this case, the IN_STOCK value of 5 istaken directly from the Orlando row of the
CD_INVENTORY table and used as the <value expression> portion of the set clause expression.
Asaresult, the set clause expression can be interpreted as the following: IN_STOCK_2 = 5.
(Of course, thevalueinthe CD_INVENTORY _2 table won't change because it is aready 5,
but if it were something other than 5, it would have been updated to 5.)

Y ou can add one more layer of complexity to the UPDATE statement by modifying the SET
clause even further. For example, suppose you want to increase the value by 2 before inserting it
into the IN_STOCK _2 column. To do so, you can change the value expression to the following:

UPDATE CD_| NVENTORY_2
SET IN_STOCK 2 =
(SELECT I N_STOCK
FROM CD_| NVENTORY
WHERE CD NAME = 'Ol ando') + 2
VWHERE CD NAME 2 = ' Ol ando';

Again, the SELECT clause pullsthe value of 5 from the IN_STOCK column of the CD_
INVENTORY table, but thistime, 2 is added to the value returned by the SELECT statement,
resulting in atotal of 7. Asaresult, the new set clause expression can be represented as
follows: IN_STOCK_2 = (5) + 2. If you execute this statement, the IN_STOCK_2 value will
be changed to 7 in the Orlando row of the CD_INVENTORY _2 table.

By combining the SET clause with the WHERE clause, you can create UPDATE
statements that can calculate very specific values that can be used to modify any number of
rows and columns that you need to update. However, as with the INSERT statement, any
values that you modify must conform to the restrictions of that table. In other words, the new
values must abide by applicable data types, domains, and constraints.

Delete SQL Data

Of all the data modification statements supported by SQL, the DELETE statement is probably
the simplest. It contains only two clauses, only one of which is mandatory. The following
syntax shows you just how basic the DELETE statement is:

DELETE FROM <table name>
[WHERE <search condition>]

Asyou can see, the DELETE FROM clause requires that you specify the name of the table
(or view) from which you are deleting rows. The WHERE clause, which is similar to

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Modifying SQL Data 187

the WHERE clause in a SELECT statement and an UPDATE statement, requires that you
specify a search condition. If you don’t include a WHERE clause in your DELETE statement,
all rows are deleted from the specified table. Be sure you understand that the DELETE
statement does not delete the table itself, only rowsin the table—the DROP TABLE statement,
as described in Chapter 3, is used to remove table definitions from the database.

NOTE

SQL supports referencing views in the DELETE statement, but the actual delete is done to
rows in the base table. In nearly all implementations you cannot delete rows using views
that reference more than one base table—see your vendor documentation for specifics.

Notice in the DELETE statement that no column names are specified. Thisis because you
cannot delete individual column values from atable. Y ou can delete only rows. If you need to
delete a specific column value, you should use an UPDATE statement to set the value to null.
But you can do thisonly if null values are supported for that column.

Now let’s take alook at a couple of examples of the DELETE statement. The first example
deletes al data (all rows) from the CD_INVENTORY table, shown in Figure 8-5:

DELETE FROM CD_| NVENTORY,;

That's all thereisto it. Of course, you would use this statement only if you want to delete
all datafrom the CD_INVENTORY . Although you might run into some occasions where
it's necessary to delete every row from atable, it is more likely that you' Il want to use the
WHERE clause to specify which rows to delete. Let’s modify the statement we just looked at
to delete only rows where the MUSIC_TY PE vaueis Country:

DELETE FROM CD_| NVENTORY
VWHERE MUSI C_TYPE = ' Country';

When you execute this statement, all rows whose MUSIC_TY PE value is Country will be
deleted from the CD_INVENTORY table, which in this case isthe Patsy Cline: 12 Greatest
Hits row.

Now let’s modify this DELETE statement alittle further by including two predicatesin the
WHERE clause;

DELETE FROM CD_I NVENTORY
VWHERE MUSI C_TYPE = ' Pop'
OR PUBLI SHER = 'Independent';

This statement will delete any rowsinthe CD_INVENTORY table that includeaMUSIC _
TYPE value of Pop or a PUBLISHER value of Independent, which means that the Court and
Spark row and Orlando row will be deleted.

Asyou can see, the number of rows that are deleted from any table depends on the search
conditions defined within the WHERE clause. When a WHERE clause is hot specified, all
rows evaluate to true and are deleted from the table. The WHERE clause allows you to specify
exactly which rows should be deleted from the table.

www.it-ebooks.info

http://www.it-ebooks.info/

188 SQL: A Beginners Guide

Modifying SQL Data

Inthis Try This exercise, you will use the data modification statements discussed in this
chapter to modify datain the INVENTORY database. Y ou will use the INSERT statement to
add data, the UPDATE statement to modify data, and the DELETE statement to remove the
data from the database. Because you will be working only with data, you will not affect the
underlying structure of the tables. Y ou can download the Try_This 08.txt file, which contains
the SQL statements used in this exercise.

Step by Step

1. Open the client application for your RDBM S and connect to the INVENTORY database.

2. First you will add a new company to the CD_LABEL Stable. The company is DRG
Records and it will haveaLABEL _ID value of 837. Enter and execute the following SQL
Statement:

| NSERT | NTO CD_LABELS
VALUES (837, 'DRG Records');

One row will be added to the CD_LABELS table.

3. Now let’s add anew CD to the COMPACT_DISCStable. The CD is named Ann Hampton
Callaway, which hasa COMPACT_DISC _ID value of 116. There are 14 of these CDsin
stock and the LABEL _ID value should be 836. (Thisis not the correct LABEL _ID value,
but we will use it here for the purposes of this exercise.) Enter and execute the following
SQL statement:

I NSERT | NTO COMPACT_DI SCS
VALUES (116, 'Ann Hanpton Cal |l away', 836, 14);

Onerow will be added to the COMPACT _DISCStable. The LABEL_ID value of 836
represents Sarabande Records.

4. Now let’sinsert another row into the COMPACT_DISCS table; only thistime, your
INSERT statement will specify the column names of the target table. Y ou will insert a CD
named Rhythm Country and Blues. The new row will containa COMPACT_DISC ID vaue
of 117, aLABEL _ID value of 832 (MCA Records), and an IN_STOCK value of 21. Enter
and execute the following SQL statement:

I NSERT | NTO COMPACT_DI SCS
(COWPACT_DISC I D, CD TITLE, LABEL_ID, I N_STOCK)
VALUES (117, 'Rhythm Country and Blues', 832, 21);

Onerow will beinserted into the COMPACT_DISCS table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Modifying SQL Data 189

5. After you enter the Rhythm Country and Blues row, you realize that the IN_STOCK value
isincorrect, and you want to update that value to 25. Enter and execute the following SQL
statement:

UPDATE COMPACT_DI SCS
SET I N_STOCK = 25
WHERE COVPACT DISC ID = 117;

TheIN_STOCK value of the Rhythm Country and Blues row will be changed to 25.

6. You now realize that you entered thewrong LABEL _ID value for the Ann Hampton Callaway
row. However, you want to be able to modify the existing value by specifying the company
name rather than the LABEL _ID value. The company nameis DRG Records, which you
added to the CD_LABEL Stablein step 2. Enter and execute the following SQL statement:

UPDATE COVPACT_DI SCS
SET LABEL_ID =
(SELECT LABEL_ID
FROM CD_LABELS
WHERE COWMPANY_NAME = ' DRG Records')
VWHERE COMPACT DI SC I D = 116;

In this statement, you used a SELECT statement to pull the LABEL _ID value from the
CD_LABELS table. The statement returned a value of 837. The value 837 was then used
asthe LABEL_ID value for the COMPACT_DISCS table. Note that you would not have
been able to enter the value of 837 into the LABEL _ID column of the COMPACT_DISCS
tableif it did not already exist in the CD_LABEL S table. Not only is this because

a SELECT statement was used to pull that value, but also because the LABEL_ID column
inthe COMPACT_DISCStableisaforeign key that referencesthe CD_LABELStable. As
aresult, the value must exist in the referenced table before it can be added to

the referencing table. See Chapter 4 for more information about foreign keys.

7. Now let’stake alook at the data that you' ve entered and updated. Enter and execute the
following SQL statement:

SELECT *
FROM COVPACT DI SCS
WHERE COVPACT DI SC_I D

OR COVPACT DI SC I D

The SELECT statement requests data from all columns in the COMPACT_DISCS table,
but only for those rows that have a COMPACT_DISC_ID value of 116 or 117. Y our query
results should include two rows. Verify that the information in those rowsis correct. The
Ann Hampton Callaway row should have aLABEL _ID value of 837 and an IN_STOCK
value of 14, and the Rhythm Country and Blues row should have aLABEL _ID value of
832 and an IN_STOCK value of 25.

116
117,

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

190

SQL: A Beginner's Guide

8. Now let’s delete the two rows you added to the COMPACT_DISCS table. Enter and execute
the following SQL statement:

DELETE FROM COVPACT_DI SCS

WHERE COVPACT DI SC ID = 116
OR COVPACT DISC ID = 117;

The Ann Hampton Callaway row and the Rhythm Country and Blues row should have been
deleted from the COMPACT_DISCStable.

9. Next delete the row you added to the CD_LABEL Stable. Enter and execute the following
SQL statement:

DELETE FROM CD_LABELS
WHERE LABEL_I D = 837,

The DRG Records row should have been deleted from the CD_LABEL Stable.

NOTE

If you had tried to delete this row before deleting the Ann Hampton Callaway row in
the COMPACT_DISCS table, you would have received an error because the LABEL_ID
value in COMPACT_DISCS references the DRG Records row in CD_LABELS. The Ann
Hampton Callaway row had to be deleted first, or the LABEL_ID value had to be
changed to another value that conformed to the foreign key constraint.

10. Close the client application.

Try This Summary

Inthis Try This exercise, you added one row to the LABEL_ID table and two rows to the
COMPACT_DISCS table. Y ou then updated the two rows in the COMPACT_DISCS table.
After that, you deleted all the rows that you created. By the time you finished the exercise,
the INVENTORY database should have been the same as when you began. As you can see,
modifying data within tables is a very straightforward process; however, individual data
modification statements can become far more complex. When you learn more advanced
techniques for querying data, you’'ll be able to refine your statements to an even greater
degree, providing you with more flexibility in inserting, updating, and deleting data.

Chapter 8 Self Test

1. Which SQL statement should you use to add data to a table?
A SELECT
B INSERT
C UPDATE
D DELETE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Modifying SQLData 191

. What two clauses are mandatory in an INSERT statement?

. Inwhich clause in the INSERT statement do you identify the table that will receive

the new data?

. You create the following INSERT statement to add data to the PERFORMING_ARTISTS

table:
I NSERT | NTO PERFORM NG_ARTI STS VALUES (12, 'Frank Sinatra');

The PERFORMING_ARTISTS table includes three columns. What will happen when you
try to execute this statement?

5. What information must you specify in the VALUES clause of an INSERT statement?

10.
11.
12.

13.

. What requirements must be met by the valuesin aVALUES clause?
. You're creating an INSERT statement to insert datainto the ARTIST_TYPEStable. The

table includes only two columns: ART _ID and TYPE_NAME. Y ou want to insert one row
that includes the ART _ID value of 27 and the TY PE_NAME value of Gospel. Which SQL
statement should you use?

. You're creating an INSERT statement that inserts values taken from another table. Which

type of statement or clause can you use in place of the VALUES clause to pull datafrom
that other table?

A UPDATE
B SET

C SELECT
D WHERE

. Which statement should you use to modify existing datain one or more rowsin atable?

A SELECT
B INSERT
C UPDATE
D DELETE
Which clauses in an UPDATE statement are mandatory?
What is the purpose of the WHERE clause in an UPDATE statement?

You're creating an UPDATE statement to update datain the PERFORMING_ARTISTS
table. Y ou want to update the ART_ID vauein the row that contains the PERF_ART _ID
value of 139. The new ART _ID vaueis 27. Which SQL statement should you use?

You're creating an UPDATE statement to update datain the PERFORMING_ARTISTS
table. Y ou want to update the ART _ID value of every row to 27. Which SQL statement
should you use?

www.it-ebooks.info

http://www.it-ebooks.info/

192 SQL: A Beginner's Guide

14. You're updating two columnsin the CD_INVENTORY table. Y ou want to change the
PUBLISHER value to MCA Records and you want to double the IN_STOCK value. Which
SET clause should you use?

15. You're creating an UPDATE statement that includes a SET clause with one value expression.
Y ou want the value expression to pull avalue from another table in the database. Which
statement or clause can you use as a value expression to choose data from another table?

A SELECT
B WHERE
C UPDATE
D INSERT
16. Which clausein a DELETE statement is required?

17. Which statement or clause do you use in a DELETE statement to specify which rows are
deleted from atable?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Using Predicates

193

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

194

SQL: A Beginner's Guide

Key Skills & Concepts

Compare SQL Data

Return Null Values

Return Similar Values

Reference Additional Sources of Data
Quantify Comparison Predicates

U p to this point in the book, | have presented a great deal of information about various
aspects of database objects and the data they store. In relation to this, | discussed querying
data (Chapter 7) and modifying data (Chapter 8). Now | want to take a step back and focus
on one aspect of these discussions: the WHERE clause. The WHERE clause, as you might
recall, allows you to specify a search condition that filters out those rows that you do not want
returned by a SELECT statement or modified by an UPDATE or DELETE statement. The
search condition includes one or more predicates that each state a fact about any row that is
to be returned or modified. SQL supports a number of types of predicates, al of which allow
you to test whether a condition is true, false, or unknown. In this chapter, | focus on those
predicates that are most commonly used by SQL programmers, and | provide examples of how
they’re used to view and modify datain an SQL database.

Compare SQL Data

Thefirst types of predicates that | plan to discuss are those that compare data. These
predicates, like any predicate, are included in the WHERE clause. Y ou can include a WHERE
clausein a SELECT, UPDATE, or DELETE statement, and in each case, the clause can
contain one or more comparison predicates.

Each predicate in the WHERE clause (whether a comparison predicate or another type) is
evaluated on an individual basis to determine whether it meets the condition defined by that
predicate. After the predicates are evaluated, the WHERE clause is evaluated as awhole. The
clause must evaluate to true in order for arow to be included in a search result, be updated,
or be deleted. If the clause evaluates to false or unknown, the row is not included or is not
modified. For acomplete discussion of how predicates and the WHERE clause are evaluated,
see Chapter 7.

A comparison predicate is atype of predicate that compares the valuesin a specified
column to a specified value. A comparison operator is used to compare those values. Y ou have
already seen anumber of comparison operators (and, subsequently, comparison predicates)
throughout the book. Table 9-1 lists the six comparison operators supported by SQL and
provides an example of each one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 Using Predicates

Operator Symbol Example

Equal to = IN_STOCK =47
Not equal to < IN_STOCK <> 47
Less than < IN_STOCK < 47
Greater than > IN_STOCK > 47
Less than or equal to <= IN_STOCK <= 47
Greater than or equal to >= IN_STOCK >= 47

Table 9-1 SQL Comparison Operators

Y ou no doubt recognize several of these operators, and even those you don’t recognize
should be fairly self-explanatory. But let’s take a quick look at the examplesin Table 9-1 to

make sure you understand how a comparison predicate works. In the first row in the table (the
Equal to row), the example predicateis IN_STOCK = 47. If thiswere to appear in a WHERE
clause, it would look like the following:

VHERE | N_STOCK = 47

IN_STOCK isthe name of the column in the table identified in the statement that contains
the WHERE clause. The equals sign (=) is the comparison operator that is used to compare the
valuesinthe IN_STOCK column to the value to the right of the equals sign, which in this case
is47. Therefore, for arow to be evaluated to true, the IN_STOCK value for that row must be 47.

All six comparison operators work in the same way. In each case, the WHERE clause must

evaluate to true in order for the row to be returned in the query results or to be modified.
Whileit istraditiona to place the column name to the |eft of the comparison operator

and the constant value to the right, you can reverse them and form an equivalent statement,

assuming you also adjust the comparison operator if needed. For example, the following two

WHERE clauses are logically identical, each selecting rows with IN_STOCK values greater

than 5:

WHERE | N_STOCK > 5
WHERE 5 < | N_STOCK

NOTE

As you learned in Chapter 7, you can combine predicates by using the AND keyword
or the OR keyword to join together two or more predicates in a WHERE clause. You
can also use the NOT keyword to create an inverse condition for a particular predicate.
Remember, no matter how many predicates are included in the WHERE clause, the
clause must still evaluate to true for a given row to be selected.

Now that you have an overview of the six types of comparison predicates, let’s take alook
at some examples. These examples are based on Figure 9-1, which shows the data stored in the

CDS_ON_HAND table.

www.it-ebooks.info

195

http://www.it-ebooks.info/

196 SQL: A Beginner's Guide

CD_TITLE: COPYRIGHT:| RETAIL_PRICE: INVENTORY:
VARCHAR(60) INT NUMERIC(5,2) INT
Famous Blue Raincoat 1991 16.99 6

Blue 1971 14.99 26

Court and Spark 1974 14.99 18

Past Light 1983 15.99 2

Kojiki 1990 15.99 5

That Christmas Feeling 1993 10.99 3

Patsy Cline: 12 Greatest Hits 1988 16.99 25

Figure 9-1 Comparing data in the CDS_ON_HAND table

In the first example we'll look at, the WHERE clause uses an equal to operator to compare
the valuesin the CD_TITLE column with one of the CD titles:

SELECT CD_TI TLE, COPYRI GHT
FROM CDS_ON_HAND
WHERE CD TI TLE = ' Past Light';

This statement will return one row with only two values (one for each column specified in the
SELECT clause), as shown in the following query results:

CD_TI TLE COPYRI GHT

Past Li ght 1983

Now let’s change this SELECT statement a bit. Instead of using the equal to operator, I'll
use the not equal to operator:

SELECT CD_TI TLE, COPYRI GHT
FROM CDS_ON_HAND
WHERE CD TITLE <> ' Past Light';

When you execute this statement, six rows are returned:

CD _TITLE COPYRI GHT
Fanmous Bl ue Rai ncoat 1991
Bl ue 1971
Court and Spark 1974
Koj i ki 1990
That Christmas Feeling 1993

Patsy Cine: 12 Geatest Hits 1988

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 Using Predicates

Notice that all rows except the Past Light row are included in the query results. In this case, the
WHERE clause evaluates to true only when the CD_TITLE value does not equal Past Light.
Note, however, that if arow contained anull value for CD_TITLE, that row would not appear
in either of the prior result sets. Keep in mind that a comparison with a null value will always
evaluate to unknown (null)—the DBM S cannot tell what it is either equal to or not equal to
because the value is unknown. Asyou will see later in the “Return Null Values’ section, there
are specia operators used for dealing with null values.

Now let’stake alook at the less than operator and the greater than operator. In the next
example, | combine two comparison predicates together by using the AND keyword:

SELECT CD_TI TLE, | NVENTORY
FROM CDS_ON_HAND

WHERE | NVENTORY > 2
AND | NVENTORY < 25:

Asyou can see, the rows returned by this SELECT statement must contain an INVENTORY
value between 2 and 25. If you execute this statement, four rows are returned:

CD TITLE | NVENTORY
Famous Bl ue Rai ncoat 6

Court and Spark 18

Koj i ki 5

That Christnmas Feeling 3

When defining the predicates in a WHERE clause, you' re not limited to using only
one column. For instance, if you want to select rows based on both the INVENTORY and
RETAIL_PRICE column values, you can modify the last SELECT statement as shown in the
following example:

SELECT CD_TI TLE, | NVENTORY
FROM CDS_ON_HAND

WHERE | NVENTORY > 2
AND | NVENTORY < 25
AND RETAI L_PRI CE <> 16. 99;

Because the conditions are connected using AND, any row returned in the query results must
meet al three conditions defined in the WHERE clause. As aresult, only three rows are
returned when you execute this statement:

CD_TI TLE I NVENTORY
Court and Spark 18
Koj i Ki 5

That Christnas Feeling 3

Notice that the query results do not include the RETAIL_PRICE column. That is because this
column is not specified in the SELECT clause. Even so, you can still use that column in a
predicate in the WHERE clause to define a search condition.

www.it-ebooks.info

197

http://www.it-ebooks.info/

198

SQL: A Beginner's Guide

Now let’stake alook at the less than or equal to operator and the greater than or equal to
operator. In the following example, both operators are used to limit the rows returned to those
with a COPY RIGHT value that falls within the range of 1971 through 1989.

SELECT CD_TI TLE, COPYRI GHT
FROM CDS_ON_HAND

WHERE COPYRI GHT >= 1971
AND COPYRI GHT <= 1989;

This statement will return slightly different results than what would be returned if you simply
used the greater than and less than operators. By using the greater than or equal to operator
and the less than or equal to operator, values that equal the specified value are also returned, as
shown in the following query results:

CD_TI TLE COPYRI GHT
Bl ue 1971
Court and Spark 1974
Past Li ght 1983

Patsy Cine: 12 Geatest Hits 1988

Notice that the Blue row includes a COPY RIGHT value of 1971. Thiswould not have been
included if you had merely used the greater than operator.

Up to this point, the examples I’ ve shown you have al been based on SELECT statements.
However, you can add a WHERE clause to an UPDATE statement or a DELETE statement.
Suppose you want to increase the INVENTORY value for the That Christmas Feeling row. Y ou
can use the following UPDATE statement:

UPDATE CDS_ON_HAND
SET I NVENTORY = 10
VWHERE CD _TI TLE = ' That Christnas Feeling';

When you execute this statement, the INVENTORY valueisincreased to 10 for the That
Christmas Feeling row, but not for any other row because the WHERE clause eval uates to
true only for that row. Y ou could have just as easily added this WHERE clauseto aDELETE
statement, in which case the That Christmas Feeling row would have been del eted.

Aswith the WHERE clause in a SELECT statement, you can combine two or more
predicates to form a search condition:

UPDATE CDS_ON_HAND
SET | NVENTORY = 3

WHERE CD TI TLE = ' That Christnas Feeling'
AND COPYRI GHT = 1993;

When you specify the AND keyword, both predicates must evaluate to true in order for the
WHERE clause to evaluate to true. If you specify the OR keyword, instead of AND, then only
one of the predicates must evaluate to true for the row to be selected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Using Predicates 199

Using the BETWEEN Predicate

Strictly speaking, the BETWEEN predicate is not a comparison predicate, at least not asit is
presented in the SQL:2006 standard. It is, however, so similar in function to a combination
of the greater than or equal to operator and the less than or equal to operator that it’s worth
discussing here.

The BETWEEN predicate is used in conjunction with the AND keyword to identify a
range of values that can be included as a search condition in the WHERE clause. Vauesin the
identified column must fall within that range in order to evaluate to true. When you use the
BETWEEN clause, you must specify the applicable column, the low end of the range, and the
high end of the range. The following example (which is based on the CDS_ ON_HAND table
in Figure 9-1) specifies arange from 14 through 16:

SELECT CD _TI TLE, RETAIL_PRI CE
FROM CDS_ON_HAND
WHERE RETAI L_PRI CE BETWEEN 14 AND 16;

The RETAIL_PRICE value for each selected row must fall within that range, including the end
points. If you execute this statement, only four rows are included in the query results:

CD _TITLE RETAI L_PRI CE
Bl ue 14.99
Court and Spark 14. 99
Past Li ght 15. 99
Koj i ki 15.99

Now let’stake alook at aquery similar to the one in the last example, only thistime using
comparison predicates rather than the BETWEEN predicate:

SELECT CD _TI TLE, RETAIL_PRI CE
FROM CDS_ON_HAND

WHERE RETAIL_PRI CE >= 14
AND RETAI L_PRI CE <= 16;

Notice that two predicates are used: one with the greater than or equal to operator and one with
the less than or equal to operator. This SELECT statement will produce the same query results
asthe previous SELECT statement.

Now let’s return to the BETWEEN predicate. Aswith any predicate, you can combine the
BETWEEN predicate with other predicates. In the following statement, the WHERE clause
includes aBETWEEN predicate and a comparison predicate:

SELECT CD TI TLE, RETAIL_PRI CE
FROM CDS_ON_HAND

WHERE RETAI L_PRI CE BETVEEN 14 AND 16
AND | NVENTORY > 10;

www.it-ebooks.info

http://www.it-ebooks.info/

200

SQL: A Beginner's Guide

Asaresult of both predicates, the query results can include only those rows with aRETAIL _
PRICE value that falls within the range of 14 through 16 and with an INVENTORY value
greater than 10. When you execute this query, only two rows are returned:

CD_TITLE RETAI L_PRI CE

Bl ue 14. 99
Court and Spark 14. 99

Again, you will notice that the query results don’t include the INVENTORY column even
though that column is specified in a predicate in the WHERE clause. Y ou'll also notice that
more than one column is referenced in the WHERE clause.

In addition to what you' ve seen so far with the BETWEEN predicate, you can a so use the
clause to specify the inverse of acondition. Thisis done by using the NOT keyword within the
predicate. For example, suppose you change the last example to the following:

SELECT CD TI TLE, RETAIL_PRI CE
FROM CDS_ON_HAND
WHERE RETAI L_PRI CE NOT BETWEEN 14 AND 16;

The rows returned in the query result will include all rows that do not have aRETAIL_PRICE
value within the range of 14 through 16. When you execute the statement, three rows are
returned:

CD_TITLE RETAI L_PRI CE
Fanobus Bl ue Rai ncoat 16. 99
That Christnas Feeling 10. 99

Patsy Cine: 12 Geatest Hits 16. 99

Notice that all values within the specified range have been excluded from the query resullts.
If you find the NOT keyword confusing (as many people do), you can write an equivalent
WHERE clause using the OR keyword and the greater than and |ess than operators as follows:

WHERE RETAIL_PRICE < 14
OR RETAI L_PRI CE > 16;

Return Null Values

Asyou might recall from Chapter 4, anull value is used in place of avalue when that value

is undefined or not known. A null indicates that the value is absent. Thisis not the same asa
zero, ablank, or adefault value. By default, SQL allows nulls to be used in place of regular
values (although you can override the default by including aNOT NULL constraint in your
column definition). In those cases where null values are permitted, you might find it necessary
to specify that null values be returned when you query atable. For this reason, SQL provides
the NULL predicate, which allows you to define search conditions that return null values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Using Predicates 201

The NULL predicate is very straightforward to implement. Used in conjunction with the
IS keyword, the predicate is added to a WHERE clause in the same way any other predicate is
added, and it applies only to null values that might exist in the column that you query. The best
way to illustrate thisis through the use of examples. In these examples, | usethe ARTISTS
BIO table, shown in Figure 9-2.

Thefirst exampleisa SELECT statement that returns rows with aPLACE_OF BIRTH
value of null:

SELECT *
FROM ARTI STS_BI O
WHERE PLACE_OF_BI RTH I'S NULL;

The statement returns all columns from the ARTISTS _BIO table; however, it returns only two
rows, as you can see in the following query results (your results may look different depending
on how your SQL client application displays null values):

PERFORVER_NAME

W I liam Acker man
Bi ng Croshy

PLACE_OF BIRTH YEAR BORN

The fact that the YEAR_BORN column contains a null value for the William Ackerman
row has no bearing on the fact that aNULL predicate isused. The NULL predicatein this
case identifiesthe PLACE_OF_BIRTH column only, not the YEAR_BORN column. Y ou can,
however, replace the PLACE_OF_BIRTH column in the predicate with the Y EAR_BORN
column, in which case the rows returned will be those with aYEAR_BORN value of null.

PERFORMER_NAME:| PLACE_OF_BIRTH: YEAR_BORN:
VARCHAR(60) VARCHAR(60) INT
Jennifer Warnes Seattle, Washington, USA 1947
Joni Mitchell Fort MacLeod, Alberta, Canada 1943
William Ackerman | NULL NULL
Kitaro Toyohashi, Japan NULL
Bing Crosby NULL 1904
Patsy Cline Winchester, Virginia, United States 1932
Jose Carreras Barcelona, Spain NULL
Luciano Pavarotti Modena, Italy 1935
Placido Domingo Madrid, Spain 1941

Figure 9-2 Returning null values from the ARTISTS_BIO table

www.it-ebooks.info

http://www.it-ebooks.info/

202

SQL: A Beginner's Guide

According to the SQL :2006 standard, you can also specify both columnsin the NULL
predicate, as shown in the following example:

SELECT *
FROM ARTI STS_BI O
WHERE (PLACE_OF_BI RTH, YEAR BORN) |S NULL;

When you include both columns, the PLACE_OF BIRTH column and YEAR_BORN
column must both return null valuesin order for arow to be returned, which in the case of the
ARTISTS BIO table would only be one row.

NOTE

Although the SQL standard permits you to specify multiple columns in the NULL
predicate, many implementations do not support this. Instead you must specify two
NULL predicates connected with the AND keyword.

Asan alternative to including both columnsin one predicate, you can write your SELECT
statement as follows:

SELECT *
FROM ARTI STS_BI O

WHERE PLACE_OF BIRTH I'S NULL
AND YEAR BORN |'S NULL;

If you execute this statement, you' |l receive the following query results:

PERFORVER_NAME PLACE_OF_BI RTH YEAR BORN

W Iliam Ackerman NULL NULL

SQL supports another feature in the NULL predicate. Y ou can use the NOT keyword to
find the inverse results of the predicate. For example, suppose you want to return all rows
that include an actual valuein the PLACE_OF BIRTH column, rather than anull value. Y our
statement might look like the following:

SELECT *
FROM ARTI STS_BI O
VWHERE PLACE_OF _BIRTH I'S NOT NULL;

Y our query results will now include seven rows, all of which contain valuesin the PLACE_
OF _BIRTH column:

PERFORVER_NAME PLACE_OF_BI RTH YEAR_BORN
Jenni fer Warnes Seattl e, Washington, USA 1947
Joni M tchell Fort MaclLeod, Al berta, Canada 1943
Kitaro Toyohashi, Japan NULL
Patsy dine W nchester, Virginia, USA 1932

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Using Predicates 203

Jose Carreras Bar cel ona, Spain NULL
Luci ano Pavarotti Modena, Italy 1935
Pl aci do Doni ngo Madri d, Spain 1941

Notice that null values can still exist in other columns. Because only the PLACE_OF BIRTH
column is specified in the NULL predicate, only that column must contain avalue in order for
arow to be returned.

As with the predicates we looked at earlier in the chapter, you can combine the NULL
predicate with other types of predicates. For example, you can modify the last example to limit
the YEAR_BORN valuesto certain years, as shown in the following example:

SELECT *
FROM ARTI STS_BI O

WHERE PLACE_OF BIRTH I'S NOT NULL
AND YEAR BORN > 1940;

Now any rows returned must include avalue in the PLACE_OF BIRTH column and the
YEAR_BORN value must be greater than 1940. If you execute this query, you'll receive the
following results:

PERFORMER _NAMVE PLACE_OF BI RTH YEAR_BORN
Jenni fer Warnes Seattle, Washington, USA 1947
Joni M tchell Fort MaclLeod, Al berta, Canada 1943
Pl aci do Domingo Madrid, Spain 1941

Asyou can see, only three rows are returned. No rows with aPLACE_OF _BIRTH value of
null are returned because null evaluates to unknown, and only WHERE clauses that evaluate to
true can be included in the query results.

Return Similar Values

If any predicate can be fun, it isthe LIKE predicate. The LIKE predicate provides aflexible
environment in which you can specify values that are only similar to the values stored in the
database. Thisis particularly advantageous if you know only part of avalue but still need to
retrieve information based on that value. For example, suppose you don’t know the entire title
of aCD, but you do know part of that title. Or perhaps you know only part of a performer’s
name. By using the LIKE predicate, you can ask for values that are similar to what you do
know and from those results determine if the information you need is there.

Before we take alook at the LIKE predicate itself, let’slook at two symbols used within
the predicate. The LIKE predicate uses two specia characters, the percentage sign (%) and the
underscore (_), to help define the search condition specified in the predicate. The percentage
sign represents zero or more unknown characters, and the underscore represents exactly one
unknown character. Y ou can use these characters at the beginning of avalue, in the middle, or
at the end, and you can combine them with each other as necessary. The way in which you use
these two characters determines the type of datathat is retrieved from the database.

www.it-ebooks.info

http://www.it-ebooks.info/

204

SQL: A Beginner's Guide

Sample Value

Possible Query Results

IJo/O/

Jennifer Warnes, Joni Mitchell, Jose Carreras

“%Spark’ Court and Spark

%Blue%’ Famous Blue Raincoat, Blue, Blues on the Bayou
“%Cline%Hits’ Patsy Cline: 12 Greatest Hits

194/ 1940, 1942, 1947

19 "’ 1900, 1907, 1938, 1963, 1999

‘ue' Blue

‘9_01 90201, 91401, 95501, 99301, 99901

‘9 3% 9032343, 903, 95312, 99306, 983393300333

Table 9-2 Using Special Characters in a LIKE Predicate

Table 9-2 provides a number of examples of how these special characters can beusedin a

LIKE predicate.

Asyou can see, the percentage sign and underscore special characters provide a great deal
of flexibility and allow you to query awide range of data.

NOTE

Some vendor implementations can be configured to be case insensitive for data
comparisons, meaning that lowercase letters and uppercase letters compare as the
same. In fact, this is the default behavior for SQL Server and Sybase; however, Oracle
is always case sensitive. Looking at Table 9-2, uppercase letters in the Sample Value
column can be changed to lowercase with the same results whenever the DBMS is
configured as case insensitive. For example, a LIKE predicate value of %spark will still
select the Court and Spark row in a case-insensitive implementation.

Now that you have an understanding of the special characters, let’stake alook at the LIKE
predicate as awhole. The LIKE predicate includes the column name, the LIKE keyword, and a
value enclosed in a set of single quotation marks, which is then enclosed in a set of parentheses
(the parentheses are optional in most vendor implementations). For example, the following
WHERE clause includes one LIKE predicate:

WHERE CD I D LIKE (' %1')

The predicate includes the CD_ID column, the LIKE keyword, and a value of %01. Only
rows that contain the correct value in the CD_ID column are returned in the query results.
The CD_ID column is part of the CDS table, which is shown in Figure 9-3. | will be using
this table for the examples in this section. Notice that, based on the LIKE predicate defined
in the preceding WHERE clause, only one row can be returned by this clause, the row with
aCD_ID value of 99301.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Using Predicates 205

CD_ID: | CD_TITLE:
INT VARCHAR(60)

99301 Famous Blue Raincoat

99302 | Blue

99303 | Court and Spark

99304 | Past Light

99305 | Kojiki

99306 | That Christmas Feeling

99307 Patsy Cline: 12 Greatest Hits

Figure 9-3 Returning similar values from the CDS table

Now let’stake alook at afew examples of SELECT statements that include aLLIKE
predicate. Suppose you want to find any CDs that contain the word Christmasin the title. Y ou
can create the following SELECT statement to query the CDS table:

SELECT *
FROM CDS
VWHERE CD_TI TLE LIKE (' %Christmas%);

Y our query results will include only one row:

CDID CD TITLE

99306 That Christnas Feeling

If you had included only one percentage sign, no rows would have been returned. For
example, if you eliminated the first percentage sign, your SQL implementation would have
interpreted this to mean that the value must begin with the word Christmas, which it does not.
The same istrue for the other percentage sign. If you had eliminated that, your implementation
would have assumed that Christmas must be the last word in the character string. In addition,
if no percentage signs were used, no rows would have been returned because no values would
have matched Christmas exactly.

You can aso add the NOT keyword to a LIKE predicate if you want all rows returned
except those specified by the predicate. Take, for instance, the last example. If you add the
NOT keyword, it will look like the following:

SELECT *
FROM CDS
VWHERE CD_TI TLE NOT LIKE (' %Christmas%);

www.it-ebooks.info

http://www.it-ebooks.info/

206

SQL: A Beginner's Guide

Thistime, your query results include al rows that do not include the word Christmas.

CDID CD TITLE

99301 Fanous Bl ue Rai ncoat

99302 Bl ue

99303 Court and Spark

99304 Past Light

99305 Koj i ki

99307 Patsy Cline: 12 Geatest Hits

Notice that the That Christmas Feeling row is now among the missing.

Y ou can aso combine one LIKE predicate with another LIKE predicate. Suppose, for
example, you still want to exclude the Christmas value, but you want to include the Blue
value, as shown in the following example:

SELECT *
FROM CDS

VWHERE CD_TI TLE NOT LIKE (' %Christmas%)
AND CD_TI TLE LIKE (' %8l ue%);

The WHERE clause in this SELECT statement eliminates any rows that have the word
Christmas appearing anywhereinthe CD_TITLE value. In addition, the CD_TITLE vaue
must include the word Blue. As aresult, only two rows are returned.

CDID CD TITLE

99301 Fanpus Bl ue Rai ncoat
99302 Bl ue

But what happens if the CD title includes both words? For example, Elvis Presley’s Blue
Christmasis now available on CD. The AND keyword used to connect the predicates means
that both predicates must be true in order for arow to be returned. Even if a Blue Christmas
row existed, it would not be included in the query results because the first predicate (the NOT
LIKE one) would evaluate to false.

Using Predicates in SQL Statements

Before we move on to other predicates, | think it's a good idea to review those predicates

that have already been discussed. These include the six types of comparison predicates, the
BETWEEN predicate, the NULL predicate, and the LIKE predicate. In this Try This exercise,
you will try anumber of these predicates through the use of SELECT statements that will
include the appropriate WHERE clauses. Y ou will be querying tables that you created in the
INVENTORY database. Because you will be using only SELECT statements, you won't be
modifying the tables or the database structure in any way. You'll ssmply request data based on
the predicates that you define. Y ou can download the Try_This_09.txt file, which contains the
SQL statements used in this exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Using Predicates 207

Step by Step
1. Open the client application for your RDBMS and connect to the INVENTORY database.

2. Inthefirst statement you create, you' Il query the MUSIC_TY PES table to return the names
of those rows whose TYPE_ID valueisequal to 11 or 12. Enter and execute the following
SQL statement:

SELECT TYPE_ID, TYPE NAME
FROM MUSI C_TYPES
WHERE TYPE_ID = 11
OR TYPE_ID = 12;

The statement should return two rows, one for Blues and one for Jazz. Notice that the OR
keyword is used to indicate that either value is acceptable.

3. Now you'll query the ARTISTS table and look for artists other than Patsy Cline and Bing
Crosby. Enter and execute the following SQL statement:

SELECT ARTI ST_NAME, PLACE_OF_BI RTH
FROM ARTI STS

VWHERE ARTI ST_NAME <> 'Patsy dine'
AND ARTI ST_NAME <> 'Bing Croshy';

Y our query should return 16 rows and should not include the Patsy Cline row or the Bing
Crosby row.

4. Now let’s combine a couple of comparison predicates to create a different sort of search
condition. In this statement, you’ Il again query the ARTISTS table, but you'll request only
those rows whose ARTIST _ID values lie between 2004 and 2014 (excluding the endpoints).
Enter and execute the following SQL statement:

SELECT ARTI ST_I D, ARTI ST_NAVE
FROM ARTI STS
WHERE ARTI ST_I D > 2004
AND ARTI ST_I D < 2014,

Y our query should return nine rows.

5. Now let’s modify the SELECT statement that you just executed. Y ou should use a
BETWEEN predicate rather than the two comparison predicates. Enter and execute the
following SQL statement:

SELECT ARTI ST_I D, ARTI ST_NAME
FROM ARTI STS
WHERE ARTI ST_| D BETVEEN 2004 AND 2014,

Y ou should now see 11 rows, rather than the 9 that were returned in the previous step
because BETWEEN aways includes the endpoints. Had you used the greater than or equal

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

208

SQL: A Beginner's Guide

to operator and the less than or equal to operator in the last step, your query results would
have been the same as in this step.

. Now let’s query the ARTISTS table once more, only thistime we'll use the NULL

predicate. Enter and execute the following SQL statement:

SELECT *
FROM ARTI STS
WHERE PLACE_OF_BI RTH I'S NULL;

Y our query will return no results because the PLACE_OF_BIRTH column contains no null
values.

. Let’'stry the same query asin the last step, only thistime we' Il add the NOT keyword to the

NULL predicate. Enter and execute the following SQL statement:

SELECT *
FROM ARTI STS
WHERE PLACE_OF_BI RTH IS NOT NULL;

Y our query should now return every row in the table (18 in all).

. Inthe next statement, you will use the LIKE predicate to find CD titles that include the

word Best or the word Greatest. Y our predicate will reference the CD_TITLE column of the
COMPACT_DISCStable. Enter and execute the following SQL statement:

SELECT CD TITLE, | N_STOCK
FROM COMPACT_DI SCS
WHERE CD TITLE LIKE (' %G eat est %)
OR CD TITLE LIKE (' %Best%);

Y our query should return three rows. In all those rows, the CD_TITLE value should contain
the words Greatest or Best.

. Next you'll modify the statement in the previous step to include the NOT keyword in

both predicates. Y ou should also change the OR keyword to AND. Enter and execute the
following SQL statement:

SELECT CD_TI TLE, | N_STOCK
FROM COVPACT_DI SCS
VWHERE CD_TI TLE NOT LI KE (' % eatest %)
AND CD_TI TLE NOT LIKE (' 9%Best%);

Y our query results should now include 12 rows. If you had not changed the OR keyword to
AND, your results would have included all 15 rows. Thisis because the statement would
always evaluate to true—the first predicate would evaluate to true for arow containing
Greatest; the second predicate would evaluate to true for arow containing Best; and both
predicates would evaluate to true for any other row.

10. Close the client application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Using Predicates 209

Try This Summary
Inthis Try Thisexercise, you created a number of SELECT statements that included various
predicates. The predicates were contained in WHERE clauses that were part of the SELECT
statements; however, these clauses could also have been part of UPDATE and DELETE
statements. As you move through the rest of this chapter, you will learn about other predicates
and how they can be used in various types of statements. These predicates can be used
in conjunction with the ones |’ ve already discussed or used by themselves to create more
complex search conditions and return more precise results.

Reference Additional Sources of Data

SQL supports several types of predicates that allow you to reference sources other than the
main table that you're querying or modifying. As aresult, you can create search conditions
that compare data between tables in order to determine which rows should be included in your
query results, which rows should be updated, or which ones deleted. In this section, | look at
two important predicates that you can use to reference other tables: the IN predicate and the
EXISTS predicate.

Both predicates can use subqueries to reference data in the table being queried or modified,
or more commonly, in other tables. | first introduce the topic of subqueriesin Chapter 4. Asyou
might recall from that chapter, a subquery is an expression that is used as a component within
another expression. In its most common usage, a subquery is simply a SELECT statement
embedded within another statement. When used in a predicate, a subquery becomes part of that
predicate and consequently is embedded in the WHERE clause of a SELECT, UPDATE, or
DELETE statement. Although subqueries are discussed in detail in Chapter 12, | mention them
here because they're an integral part of the predicates I’ll be discussing in the remaining part of
this chapter. In each of these predicates, subqueries are used to reference datain other tables.
For the purposes of this chapter, | keep my examples of subqueries simple, but know that they
can be far more elaborate than what you see here, and once you complete Chapter 12, you'll be
able to apply that knowledge to the predicates you learn about in this chapter.

Using the IN Predicate
The IN predicate allows you to determine whether the values in the specified column of one
table are contained in a defined list or contained within another table. In the first case, you
specify the column name, the IN keyword, and alist of values that are compared to the values
in the specified column. In the second case, you specify the column name, the IN keyword,
and a subquery, which references the second table. In either case, if the column value matches
one of the valuesin thelist or in the subquery results, the predicate evaluates to true, and the
row isreturned in the query results.

The best way to illustrate both of these methods is through examples. However, before we
look at those, refer to the tables shown in Figure 9-4. These are the tables 1’1l be using for the
examples.

www.it-ebooks.info

http://www.it-ebooks.info/

210 SQl: A Beginner's Guide

COMPACT_DISC_INVENTORY COMPACT_DISC_ARTISTS

CD_NAME: IN_STOCK:| | TITLE: ARTIST:

VARCHAR (60) INT VARCHAR(60) VARCHAR(60)

Famous Blue Raincoat | 13 Famous Blue Raincoat Jennifer Warnes

Blue 42 Blue Joni Mitchell

Court and Spark 22 Court and Spark Joni Mitchell

Past Light 17 Past Light William Ackerman

Kojiki 6 Kojiki Kitaro

That Christmas Feeling | 8 That Christmas Feeling Bing Crosbhy

Out of Africa 29 Patsy Cline: 12 Greatest Hits Patsy Cline

Blues on the Bayou 27 After the Rain: The Soft Sounds of Erik Satie| Pascal Roge

Orlando 5 Out of Africa John Barry
Leonard Cohen The Best of Leonard Cohen
Fundamental Bonnie Raitt
Blues on the Bayou B.B. King
Orlando David Motion

Figure 9-4 Querying data from the COMPACT_DISC_INVENTORY table and the COMPACT_
DISC_ARTISTS table

As| mentioned, the first method for using the IN predicateisto definealist. Your list
should include all values that are to be compared to the values in the specified column. For
example, suppose you want to limit your query results to rows in the COMPACT _DISC
INVENTORY table that have an IN_STOCK value of 12, 22, 32, or 42. Y ou can creste a
SELECT statement that looks like the following:

SELECT CD _NAME, |N_STOCK FROM COMPACT DI SC_| NVENTORY
WHERE | N_STOCK IN (12, 22, 32, 42);

This statement returns only two rows because those are the only rows that have the correct
IN_STOCK values:

Bl ue 42
Court and Spark 22

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter @ Using Predicates 211

Asyou can see, using the IN predicate to define alist isafairly straightforward process
and a useful one when you know exactly which values you want to compare your columns to.
It also is asimpler method than defining separate predicates for each value, asin the following
example:

SELECT CD_NAME, | N_STOCK
FROM COMPACT_DI SC_| NVENTCORY

WHERE | N_STOCK = 12
OR I N_STOCK = 22
OR I N_STOCK = 32
OR I N_STOCK = 42;

This statement will return the same results as the SELECT statement in the previous
example; however, as you can see, it's much more cumbersome.

Now let’stake alook at a SELECT statement that uses a subquery in the IN predicate.
Suppose you want to create a query that returns CD names and their artists. Y ou want
your query results to include only those CDs that have more than 10 copies in stock.

If you refer back to Figure 9-4, you'll see that the COMPACT_DISC_ARTISTS table
includes the CD names and their artists. However, as you can also see, the IN_STOCK
values are stored in the COMPACT_DISC_INVENTORY table, which means you’'ll need
to reference that table in order to return the correct rows. To do so, you can create the
following SELECT statement:

SELECT TITLE, ARTIST
FROM COVPACT_DI SC_ARTI STS
WHERE TI TLE IN
(SELECT CD_NAME
FROM COVPACT_DI SC_I NVENTORY
VWHERE | N_STOCK > 10);

If you execute this statement, you' Il receive the following results:

Famous Bl ue Rai ncoat Jennifer Warnes

Bl ue Joni M tchell
Court and Spark Joni M tchell
Past Li ght W liam Acker man
Qut of Africa John Barry

Bl ues on the Bayou B.B. King

Notice that only six rows have been returned. These are the six CDs listed in the COMPACT _
DISC_INVENTORY table that have an IN_STOCK value greater than 10.

Now let’ s take a closer look at the SELECT statement in order to give you a better
understanding of how the IN predicate works. The WHERE clause contains only one predicate.
It begins with the name of the column (TITLE) whose values you want to verify. The TITLE

www.it-ebooks.info

http://www.it-ebooks.info/

212

SQL: A Beginner's Guide

column isfollowed by the IN keyword. The keyword is then followed by a subquery, which is
enclosed in parentheses. The subquery consists of the following SELECT statement:

SELECT CD_NAME
FROM COVPACT DI SC_| NVENTORY
WHERE | N_STOCK > 10

If you were to execute this statement by itself, you would receive the following results:

Famous Bl ue Rai ncoat

Bl ue
Court and Spark
Past Li ght

Qut of Africa
Bl ues on the Bayou

Each row in the query results, which are derived from the COMPACT_DISC_INVENTORY
table, contains an IN_STOCK value greater than 10. The valuesin the TITLE column of the
COMPACT_DISC_ARTISTS table are then compared against these results. Any row that
containsa TITLE value that matches one of six CD_NAME values (in the subquery results) is
included in the query results of the main SELECT statement.

NOTE

When including a subquery in an IN predicate, the SELECT clause of the subquery must
return only one column of data. If you specify more than one column in the result set or
you specify an asterisk, you will receive an error.

Like many other predicates, the IN predicate allows you to specify the inverse of a
condition by using the NOT keyword. Suppose you rewrite the SELECT statement in the last
example to include the NOT keyword in the IN predicate:

SELECT TITLE, ARTIST
FROM COVPACT_DI SC_ARTI STS
WHERE TI TLE NOT I N
(SELECT CD_NAMVE
FROM COVPACT_DI SC_| NVENTORY
WHERE | N_STOCK > 10);

Y our query results will include all those rows that were not returned by the last SELECT
statement and will exclude all those rows that were returned, as shown in the following results:

TI TLE ARTI ST
Koj i ki Kitaro
That Christnmas Feeling Bi ng Crosby
Patsy Cine: 12 Geatest Hits Patsy dine

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 Using Predicates

After the Rain: The Soft Sounds of Erik Satie Pascal Roge

Leonard Cohen The Best O Leonard Cohen
Fundanent al Bonnie Raitt
O | ando Davi d Mdtion

Asyou can see, the IN predicate is avery flexible tool for comparing valuesin a specified
column to datain other tables. You'll find this extremely useful as you learn more about
subqueries and can create more complex predicates.

Using the EXISTS Predicate

Although similar to an IN predicate, the EXISTS predicate has a slightly different focus. It is
concerned only with determining whether or not the subquery returns any rows. If it returns
one or more rows, the predicate evaluates to true; otherwise, the predicate evaluates to false.
The predicate is made up of the EXISTS keyword and a subquery. For the subquery to be of
any real value (and subsequently the EXISTS predicate itself), it should include a predicate
that matches two columns in different tables. For example, in Figure 9-4, the COMPACT _
DISC_INVENTORY table includes the CD_NAME column, and the COMPACT_DISC _
ARTISTS tableincludes the TITLE column. The two columns can be matched together to
ensure that only relevant rows are returned by the subquery. Let’stake alook at an exampleto
help clarify thisissue.

Suppose you want to retrieve rows from the COMPACT_DISC INVENTORY table so
you can determine how many Joni Mitchell CDs you have in stock. Y ou want to display only
the CD names and the number of CDsin stock. You do not want to display the artist’s name,
and you do not want to display CDs by other artists. To accomplish this, you can use the
following SELECT statement:

SELECT *
FROM COMPACT_DI SC_| NVENTORY
VHERE EXI STS
(SELECT TITLE
FROM COVPACT_DI SC_ARTI STS
WHERE ARTI ST = 'Joni Mtchell'
AND COVPACT_DI SC_| NVENTORY. CD_NAME =
COVPACT_DI SC_ARTI STS. TI TLE) ;

If you execute this statement, you’ll receive the following query results:

Bl ue 42
Court and Spark 22

The best way to understand how this statement works isto look at how individual
rows are evaluated. Asyou will learn in Chapter 12, subqueries like this one are called
correlated subqueries because the subquery is executed for each row returned in the main
SELECT statement. Because the subquery WHERE clause matches the CD_NAME value

www.it-ebooks.info

213

http://www.it-ebooks.info/

214

SQL: A Beginner's Guide

tothe TITLE value, the TITLE value in the row being evaluated (in the subquery) must
match the CD_NAME value in order for that row to be returned. For example, the first row
inthe COMPACT_DISC _INVENTORY table containsa CD_NAME value of Famous

Blue Raincoat. When thisrow is tested against the EXISTS predicate, the Famous Blue
Raincoat value is matched with the Famous Blue Raincoat value of the TITLE columnin the
COMPACT_DISC_ARTISTStable. In addition, the Joni Mitchell value is matched against
the ARTIST value for the Famous Blue Raincoat row. Because the ARTIST value is Jennifer
Warnes, and not Joni Mitchell, the search condition specified in the subquery WHERE clause
evaluates to false, so no subquery row isreturned for the Famous Blue Raincoat row. Asa
result, the WHERE clause in the main SELECT statement evaluates to false for the Famous
Blue Raincoat row of the COMPACT_DISC INVENTORY table, and the row is not included
in the query results.

This processis repeated for each row in the COMPACT_DISC_INVENTORY table. If the
WHERE clause in the subquery evaluates to true, then the EXISTS predicate evaluates to true,
which means that the WHERE clause in the main SELECT statement evaluates to true. In the
case of our last example SELECT statement, only two rows meet this criteria.

NOTE

It does not matter what columns or how many columns you specify in the SELECT clause
of the subquery in an EXISTS predicate. This type of predicate is concerned only with
whether rows are being returned, rather than the content of those rows. You can specify
any column names or just an asterisk.

The EXISTS predicate, as you might expect, allows you to test the inverse of the predicate
condition by using the NOT keyword:

SELECT *
FROM COMPACT_DI SC_|I NVENTCORY
VHERE NOT EXI STS
(SELECT TITLE
FROM COVPACT DI SC_ARTI STS
VWHERE ARTI ST = 'Joni Mtchel |’
AND COVPACT_DI SC_| NVENTORY. CD_NAME =
COMPACT_DI SC_ARTI STS. TI TLE) ;

Inthis case, all CDs except the Joni Mitchell CDs are included in the query results. This means
that, if the WHERE clause of the subquery evaluates to true (which means that the subquery
returns arow), the predicate itself evaluates to false, and no row is returned. On the other hand,
if the subquery does not return arow, the predicate evaluates to true, and the row is returned in
the query results of the main SELECT statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Using Predicates 215

Ask the Expert

Q: vou've provided examplesthat show that thereis often morethan one way to achieve
the same outcome. How do you know which option to select when you'rewriting an
SQL statement?

A: vou'll find that, asyou learn more about SQL programming and gain a better understanding
of the nuances of each statement, there will often be more than one way to achieve the
same results. In these cases, your choice of methods will often depend on which statement
isthe simplest to write or which one performs the best in a particular SQL implementation.
Asyour understanding of SQL grows, so too will your ability to choose the method that’s
best for your situation. In many cases, the difference between one method and another
will not be very great, and your choice might merely depend on your personal preference.
However, you might also run into situations in which the SQL implementation in which
you’' re working does not support all the methods provided in the SQL standard. Therefore,
you must select the method that can be implemented in your particular environment.
Whichever methods you might ultimately use in any given environment, it is best for now
that you have as complete a foundation as possible in the basics of SQL. That way you'll be
more prepared for various situations and be better equipped to move from implementation
to implementation. In addition, you should learn about performance issues related to the
implementation with which you' re working. Y ou should consider issues of performance
when making a decision about which SQL statementsto use.

Q: When you provided examples of the EXISTS predicate, your subqueries always
matched columnswithin the subquery WHERE clause. I sthis necessary?

A: you can, if you want, create an EXISTS predicate that does not match columnsin the
subquery, such asin the following statement:

SELECT TITLE, ARTIST
FROM COMPACT_DI SC_ARTI STS
WHERE EXI STS
(SELECT CD _NAME
FROM COVPACT_DI SC_| NVENTORY
WHERE | N_STOCK > 10);

In this case, your subquery merely checks to see whether any rows exist in the
COMPACT_DISC_INVENTORY table with an IN_STOCK value greater than 10. If
those rows exist, the predicate eval uates to true, which means the WHERE clause in the
main SELECT statement evaluates to true. Asaresult, all rowsinthe COMPACT_DISC _
ARTISTStable are returned. Using this sort of subquery is generally not very useful
because it offerslittle advantage over asimple SELECT statement. When using EXISTS,
matching columns from different tables within the subquery is essential to providing
meaningful filtering for the main SELECT statement.

www.it-ebooks.info

http://www.it-ebooks.info/

216 SQl: A Beginner's Guide

Quantify Comparison Predicates

SQL includes another type of predicate called a quantified comparison predicate, which isa
type of predicate used in conjunction with a comparison operator to determine whether any
or all returned values meet the search requirement. SQL supports three quantified comparison
predicates: SOME, ANY, and ALL. The SOME and ANY predicates are referred to as
existential quantifiers and are concerned with whether any returned values meet the search
requirements. These two predicates are identical in meaning and can be used interchangeably.
The ALL predicateisreferred to as a universal quantifier and is concerned with whether all
returned values meet the search requirements. Now let’ stake a closer ook at each one.

Using the SOME and ANY Predicates

As| mentioned, the SOME and ANY predicates return identical results. For each row,
the predicates compare the value in a specified column to the results of a subquery. If the
comparison evaluates to true for any of the results, the condition has been satisfied and that
row isreturned. To create one of these predicates, you must specify the column name that
contains the values you want to compare, the comparison operator (see the “Compare SQL
Data” section), the SOME or ANY keyword, and the subquery. Although you can use either
keyword, | prefer ANY because it seems more intuitive to me, but feel free to use either one.
Now let’stake alook at an example to give you a better feel for how these predicates
work. The exampleis based on the CD_RETAIL table and the CD_SALE table, which are
shown in Figure 9-5.
In this example, | want to query datafrom the CD_SALE table. | want to return only those
rows that have a SALE value less than some of the RETAIL valuesinthe CD_RETAIL table.

CD_RETAIL CD_SALE

CD_NAME: RETAIL: IN_STOCK: | TITLE: SALE:
VARCHAR(60) NUMERIC(5,2)| INT VARCHAR(60) NUMERIC(5,2)
Famous Blue Raincoat 16.99 5 Famous Blue Raincoat 14.99

Blue 14.99 10 Blue 12.99

Court and Spark 14.99 12 Court and Spark 14.99

Past Light 15.99 11 Past Light 14.99

Kojiki 15.99 4 Kojiki 13.99

That Christmas Feeling 10.99 8 That Christmas Feeling 10.99

Patsy Cline: 12 Greatest Hits | 16.99 14 Patsy Cline: 12 Greatest Hits | 16.99

Figure 9-5 Using qualified comparison predicates on the CD_RETAIL and CD_SALE tables

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 Using Predicates

The RETAIL values should be from rows that have an IN_STOCK value greater than 9. In
other words, the query should return only those CDs whose sale price is less than any retail
price of those CDs in which there are more than ninein stock. To accomplish this, | will use
the following SELECT statement:

SELECT TI TLE, SALE
FROM CD_SALE
WHERE SALE < ANY
(SELECT RETAIL
FROM CD_RETAI L
WHERE | N_STOCK > 9);

If you want, you can use the SOME keyword rather than the ANY keyword. The query results
would be the same, as shown in the following resullts:

TITLE SALE
Famous Bl ue Rai ncoat 14.99
Bl ue 12. 99
Court and Spark 14. 99
Past Li ght 14. 99
Koj i ki 13.99

That Christnmas Feeling 10.99

Now let’slook at the SELECT statement more closely. The ANY predicate contains the
following subquery:

SELECT RETAIL
FROM CD_RETAI L
WHERE | N_STOCK > 9

If you were to execute this subquery on its own, you would receive the following resullts:

The SALE valuein each row in the CD_SALE table isthen compared to the subquery
results. For example, the Past Light row has a SALE value of 14.99. Thisvalue is compared to
the subquery results to see whether 14.99 is less than any value. Because it is less than 15.99
and 16.99, the predicate evaluates to true, and the row is returned. The only row that does not
evaluate to trueis the Patsy Cline: 12 Greatest Hits row because the SALE value is 16.99, and
thisis not less than any of the values returned by the query results.

Y ou can use any of the six comparison operatorsin an ANY or SOME predicate. For
example, if you had used the greater than operator, only the Patsy Cline: 12 Greatest Hits row

www.it-ebooks.info

217

http://www.it-ebooks.info/

218

SQL: A Beginner's Guide

would have been returned because it would have been the only row with a SALE value greater
than any row in the subquery results.

NOTE

The quantified comparison predicates do not support an inverse condition like other
predicates. In other words, you cannot add the NOT keyword before ANY or SOME.
However, you can achieve the same results using the not equal to (<>) operator,

Using the ALL Predicate

The ALL predicate works much likethe ANY and SOME predicates in that it compares column
values to the subquery results. However, rather than the column values having to evaluate to
true for any of the result values, the column values must evaluate to true for all the result values,
otherwise, the row is not returned.

Let’s return to the previous example we looked at, only this time substitute the keyword
ALL for the keyword ANY. Your new SELECT statement will ook like the following:

SELECT TITLE, SALE
FROM CD_SALE
WHERE SALE < ALL
(SELECT RETAIL
FROM CD_RETAI L
WHERE | N_STOCK > 9)

If you execute this statement, you' Il find that your query results are quite different from what
they were in the previous example:

TITLE SALE
Bl ue 12. 99
Koj i ki 13. 99

That Christnmas Feeling 10.99

Thistime, only three rows are returned because they are the only ones that meet the condition
of the WHERE predicate.

If you take a closer look at the statement, you'll find that the subquery returns the same
values as it doesin the previous examples. However, the SALE value for each row in the
CD_SALE table must now be less than all the values in the subquery results. For example, the
Kojiki row contains a SALE value of 13.99. The subquery results include the values 14.99,
15.99, and 16.99. The 13.99 valueis less than all three of the subquery result values, which
means that the predicate evaluates to true, so that row isincluded in the query results. On the
other hand, the Past Light row contains a SALE value of 14.99, which is not less than the
14.99 subquery value, so that row is not included in the query results.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Using Predicates 219

Ask the Expert

Q: in your discussions about quantified comparison predicates, you included exampleson
how to use these predicates; however, the examplesincluded only one predicate in the
WHERE clause. Can you use multiple predicates when using a quantified comparison
predicate?

A: Y es, you can use multiple predicates. As with any other sort of predicate, you simply
connect the predicates using the AND keyword or the OR keyword. But you must make
sure that the logic you' re using not only makes sense in terms of the data being returned,
but a'so in the sense of being able to understand the statement itself. As aresult, the best
way to treat these sorts of situationsisto set off each predicate in parentheses and then
connect the parenthetical expressions with AND or OR. For example, suppose you want to
take the example in the section “Using the SOME and ANY Predicates’ and add aLIKE
predicateto it. (The exampleis based on Figure 9-5.) Y ou can create a SELECT statement
similar to the following:

SELECT TITLE, SALE
FROM CD_SALE
WHERE (SALE < ANY (SELECT RETAIL
FROM CD_RETAI L
WHERE | N_STOCK > 9))
AND (TITLE LIKE (' %8l ue%));

Notice that each predicate has been enclosed in a set of parentheses and that they are
joined together by AND. If you execute this statement, your query results will meet the
condition of the ANY predicate and the LIKE predicate, which specifiesthat the TITLE
value include the word Blue. If you wanted to, you could write these statements without
enclosing the predicates in parentheses, but then the statements can start to get confusing
and, in more complex structures, can start producing unexpected results.

Aswith the ANY and SOME predicates, you can use any of the six comparison operators
inan ALL predicate. In addition, you can create any type of subquery, aslong asit fitsin
logically with the main SELECT statement. The point to remember is that the column value
must be true for al subquery results, not just some of them.

www.it-ebooks.info

http://www.it-ebooks.info/

220

SQL: A Beginner's Guide

Using Subqueries in Predicates

This Try This exercise basically picks up where you left off in Try This 9-1. Once more, you'll
be working with predicates, only thistime it will be those that use subqueries. These are the
predicates that were discussed since the last exercise. They include the IN, EXISTS, ANY, and
ALL predicates. Aswith the previous Try This exercise, you'll apply these predicates to the
tables you created in the INVENTORY database. Y ou can download the Try_This_09.txt file,
which contains the SQL statements used in this exercise.

Step by Step
1. Open the client application for your RDBM S and connect to the INVENTORY database.
2. Inyour first statement, you'll use an IN predicate to query data from the COMPACT _

DISCS table. Y ou want to view CD and inventory information for CDs published by Decca
Record Company. To find out which CDs these are, you must create a subquery that queries

datafrom the CD_LABEL Stable. Enter and execute the following SQL statement:

SELECT CD _TITLE, | N_STOCK
FROM COVPACT_DI SCS
WHERE LABEL_ID IN
(SELECT LABEL_ID
FROM CD_LABELS
WHERE COWMPANY_NAME = ' Decca Record Company');

Y our query results should include only two rows. Both these rows have a LABEL _ID
value of 833, which isthe value returned by the subquery.

. Now you will try a SELECT statement similar to the one in step 2, only thistime you'll

use an EXISTS predicate to return data. In addition, you will have to add a predicate to the
subquery WHERE clause that matches the LABEL _ID valuein the COMPACT_DISCS
tableto the LABEL_ID valueinthe CD_LABEL Stable. Enter and execute the following
SQL statement:

SELECT CD TITLE, | N _STOCK FROM COMPACT DI SCS
WHERE EXI STS
(SELECT LABEL_| D FROM CD_LABELS
WHERE COVPACT DI SCS. LABEL_| D = CD_LABELS. LABEL_| D
AND LABEL_ID > 830);

Notice that one of the predicates in the subquery WHERE clause uses a comparison
operator to look for LABEL _ID values greater than 830. If you were to look at the CD_
LABEL S table, you would see that six rows contain LABEL_ID values greater than 830.
If you were then to match these six valuesto the LABEL _ID valuesin the COMPACT _
DISCS table, you would find 11 rows that would evaluate to true. These are the 11 rows
returned by your SELECT statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter @ Using Predicates 221

4. Inthis statement, you'll use an ANY predicate to compare LABEL _ID valuesin the
CD_LABELStableto LABEL_ID vauesinthe COMPACT _DISCStablethat are included in
rowswith an IN_STOCK value greater than 20. The LABEL _ID valuesinthe CD_LABELS
table can match any values in the subquery results. Enter and execute the following SQL
statement:

SELECT LABEL | D, COVPANY_ NANE
FROM CD_LABELS
WHERE LABEL_I D = ANY
(SELECT LABEL_ID
FROM COVPACT_DI SCS
WHERE | N_STOCK > 20);

Y our query should return only five rows.

5. Now try creating the same SELECT statement in step 4, only use an ALL predicate rather
than an ANY predicate. Enter and execute the following SQL statement:

SELECT LABEL | D, COVPANY_ NANE
FROM CD_LABELS
WHERE LABEL_ID = ALL
(SELECT LABEL_ID
FROM COVPACT_DI SCS
WHERE | N_STOCK > 20);

You'll find that no rows are returned by this query. Thisis because the subquery
returns eight rows with five different values. The LABEL_ID value for each row in the
CD_L ABEL Stable cannot match all values, only one or some of them. The only way
you would return any rowsin this case would be if the subquery returned only one row
or returned multiple rows al with the same value.

6. Now try modifying the SELECT statement by changing the comparison predicate in
the subquery WHERE clause to greater than 40. Enter and execute the following SQL
statement:

SELECT LABEL | D, COVPANY_ NANE
FROM CD_LABELS
WHERE LABEL_ID = ALL
(SELECT LABEL_ID
FROM COVPACT DI SCS
WHERE | N_STOCK > 40);

Y our query results will now return one row. Thisis because the subquery returns only
one row, which meets the condition of the ALL predicate.

7. Close the client application.

www.it-ebooks.info

http://www.it-ebooks.info/

222

SQL: A Beginner's Guide

Try This Summary

Inthis Try Thisexercise, you used the IN, EXISTS, ANY, and ALL predicatesto query data
from the INVENTORY database. Y ou could have also used the SOME predicate in place of
the ANY predicate. Combined with the stepsin Try This 9-1, your statements here should have
allowed you to try alarge variety of predicates. Asyou learn more about subqueries, you will
be able to create even more elaborate predicates, ones that you can use not only in SELECT
statements, but in UPDATE and DELETE statements as well. In the meantime, | suggest that
you experiment with various types of SELECT statements and try different predicates within
those statements to see exactly what types of query results you can receive.

Chapter 9 Self Test

1. Inwhich SELECT statement clause do you include predicates?
2. Which comparison operator symbol should you use to express a not equal condition?
A <=
B >=
C <
D =<
3. Which keywords can you use to combine predicates in a WHERE clause?

4. You want to query atable that includes the PRICE column. Y ou want to ensure that all rows
returned have a PRICE vaue of 13.99. What predicate should you use?

5. You create the following SQL statement:

SELECT CD_TI TLE, RETAIL_PRI CE
FROM CDS_ON_HAND

WHERE RETAI L_PRI CE >= 14
AND RETAI L_PRI CE <= 16;

What predicate can you use in place of the two predicates shown in this statement?

6. What keyword can you add to aBETWEEN predicate to find the inverse of the condition
specified by the predicate?

7. When isanull value used in a column?

8. You want to query atable to determine which values are null. What type of predicate should
you use?

www.it-ebooks.info

http://www.it-ebooks.info/

10.

11

12.
13.

14.
15.

16.
17.

Chapter 9 Using Predicates

. You're creating a SELECT statement that queries the ARTISTS_BIO table. Y ou want to

return all columns in the table, but you want to return only those rows that do not contain
null valuesin the PLACE_OF BIRTH column. Which SELECT statement should you use?

You're querying the CD_INVENTORY table. Y ou want to view all columns, but you want
to view only rows that contain the word Christmas in the name of the CD. The names are
stored inthe CD_TITLE column. Which SELECT statement should you use?

. What is the difference between a percentage sign and an underscore when used in aLIKE

predicate?
What two types of data sources can you usein an IN predicate?

Which type of predicateis concerned only with determining whether or not a subquery
returns any rows?

What column names must be specified in an EXISTS predicate?

You're creating a SELECT statement that includes a predicate in the WHERE clause. You
want to use a comparison operator to compare the values in one of the columns to the
results of a subquery. Y ou want the predicate to evaluate to true for any of the subquery
results. Which type of predicate should you use?

A EXISTS

B ANY

C ALL

D IN
What is the difference between a SOME predicate and an ANY predicate?
How doesthe ALL predicate differ from the SOME predicate?

www.it-ebooks.info

223

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Working with Functions
and Value Expressions

225

. IC ere 1or terms o
www.it-ebooks.info

http://www.it-ebooks.info/

226 SQl: A Beginner's Guide

Key Skills & Concepts

Use Set Functions

Use Vaue Functions
Use Value Expressions
Use Special Vaues

n earlier parts of the book, you have been briefly introduced to various value-related functions
and expressions. These values and expressions are used in examples and Try This exercises

in anumber of chapters to demonstrate different components of SQL. In this chapter, | take
acloser look at many of these values and expressions, focusing on those that you are most
likely to use as a beginning SQL programmer. Y ou should keep in mind, however, that this
chapter covers only a portion of the many types of functions and expressions supported by
SQL. In addition, SQL implementations can vary greatly with regard to which SQL functions
and expressions they support, how those values and expressions are implemented, and what
nonstandard functions and expressions they include in their products in addition to the
standard ones. Be sure to check the product documentation to determine what functionality is
supported. In general, | include in this chapter those functions and expressions most commonly
supported by SQL implementations.

Use Set Functions

In Chapter 3, | introduce the concept of afunction. Asyou might recall, afunction is a named
operation that performs predefined tasks that you can’t normally perform by using SQL
statements alone. It is atype of routine that takes input parameters, which are enclosed in
parentheses, and returns values based on those parameters. An important property of functions
isthat each execution of afunction returns exactly one data value, and this is why functions can
be used in place of table column namesin the SELECT list of a query—the function returns
asingle value for each row processed by the query. Y ou have aready seen examples of functions,
such as SUM and AV G. Both of these functions are known as set functions. A set function,
sometimes referred to as an aggregate function, processes or cal culates data and returns the
appropriate values. Set functions require that the data be grouped in some way, such as would
be the case if the GROUP BY clause were used in a SELECT statement. If the rows are not
explicitly grouped in some way, the entire table is treated as one group.

In this section, | discuss five set functions: COUNT, MAX, MIN, SUM, and AVG. These
functions are all commonly supported in SQL implementations. For all the set functions,
| provide examples of how you would use them in the SELECT clause of a SELECT statement.
The examples are based on the table shown in Figure 10-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Working with Funcfions and Value Expressions

ARTIST_NAME: CD_NAME: NUMBER_SOLD:
VARCHAR(60) VARCHAR(60) INT
Jennifer Warnes Famous Blue Raincoat 23
Joni Mitchell Blue 45
Joni Mitchell Court and Spark 34
William Ackerman | Past Light 12
Bing Crosby That Christmas Feeling 34
Patsy Cline Patsy Cline: 12 Greatest Hits 54
John Barry Out of Africa 23
Leonard Cohen Leonard Cohen The Best of 20
Bonnie Raitt Fundamental 29
B.B. King Blues on the Bayou 18

227

Figure 10-1 Using set functions on the ARTIST_CDS table

Using the COUNT Function

Thefirst set function that we'll 1ook at isthe COUNT function. As the name implies, the
COUNT function counts the number of rowsin atable or the number of valuesin a column,
as specified in a SELECT statement. When you use the COUNT function, you must specify
a column name to count the number of non-null values in acolumn, or an asterisk to count
al therowsin atable regardless of null values. For example, if you want to know the total
number of rowsin the ARTIST_CDS table, you can use the following SELECT statement:

SELECT COUNT(*) AS TOTAL_ROS
FROM ARTI ST_CDS;

In this statement, the COUNT function is used with an asterisk—in parentheses—to count
every row in the ARTIST_CDS table and return the total count. The returned valueislisted
in the TOTAL_ROWS column, a name given to the column returned in the query results, as
shown in the following results:

Asyou can see, the query results include only one value (one row with one column), as can be
expected of a set function used without any row grouping. The value of 10 indicates that the
ARTIST_CDStable contains 10 rows.

www.it-ebooks.info

http://www.it-ebooks.info/

228

SQL: A Beginner's Guide

Aswith any other sort of SELECT statement, you can qualify your query results by
adding the necessary clauses to the statement. For example, suppose you want to find out how
many rows include aNUMBER_SOL D value greater than 20. Y ou can modify your SELECT
statement to include a WHERE clause:

SELECT COUNT(*) AS TOTAL_ROS
FROM ARTI ST_CDS
WHERE NUMBER SOLD > 20;

The value returned will now be 7, rather than 10, because only seven rows meet the search
condition specified in the WHERE clause.

Y ou might find that, instead of querying the number of rowsin atable, you want to know
the number of valuesin a given column (excluding null values). In this case, you would
specify the column name rather than the asterisk. For example, suppose you modify the
SELECT statement shown in the last example to count values in the ARTIST_NAME column:

SELECT COUNT(ARTI ST_NAME) AS TOTAL_ARTI STS
FROM ARTI ST_CDS
WHERE NUMBER _SOLD > 20;

When you execute this query, the value returned is again 7. This means that seven
ARTIST_NAME vaues have aNUMBER_SOL D value greater than 20. However, this
statement doesn’t account for ARTIST_NAME values that might be duplicated. If you want
to arrive at a count that takes into consideration duplicate values, you can add the DISTINCT
keyword to the COUNT function:

SELECT COUNT(DI STI NCT ARTI ST_NAMVE) AS TOTAL_ARTI STS
FROM ARTI ST_CDS
WHERE NUMBER SOLD > 20;

Thistime, avalue of 6 isreturned rather than 7. Thisis because the ARTIST_NAME
column includes two instances of the Joni Mitchell value. The column contains only six unique
values that meet the condition set forth in the search criteria

NOTE

Keep in mind that the SELECT statement is processed in a specific order: first the FROM
clause, then the WHERE clause, and then the SELECT clause. As a result, the COUNT
function applies only to the rows that meet the search condition defined in the WHERE
clause. Rows that are not included in the results of the WHERE clause have no bearing on
the COUNT function. For more information about the SELECT statement, see Chapter 7.

Asdready mentioned, if the column specified in the COUNT function contains null values,
those values are not included in the count. For example, if we were to add arow to the ARTIST _
CDStablewith an ARTIST_NAME value of null and aNUMBER_SOL D value greater than 20,
the SELECT statement shown in the previous example would still return avalue of 6 because the
null value would not be counted. However, if you use an asterisk rather than a column namein
the COUNT function, all rows are counted, even if some contain null values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Working with Functions and Value Expressions 229

Using the MAX and MIN Functions

The MAX and MIN functions are so similar that it is worth discussing them together. The
MAX function returns the highest value from the specified column, and the MIN function
returns the lowest value. Both functions require that you specify a column name. For example,
suppose you want to return the highest value from the NUMBER_SOLD columnin the
ARTIST_CDStable. Your SELECT statement would look like the following:

SELECT MAX(NUMBER_SOLD) AS MAX_SCLD
FROM ARTI ST_CDS;

When you execute this statement, your query results will include only one value (one row
and one column), as shown in the following results:

Thisresult, by itself, is not particularly helpful. It would be niceif your query results
also included the name of the artist and the CD. However, SQL does not support a SELECT
statement such as the following:

SELECT ARTI ST_NAME, CD_NAME, MAX(NUVBER_SOLD)
FROM ARTI ST_CDS;

Because set functions treat data as groups, you cannot specify the artist name and CD
name without somehow grouping the data together. Asit stands now, the MAX function treats
the entire table as one group; however, neither the ARTIST_NAME values nor the CD_NAME
values are grouped together in any way, so the SELECT clause becomesillogical.

Whenever you include a set function in an SQL statement, then every argument in the
SELECT list must either be a set function or be included in agroup (using the GROUP BY
clause described alittle later in this topic). One way around thisisto use a subquery in the
WHERE clause to return the maximum value and then return the necessary information based
on that value, as shown in the following example:

SELECT ARTI ST_NAME, CD NAME, NUVBER SOLD
FROM ARTI ST_CDS
WHERE NUMBER SOLD = (SELECT MAX(NUVBER SOLD)
FROM ARTI ST_CDS) ;

The subguery finds the maximum value (54) and uses that value as a condition in the
WHERE clause. The NUMBER_SOLD value must equal 54 aslong as that is the highest
NUMBER_SOLD valuein the table. Once you define the necessary search condition in the
WHERE clause, you can then use these results to return the information you need. If you
execute this statement, one row is returned:

ARTI ST_NAMVE CD_NAME NUVBER_SOLD

Patsy Cine: Patsy Cine 12 G eatest Hits 54

www.it-ebooks.info

http://www.it-ebooks.info/

230

SQL: A Beginner's Guide

Asyou can see, you now have all the information you need to determine which artist and CD
have sold the greatest number.

As| said earlier, the MAX and MIN functions are very similar. If you replace MIN for
MAX in the previous example, your query results will look like the following:

ARTI ST_NAVE CD_NAME NUVBER_SOLD

W IIliam Ackerman Past Light 12

The Past Light row is returned because that is the row with the lowest NUMBER_SOLD
value.

The MAX and MIN functions are not limited to numeric data. Y ou can aso use them to
compare character strings. For example, suppose you want to know which artist comes first
alphabetically. The following statement will return B.B. King:

SELECT M N(ARTI ST_NAME) AS LOW NAME
FROM ARTI ST_CDS;

If you use the MAX function, the statement will return William Ackerman.

NOTE

It is quite likely that the tables in your database will separate first names from last
names because this is a more flexible design. I've included both names in one column
to provide you with simple examples of how various statements work. If names were
separated into two columns, the MIN or MAX function would need to be used with the
appropriate column.

Now let’s back up alittle and return to the idea of grouping data. As| mentioned, a set
function treats a table as one group if no grouping has been implemented. However, you
can easily use a GROUP BY clause to group data. Suppose you want to know the maximum
amount sold by each artist. Y ou can group data based on the ARTIST_NAME values:

SELECT ARTI ST_NAME, MAX(NUVBER SOLD) AS MAX_SOLD
FROM ARTI ST_CDS

WHERE NUMBER SOLD > 30

GROUP BY ARTI ST_NAME;

The WHERE clause returns only those rows witha NUMBER_SOLD value greater than
30. These rows are then grouped together according to the ARTIST_NAME values. Once
they’ re grouped together, the maximum amount is returned for each artist, as shown in the
following query results:

ARTI ST_NAME MAX_SOLD

Bi ng Crosby 34
Joni Mtchell 45
Patsy dine 54

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Working with Functions and Value Expressions 231

The GROUP BY clause creates three groups, one for each artist that meets the search
condition defined in the WHERE clause. Of these three groups, only one is made up of
duplicate values: Joni Mitchell. Because there are two Joni Mitchell rowsinthe ARTIST_CDS
table, there are two NUMBER_SOL D values: 45 and 34. Asyou can see, the highest value
is 45, which is the value that’ sincluded in the query results for the Joni Mitchell group. If
the MIN function had been used in the SELECT statement, the 34 value would have been
returned. Asfor the other two artist groups, because thereis only one value for each of them,
the same value is returned regardless of whether the MAX or the MIN function is used.

Using the SUM Function
Unlike the MIN and MAX functions, which select the lowest and highest values from a
column, the SUM function adds column values together. Thisis particularly handy when
you want to find the totals for grouped data (although the SUM function, like any other
set function, treats the entire table as a single group if data hasn’t been explicitly grouped
together).

To better understand the SUM function, let’s take the last example we looked at and
modify it slightly:

SELECT ARTI ST_NAME, SUM NUMBER SCOLD) AS TOTAL_SOLD
FROM ARTI ST_CDS
WHERE NUMBER _SOLD > 30
GROUP BY ARTI ST_NAME;

Asyou saw before, the WHERE clause returns only those rows withaNUMBER_SOLD
value greater than 30. These rows are then grouped together according to the ARTIST_NAME
values. Once they’ re grouped together, the total amount for each artist group is returned in the
query results:

ARTI ST_NAVE TOTAL_SOLD

Bi ng Croshy 34
Joni Mtchell 79
Patsy dine 54

Notice that the query results include the same three groups that were returned in the
previous example. The only difference isthat the TOTAL_SOLD valuein the Joni Mitchell
row is 79, as opposed to 45 or 34. The SUM function adds these two values together and
returns avalue of 79. Because the other two groups are each made up of only one entry, their
TOTAL_SOLD values are the same as their NUMBER_SOLD valuesin the ARTIST_CDS
table.

Y ou do not have to use a GROUP BY clausein a SELECT statement that uses a SUM
function. You can create a SELECT statement as simple as the following:

SELECT SUM NUMBER_SOLD) AS TOTAL_SOLD
FROM ARTI ST_CDS;

www.it-ebooks.info

http://www.it-ebooks.info/

232

SQL: A Beginner's Guide

This statement merely adds together all the valuesin the NUMBER_SOL D column and
returns avalue of 292. By itself, thisis not aways the most helpful information, which iswhy
using the function along with a GROUP BY clauseis far more effective.

Using the AVG Function

Asyou probably realize, the AVG function merely averages the values in a specified column.
Like the SUM function, it is most effective when used along with a GROUP BY clause,
although it can be used without the clause, as shown in the following example:

SELECT AVG(NUMBER SOLD) AS AVG SOLD
FROM ARTI ST_CDS;

This statement returns avalue of 29, which is based on the NUMBER_SOLD vauesin
the ARTIST_CDS table. This means that, for al the CDs listed in the table, an average of 29
for each one has been sold. Although you might find this information helpful, it might be more
useful to you if you were to create a statement that groups data together:

SELECT ARTI ST_NAME, AVG(NUMBER SOLD) AS AVG SOLD
FROM ARTI ST_CDS

WHERE NUMBER SOLD > 30

GROUP BY ARTI ST_NAME;

If you execute this statement, you will receive the following query results:
ARTI ST_NAVE AVG_SOLD

Bi ng Croshy 34
Joni Mtchell 39
Patsy dine 54

Asin the previous examples, three groups are created, and for each group, an averageis
calculated based on the values in the NUMBER_SOL D column. For the Joni Mitchell row,
this averageis based on the NUMBER_SOL D values of 45 and 34. For the other two rows, the
average is the same asthe NUMBER_SOLD value because there is only one row for each artist.

NOTE

The precision of the values returned by the AVG function depends on the column’s data
type, whether decimals are used, and how the SQL implementation averages numbers.
For example, the exact average for the Joni Mitchell row is 39.5, but because the
NUMBER_SOLD column is configured with an INT data type, only whole numbers are
used. For some implementations, the .5 is dropped and not rounded up, as shown in
my latest sample query results.

Use Value Functions

Value functions are a type of function that allow you to return a value that in some way
calculates or derives information from the data stored within your tables or from the SQL
implementation itself. Value functions are similar to set functions in the sense that they

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Working with Functions and Value Expressions 233

perform some sort of behind-the-scenes action to arrive at that value. However, value functions
are different from set functions in that they do not require that data be grouped together.

SQL supports a number of value functions. Which functions are supported in which SQL
implementations can vary widely. In addition, the meaning of a function name can sometimes
vary from one implementation to the next. Still, there are some consistencies among the
various implementations, and those are the value functions on which | focus.

The value functions that | discuss fall into two categories: string value functions and
datetime value functions. In order to illustrate how these functions work, | use the SALES
DATES table, shown in Figure 10-2.

Working with String Value Functions

A string value function allows you to manipulate character string data to produce a precise
value that is based on the original character string. When using a string value function,

you must supply the character string as a parameter of the function. That parameter is then
converted to a new value according to the purpose of that function and any other parameters
that might be specified. In this section, | introduce you to three string value functions:
SUBSTRING, UPPER, and LOWER.

Using the SUBSTRING String Value Function

The SUBSTRING string value function extracts a defined number of characters from an
identified character string in order to create a new string. That original character string can
be derived from a column or can be explicitly stated. In both cases, the character string is

COMPACT_DISC:
VARCHAR(60)

DATE_SOLD:
TIMESTAMP

Famous Blue Raincoat

2002-12-22 10:58:05.120

Blue

2002-12-22 12:02:05.033

Court and Spark

2002-12-22 16:15:22.930

Past Light

2002-12-23 11:29:14.223

That Christmas Feeling

2002-12-23 13:32:45.547

Patsy Cline: 12 Greatest Hits

2002-12-23 15:51:15.730

Out of Africa

2002-12-23 17:01:32.270

Leonard Cohen The Best of

2002-12-24 10:46:35.123

Fundamental

2002-12-24 12:19:13.843

Blues on the Bayou

2002-12-24 14:15:09.673

Figure 10-2 Using value functions on the SALES_DATES table

www.it-ebooks.info

http://www.it-ebooks.info/

234

SQL: A Beginner's Guide

passed as a parameter of the SUBSTRING function, along with a start point and, optionally,
alength specification. For example, suppose you want to return only the first 10 characters

of the valuesin the COMPACT _DISC columninthe SALES DATEStable. You can create a
SELECT statement similar to the following:

SELECT SUBSTRI NG(COVPACT_DI SC FROM 1 FOR 10) AS SHORT_NAME
FROM SALES_DATES;

The SUBSTRING function includes three parameters. The first is the name of the
column, COMPACT _DISC, which identifies the source used for the character string. The next
parameter, FROM 1, indicates that the function will start counting at the first character. The
third parameter, 10, follows the FOR keyword. The FOR 10 parameter, which is optional,
indicates that up to 10 characters will be included in the new character string.

NOTE

Most implementations, including SQL Server, MySQL, and Oracle, do not use the
keywords FROM and FOR—you simply separate the parameters using commas. Also,
in Oracle, the function is named SUBSTR. Here is the same statement modified for
Oracle:

SELECT SUBSTR(COMPACT_DISC, 1, 10) AS SHORT_NAME
FROM SALES_DATES;

If you execute this SELECT statement, you'll receive the following query results:

SHORT_NAME

Famous Blu
Blue

Court and
Past Light
That Chris
Patsy Clin
Out of Afr
Leonard Co
Fundamenta
Blues on t

Notice that only the first 10 characters of each COMPACT_DISC value are included in the results.
For those values less than 10 characters, the full name appears.

The FROM parameter can accept a negative number or a zero as a parameter, assuming
your SQL implementation allowsit. When using a negative number or a zero, keep in mind that
1 represents what you would think of as anormal starting position. The next character to the | eft
of 1is0. The character to the left of 0is—1, and so on. The FOR parameter counts characters
starting at the starting point. If azero or a negative number is used, the SUBSTRING function

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Working with Functions and Value Expressions 235

acts as though characters actually exist in those places. For example, suppose you modify the
preceding SELECT statement as follows:

SELECT SUBSTRI NG(COMPACT DI SC FROM -2 FOR 10) AS SHORT NAME
FROM SALES_DATES;

If you execute this statement, only the first seven characters of each name would be
returned. If you use a zero instead, only the first nine characters will be returned. It is only
when you use a FROM parameter of 1 that you return exactly the number of characters (from
the character string) that are specified by the FOR parameter.

The SUBSTRING function is not limited to the SELECT clause. In fact, usingitina
WHERE clause can be quite useful when defining a search condition. For example, the
following SELECT statement uses the SUBSTRING function to return rows that start with
Blue:

SELECT COVPACT_DI SC, DATE_SOLD
FROM SALES_DATES
VWHERE SUBSTRI NG COMPACT_DI SC FROM 1 FOR 4) = ' Bl ue';

In this statement, the SUBSTRING function returns the first four characters of the
COMPACT_DISC values and compares them to the Blue value. Only two rows are included
in the query results:

COVPACT_DI SC DATE_SOLD

Bl ue 2002-12-22 12:02: 05. 033
Bl ues on the Bayou 2002-12-24 14:15:09.673

Both rows in the query results have a COMPACT _DISC value that starts with Blue. No other
rows meet the search condition specified in the WHERE clause.

NOTE

The handling of datetime data varies considerably across SQL implementations, so the
results from your DBMS may look quite different with respect to the DATE_SOLD column.

Using the UPPER and LOWER String Value Functions

The UPPER and LOWER string value functions are quite similar in that they are both used

to convert characters from one case to another. The UPPER function allows you to convert a
character string to all uppercase. The LOWER function allows you to convert a string to all
lowercase. For example, suppose you want to modify the SELECT statement shown in the last
exampleto return all COMPACT_DISC valuesin uppercase. Your SELECT statement would
now include an UPPER function:

SELECT UPPER(COVPACT_DI SC) AS TI TLE, DATE_SOLD
FROM SALES DATES
VWHERE SUBSTRI NG(COWPACT_DI SC FROM 1 FOR 4) = 'Blue';

www.it-ebooks.info

http://www.it-ebooks.info/

236

SQL: A Beginner's Guide

Your query results are the same as in the last example, only thistime the CD titlesare all in
uppercase, as shown in the following results:

BLUE

DATE_SOLD

2002-12-22 12:02: 05. 033

BLUES ON THE BAYOU 2002-12-24 14:15:09.673

If you had used the LOWER function, instead of the UPPER, the CD titleswould all bein
lowercase, with no initial capitalization at the beginning of the words. These functions are also
quite useful for comparing datain case-sensitive implementations when you don’t know what
case was used in storing the data, or when you want to be sure data appears in a particular
case when you are inserting, updating, or when you are converting data from one database to

another.

Working with Datetime Value Functions

Datetime value functions provide information about the current date and time. Each function
returns a value based on the time or date (or both) as they are configured in the operating
system. SQL :2006 supports five datetime value functions, which are described in Table 10-1.

NOTE

SQL implementations vary widely with regard to how they implement datetime
functionality; consequently, the implementation of datetime functions also varies. For
example, SQL Server supports only the CURRENT_TIMESTAMP datetime value function.
On the other hand, Oracle supports the CURRENT_DATE, CURRENT_TIMESTAMP,

and LOCALTIMESTAMP datetime value functions, but not the CURRENT_TIME and
LOCALTIME functions. Yet MySQL supports all five of them. In addition, the exact values
generated by these functions can also vary from implementation to implementation. For
example, the query results will not always include information about the current time
zone, and some might represent time using a 24-hour clock rather than A.M. and P.M.

Value Function

Description

CURRENT_DATE

Returns a value that represents the current date.

CURRENT_TIME

Returns a value that represents the current time. The value includes information
about the current time zone, relative to Coordinated Universal Time (UCT),
which used to be called Greenwich Mean Time (GMT).

CURRENT_TIMESTAMP

Returns a value that represents the current date and time. The value includes
information about the current time zone, relative to UCT.

LOCALTIME

Returns a value that represents the current time.

LOCALTIMESTAMP

Returns a value that represents the current date and time.

Table 10-1 Datetime Value Functions Supported by SQL:2006

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Working with Functions and Value Expressions 237

Because the CURRENT_TIMESTAMP datetime value function is supported by both
SQL Server and Oracle, let’ stake a closer look at implementing that one. However, keep in
mind that implementing any of the SQL datetime functionsis the same process, depending on
which functions are supported by the specific SQL implementation in which you’ re working.
By understanding how the CURRENT_TIMESTAMP function works, you'll gain a better
understanding of how all functions work. However, be sure to check your implementation’s
documentation for more information on any of the functions that are supported by that product.
Depending on the SQL implementation, you can use the CURRENT_TIMESTAMP
functionin a SELECT statement to simply retrieve the current timestamp information. As
you might expect with anything related to datetime functionality, the way in which you call a
function can vary. However, in some cases you might be able to use a statement as basic as the
following:

SELECT CURRENT_TI MESTAMP

This statement will retrieve the current time and date in some implementations. In other
implementations, you might have to add a FROM clause to the statement in order to retrieve
thisinformation. For example, Oracle provides a dummy table called DUAL specifically
because it requiresa FROM clause in all SELECT statements. Regardless of how you need to
write your SELECT statement, in all likelihood using a CURRENT_TIMESTAMP function
in thisway is not very useful. You'll probably make better use of datetime functions by using
them to compare data or to insert data automatically.

NOTE

Most SQL implementations have special functions for handling datetime data. For
example, SQL Server provides the getdate function to return the current date, while
Oracle provides the SYSDATE special value for the same purpose. The earliest SQL
implementations did not include any support for datetime data types, but as soon as
relational databases became popular in business applications, users demanded them.
This left vendors scrambling to add the new features, and since there was no SQL
standard to follow, wide variation across implementations was the result. Products
such as MySQL that were developed after the standard have fewer such variations. As
always, check your vendor documentation for details.

For example, suppose you wanted the SALES_DATES table (shown in Figure 10-2) to
insert the current time and date automatically in your table each time you add a new row. Y our
table definition might look something like the following:

CREATE TABLE SALES DATES
(COMPACT DI SC VARCHAR(60)
DATE_SOLD DATETI ME DEFAULT CURRENT TI MESTAMP) ;

In this table definition, the DATE_SOLD column has been assigned a default value that
is based on the CURRENT_TIMESTAMP function. Each time arow is added to the table,
the datetime value isinserted into the DATE_SOLD column for that row. Asaresult, you can

www.it-ebooks.info

http://www.it-ebooks.info/

238 SQl: A Beginner's Guide

create INSERT statements that specify only the COMPACT_DISC value. The current date and
time are then automatically added to the DATE_SOL D column at the time the row is added.

Use Value Expressions

A value expression is atype of expression that returns a data value. The expression can include
column names, values, mathematical operators, keywords, or other elements that together
create a sort of formula, or expression, that returns a single value. For example, you can
combine the values in two columns to create one value, or you can perform operations on the
value in one column to create a new value.

In this section, we will look at numeric value expressions as well asthe CASE and CAST
value expressions. To demonstrate how several of these expressions work, we will use the
CD_TRACKING table, shown in Figure 10-3.

Working with Numeric Value Expressions
Numeric value expressions are expressions that use mathematic operators to perform
calculations on numeric data values stored in your tables. Y ou can use these operators to add,
subtract, multiply, and divide these values. Table 10-2 shows the four operators that you can
use to create numeric value expressions.

Y ou can build numeric value expressions in much the same way as you build mathematical
formulas. The basic principles are the same. For example, multiplication and division take

CD_NAME: CD_CATEGORY: | IN_STOCK: | ON_ORDER:| SOLD:
VARCHAR(60) CHAR(4) INT INT INT
Famous Blue Raincoat FROK 19 16 34
Blue CPOP 28 22 56
Court and Spark CPOP 12 11 48
Past Light NEWA 6 7 22
That Christmas Feeling XMAS 14 14 34
Patsy Cline: 12 Greatest Hits CTRY 15 18 54
Out of Africa STRK 8 5 26
Leonard Cohen The Best of FROK 6 8 18
Fundamental BLUS 10 6 21
Blues on the Bayou BLUS 11 10 17

Figure 10-3 Using value expressions on the CD_TRACKING table

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Working with Funcfions and Value Expressions

Expression Operator Example

Addition + IN_STOCK + ON_ORDER
Subtraction - SOLD - (IN_STOCK + ON_ORDER)
Multiplication [IN_STOCK [-2

Division / SOLD /2

Table 10-2 Using Numeric Value Expressions to Calculate Data

precedence over addition and subtraction, and elements that should be calculated first are
enclosed in parentheses; otherwise, each operation is calculated according to precedence and
the order in which it is written. For example, the formula2 + 2* 5/ 4 equals 4.5; however,
theformula(2+2) * 5/ 4 equas5. Inthefirst formula, 2 is multiplied by 5, then divided by 4,
and then added to 2. In the second formula, 2 is added to 2, then multiplied by 5, and then
divided by 4.

Now let’stake alook at an example of a numeric value expression. Suppose you want to
add the IN_STOCK column to the ON_ORDER column inthe CD_TRACKING table. You
can create a SELECT statement similar to the following:

SELECT CD_NAME, | N_STOCK, ON_ORDER, (IN_STOCK + ON_ORDER) AS TOTAL
FROM CD_TRACKI NG

Asyou can see, the SELECT clause first specifies three column names: CD_NAME,
IN_STOCK, and ON_ORDER. These are then followed by a numeric value expression:
(IN_STOCK + ON_ORDER). Values from the IN_STOCK and ON_ORDER columns are
added together and included in the query results under a column named TOTAL, as shown in
the following results:

CD_NAME IN_ STOCK ON ORDER TOTAL
Fanpous Bl ue Rai ncoat 19 16 35
Bl ue 28 22 50
Court and Spark 12 11 23
Past Li ght 6 7 13
That Christnmas Feeling 14 14 28
Patsy Cine: 12 Geatest Hits 15 18 33
Qut of Africa 8 5 13
Leonard Cohen The Best O 6 8 14
Fundanent al 10 6 16
Bl ues on the Bayou 11 10 21

For each row, a value has been added to the TOTAL column that adds together the valuesin
the IN_STOCK column and the ON_ORDER column.

Numeric value expressions are not limited to the SELECT clause. For example, you can
use one in aWHERE clause to specify a search condition. Suppose you want to return the

www.it-ebooks.info

239

http://www.it-ebooks.info/

240

SQL: A Beginner's Guide

same results asin the previous SELECT statement but only for those CDswith a TOTAL vaue
greater than 25. Y ou can modify your statement as follows:

SELECT CD_NAME, | N_STOCK, ON _ORDER (1N _STOCK + ON _ORDER) AS TOTAL
FROM CD_TRACKI NG
WHERE (I N_STOCK + ON_ORDER) > 25

Now your search results include only four rows, as shown in the following:

CD_NAMVE I N_STOCK ON_ORDER TOTAL
Fanmous Bl ue Rai ncoat 19 16 35
Bl ue 28 22 50
That Christnmas Feeling 14 14 28
Patsy Cine: 12 Geatest Hits 15 18 33

Numeric value operators can also be combined with each other to create more complex
expressions. In the next example, | include an additional expression that calculates three sets of
values and combines them into one column in the query results:

SELECT CD_NAME, | N _STOCK, ON ORDER (1N _STOCK + ON ORDER) AS TOTAL,
SOLD, (SOLD - (IN_STOCK + ON_ORDER)) AS SHORTAGE
FROM CD_TRACKI NG
WHERE (I N_STOCK + ON ORDER) > 25

This statement allows you to calculate how many CDs you have available (IN_STOCK
+ ON_ORDER) as compared to how many you sold. The difference is then added to the
SHORTAGE column in the query results. If you have sold more CDs than are available, a
positive number is placed in the SHORTAGE column. If, on the other hand, there are enough
CDs available, a negative number is created. The following query results show the amounts
calculated when you execute the SELECT statement:

CD_NAME N STOCK ON ORDER TOTAL SOLD SHORTAGE
Fanous Bl ue Rai ncoat 19 16 35 34 -1

Bl ue 28 22 50 56 6

That Christmas Feeling 14 14 28 34 6

Patsy dine: 12 Geatest Hts 15 18 33 54 21

The query results now include two calculated columns: TOTAL and SHORTAGE. All other
values (IN_STOCK, ON_ORDER, and SOLD) are taken directly from the table.

Asyou can see, numeric value expressions are quite flexible and can be used in many
different ways. In addition to the methods we' ve looked at so far, you can also combine
column values with specified values. For example, suppose you want to see how many CDs

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Working with Functions and Value Expressions 241

you would have available if you doubled the amount you had on order for those CDs where
there are fewer than 15 available:

SELECT CD NAME, | N _STOCK, ON _ORDER, (I N_STOCK + ON _ORDER) AS TOTAL,
(I N_STOCK + ON_ORDER * 2) AS DOUBLE_ORDER
FROM CD_TRACKI NG
WHERE (I N_STOCK + ON_ORDER) < 15

The second numeric value expression in this statement multiplies the ON_ORDER value
by 2, addsit to the IN_STOCK value, and inserts the total into the DOUBLE_ORDER column
of the query results, as shown in the following results:

CD_NAME IN STOCK ON ORDER TOTAL DOUBLE_ORDER
Past Li ght 6 7 13 20
Qut of Africa 8 5 13 18
Leonard Cohen The Best O 6 8 14 22

The query results include only three rows that meet the condition of the WHERE clause.
For each of these rows, the IN_STOCK and ON_ORDER columns are calculated to provide
you with data that can be useful to you, depending on your needs. The nice part is that these
values do not have to be stored in the database. Instead, they’re calculated when you execute
the SELECT statement, rather than having to maintain tables with additional data.

Using the CASE Value Expression

A CASE value expression allows you to set up a series of conditions that modify specified
values returned by your SQL statement. Y ou can change the way avalue is represented or
calculate anew value. Each value is modified according to the condition specified within
the CASE expression. A CASE value expression includes the CASE keyword and alist of
conditions. The last condition provides a default condition if none of the previous conditions
have been met. The value expression is then closed by using the END keyword.

Let'stake alook at an example to give you a better idea of how this works. Suppose you
want to increase the number of CDs you have on order, but you want to increase the amount
for only certain CDs. In addition, you want to base how many CDs you add to the order on
the current amount. Before you actually update the table, you can look at what the new values
would be by creating a SELECT statement that queries the CD_TRACKING table, as shown
in the following example:

SELECT CD _NAME, ON _ORDER, NEW ORDERS =
CASE
WHEN ON ORDER < 6 THEN ON ORDER + 4
WHEN ON_ORDER BETWEEN 6 AND 8 THEN ON_ORDER + 2
ELSE ON_ORDER
END
FROM CD_TRACKI NG
WHERE ON_ORDER < 11;

www.it-ebooks.info

http://www.it-ebooks.info/

242

SQL: A Beginner's Guide

In this statement, three columns are specified: CD_NAME, ON_ORDER, and NEW _
ORDERS. The NEW_ORDERS column is the column created for the query results. It will
contain the values updated by the CASE value expression. The expression itself is made up of
the column name (NEW_ORDERYS), the equals sign, the CASE keyword, two WHEN/THEN
clauses, one EL SE clause, and the END keyword. Each WHEN/THEN clause represents one
of the conditions. For example, the first clause specifiesthat if the ON_ORDER valueisless
than 6, then 4 should be added to the value. The second WHEN/THEN clause specifies that
if the ON_ORDER value falls within the range of 6 though 8, then 2 should be added to
thevalue.

After the WHEN/THEN clauses, the EL SE clause specifies the final condition. If the value
does not meet the conditions defined in the WHEN/THEN clauses, the EL SE clause specifies
adefault condition. In the case of the preceding SELECT statement, the EL SE clause merely
refersto the ON_ORDER column, without specifying any modifications. (It would be the
same as saying ON_ORDER + 0.) In other words, if none of the WHEN/THEN conditions are
met, the ON_ORDER value stays the same. If you were to execute the SELECT statement,
you would receive the following results:

CD_NAME ON_ORDER NEW ORDERS
Past Li ght 7 9
Qut of Africa 5 9
Leonard Cohen The Best OF 8 10
Fundanent al 6 8
Bl ues on the Bayou 10 10

Asyou can see, the Out of Africarow isincreased by 4, the Blues on the Bayou row is not
increased at all, and the other three rows are increased by 2.

In addition to modifying values, you can use a CA SE value expression to rename val ues.
Thisis particularly useful if your query results include values that are not easily recognizable.
For example, suppose you want to create a query that returns data from the CD_CATEGORY
column of the CD_TRACKING table. Y ou can rename the valuesin the column so that the
information returned is more understandable to users, as shown in the following SELECT
statement:

SELECT CD_NAME, CD CATEGORY =
CASE
VWHEN CD_CATEGORY
VWHEN CD_CATEGORY
VWHEN CD_CATEGORY
VWHEN CD_CATEGORY
VWHEN CD_CATEGORY
VWHEN CD_CATEGORY
VWHEN CD_CATEGORY
ELSE NULL
END
FROM CD_TRACKI NG

' FROK' THEN ' Fol k Rock’

' CPOP' THEN ' d assi ¢ Pop'
"NEWA' THEN ' New Age'

' XMAS' THEN ' Chri st mas’

" CTRY' THEN ' Country'

" STRK' THEN ' Soundtr ack’
' BLUS' THEN ' Bl ues'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Working with Funcfions and Value Expressions

NOTE

You do not have to put the various components of the CASE value expression
on separate lines, as | have done here. | do it this way to clearly show you each
component. It also makes the code more readable to anyone reviewing it.

In this SELECT statement, the different valuesin the CD_CATEGORY column are
renamed to more useful names. Notice that you do not need to repeat the column names to
theright of the THEN keyword. The predicate construction is assumed by the context of the
clause. When you execute this statement, you receive the following query results:

Fanpbus Bl ue Rai ncoat

Bl ue

Court and Spark

Past Li ght

That Christnmas Feeling

Patsy Cine: 12 Greatest Hits

Qut of Africa

Leonard Cohen The Best O
Fundanent al

Bl ues on the Bayou

Asyou can see, only user-friendly names appear in the CD_CATEGORY column. If any of
the original values had not met the condition defined in the WHEN/THEN clauses, anull value

would be inserted in the query results.

Ask the Expert

CD_CATEGORY
Fol k Rock
Cl assi c Pop
Cl assi c Pop
New Age

Chri st mas
Country
Soundt rack
Fol k Rock
Bl ues

Bl ues

Q: can you use a CASE value expression anywhere other than a SELECT statement?

A: Another handy use for the CASE value expression isin the SET clause of an UPDATE
statement. For example, suppose you want to update the valuesin the ON_ORDER
column inthe CD_TRACKING table (shown in Figure 10-3). Y ou can update those values
by specifying specific conditionsin a CASE expression:

UPDATE CD_TRACKI NG
SET ON_ORDER =
CASE

WHEN ON_ORDER < 6 THEN ON_ORDER + 4
WHEN ON_ORDER BETWEEN 6 AND 8 THEN ON_ORDER + 2

ELSE ON_ORDER
END

(continued)

www.it-ebooks.info

243

http://www.it-ebooks.info/

244 SQL: A Beginner's Guide

This statement will add 4 to the ON_ORDER valuesthat are less than 6, and it will add 2 to
the ON_ORDER values that fall within the range of 6 through 8. Otherwise, no additional
rows will be changed.

Q: can you reference mor e than one column in a CASE value expression?

A: Y es, you can reference more than one column. Suppose you want to update ON_ORDER
values, but base those updates on CD_CATEGORY values. Y ou can create a statement
similar to the following:

UPDATE CD_TRACKI NG
SET ON_ORDER =
CASE
WHEN CD_CATEGORY
WHEN CD_CATEGORY
ELSE ON_ORDER
END

' CPOP'" THEN ON_ORDER * 3
'BLUS' THEN ON_ORDER * 2

Inthis statement, ON_ORDER values are multiplied by 3when CD_CATEGORY vauesequa
CPOP, and ON_ORDER vaues are multiplied by 2 when CD_CATEGORY values equal
BLUS. Otherwise, no values are changed.

Q: Arethere any performance implications when using a CASE value expression?

A: Whilethere are no inherent performance issues regarding the use of CASE value
expressions, it is possible to get carried away. In general, the more complex the statement,
especialy in terms of nesting and elaborate conditional logic, the more resources that will
be required to parse and execute the statement.

Using the CAST Value Expression

The CAST value expression serves a much different purpose than the CA SE expression.
The CAST expression allows you to change avalue' s data type for aliteral value or when
retrieving that value from your database. However, it does not change the data type of the
source column. Thisis particularly useful when working with programming languagesin
which data types do not match up and you need to use a common denominator to work with
the value.

To usethe CAST value expression, you must specify the CAST keyword, and, in
parentheses, provide the column name, the AS keyword, and the new data type, in that order.
To illustrate this, let’s return to the SALES DATES table shown in Figure 10-2. The table
includes the COMPACT_DISC column and the DATE_SOLD column. The DATE_SOLD

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Working with Functions and Value Expressions 245

column is configured with the TIMESTAMP data type. Suppose you want to change the
datetime values to character strings. Y ou can use the CAST expression in your SELECT
clause, as shown in the following statement:

SELECT COMPACT_DI SC, CAST(DATE_SOLD AS CHAR(25)) AS CHAR DATE
FROM SALES DATES
WHERE COMPACT DI SC LI KE (' %l ue%)

This statement converts the DATE_SOLD values from TIMESTAMP valuesto CHAR
values. Asyou can see, al you need to do is specify the CAST keyword, followed by the
parenthetical parameters that identify the source column and the new data type, along with the
AS keyword. When you execute this statement, you receive query results similar to what you
would seeif you had not used CAST:

COVPACT_DI SC CHAR_DATE

Fanous Bl ue Rai ncoat Dec 22 2002 10: 58AM
Bl ue Dec 22 2002 12: 02PM
Bl ues on the Bayou Dec 24 2002 2:15PM

Notice that you can assign a name to the column that contains the new datetime results. In this
case, the new column nameis CHAR_DATE.

NOTE

You might find that, in your SQL implementation, when a datetime value is converted,
the format changes slightly. For example, in SQL Server, a date value is expressed
numerically and a time value is expressed in a 24-hour clock (military time), but when
the value is converted to a CHAR data type, the time value is expressed in alphanumeric
characters, and the time is expressed in a 12-hour clock (A.M. and PM.).

Use Special Values

In Chapter 6, | discuss special values that SQL supports that allow you to determine the current
users. A specia value exists for each type of user. These values act as placeholders for the
actual user-related value. Y ou can use them in expressions to return the value of the specific
user. SQL supports five special values, which are described in Table 10-3. (See Chapter 6 for
more information about the various types of SQL users.)

The special values can be used in different waysin an SQL database, such as for
establishing connections or running a stored procedure. The special value, rather than the
actual user name, is embedded in the code to alow the code to remain flexible from one
situation to another. Another way in which a special value can be used is to store user datain a
table. Toillustrate this, let’s take alook at the CD_ORDERS table in Figure 10-4.

Each time arow is added to the table, avalue for CURRENT _USER isinserted into the
ORDERED_BY column. This makes it handy to track which user has placed the order. If you

www.it-ebooks.info

http://www.it-ebooks.info/

246

SQL: A Beginner's Guide

Value Description

CURRENT _USER | Identifies the current user identifier. If the SQL-session user identifier is the current

user identifier, then CURRENT_USER, USER, and SESSION_USER all have the same
value, which can occur if the initial identifier pair is the only active user identifier/
role name pair (the pair at the top of the authentication stack).

USER Identifies the current user identifier. USER means the same thing as CURRENT_USER.

SESSION_USER | Identifies the current SQL-session user identifier.

CURRENT_ROLE | Identifies the current role name.

SYSTEM_USER | Identifies the current operating system user who invoked an SQL module.
Table 10-3 Using SQL:2006 Special Values

wereto look at the table definition, you would see that a default value had been defined for the
ORDERED_BY column, as shown in the following CREATE TABLE statement:

CREATE TABLE CD_CRDERS

(CDTITLE VARCHAR(60) ,
ORDERED I NT,
ORDERED _BY CHAR(30) DEFAULT CURRENT USER)

If you were to insert data into this table, you would have to specify only aCD_TITLE
value and an ORDERED value. The ORDERED_BY value would be inserted automatically,

CD_TITLE: ORDERED: | ORDERED_BY:
VARCHAR(60) INT CHAR(30)
Famous Blue Raincoat 16 Mngr
Blue 22 AsstMngr
Court and Spark 11 Mngr
Past Light 7 AsstMngr
That Christmas Feeling 14 Mngr
Patsy Cline: 12 Greatest Hits 18 AsstMngr
Out of Africa 5 AsstMngr
Leonard Cohen The Best of 8 Mngr
Fundamental 6 Mngr
Blues on the Bayou 10 Mngr

Figure 10-4 Using the CURRENT_USER special value in the CD_ORDERS table

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Working with Functions and Value Expressions 247

and that value would be the current user identifier. If you do not specify a default value for
the ORDERED_BY column, you can use the specia valueto insert the user. For example, the
following INSERT statement inserts arow into the CD_ORDERS table:

I NSERT | NTO CD_ORDERS
VALUES (' Rhythm Country and Blues', 14, CURRENT_USER);

When you execute the statement, a value representing the current user identifier (such as
Mngr) isinserted into the ORDERED_BY column.

To determine the extent to which you can use the special values, you should review the
product documentation for your SQL implementation. You'll find that the ways in which you
can use these values will vary from one implementation to the next; however, once you're
comfortable with using special valuesin your implementation, you'll find them a useful tool as
you become more proficient with programming SQL.

WALLRNE] Using Functions and Value Expressions

In this chapter, you learned about many of the functions and val ue expressions supported

by SQL. Now you will try out these functions and expressions by querying data from the
INVENTORY database. Specifically, you will create SELECT statements that contain the
COUNT, MIN, SUM, SUBSTRING, and UPPER functions and ones that contain numerical,
CASE, and CAST value expressions. Y ou can download the Try_This_10.txt file, which
contains the SQL statements used in this exercise.

Step by Step
1. Open the client application for your RDBMS and connect to the INVENTORY database.

2. Inthefirst statement, you will determine the number of unique ARTIST_NAME valuesin
the ARTISTStable. Enter and execute the following SQL statement:

SELECT COUNT(DI STI NCT ARTI ST_NAME) AS ARTI STS
FROM ARTI STS;

Y our query should return a count of 18.

3. Inthe next statement, you will determine the minimum number of CDsin stock, aslisted in
the COMPACT_DISCStable. You'll name the column in the query results MIN_STOCK.
Enter and execute the following SQL statement:

SELECT M N(I N_STOCK) AS M N_STOCK
FROM COVPACT DI SCS;

Y our query results should include only one column and one row, and show avalue of 5.
That means that five is the least number of CDs you have in stock for any one CD.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

248

SQL: A Beginner's Guide

4. Now you will determine the total number of CDs in stock. However, thistime you will

group these totals according to the LABEL _ID values. Enter and execute the following
SQL statement:

SELECT LABEL_I D, SUM I N_STOCK) AS TOTAL
FROM COVPACT_DI SCS
GROUP BY LABEL_I D

Y our query should return 10 rows, one for each LABEL _ID value. The TOTAL value for
each row represents the total number of CDs for that particular LABEL_ID group.

. Inthe preceding steps, you used set functions when querying data from the INVENTORY

database. You'll now try a couple of value functions. The first of theseis SUBSTRING. In
this SELECT statement, you' Il extract datafrom the PLACE_OF BIRTH column in the
ARTISTS table. You want to extract eight characters, starting with the first character in the
string. Enter and execute the following SQL statement:

SELECT ARTI ST_NAME,
SUBSTRI NG(PLACE_OF_BI RTH FROM 1 FOR 8) AS Bl RTH_PLACE
FROM ARTI STS;

Y our query results should return 18 rows and include two columns: ARTIST_NAME and
BIRTH_PLACE. The BIRTH_PLACE column contains the extracted values, which are
based on the table' s PLACE_OF BIRTH column.

. The next value function you'll try is the UPPER function. In this SELECT statement,

you'll convert the names of the CDs to all uppercase. Enter and execute the following SQL
statement:

SELECT UPPER(CD_TI TLE) AS CD_NAME
FROM COVPACT_DI SCS;

This statement should return 15 rows with only one column that lists the name of the CDs
inthe COMPACT _DISCStable. The CD titles should all be in uppercase.

. Now you will move on to numeric value expressions. The next statement you try creates

two columnsin the query results that double and triple the valuesin the IN_STOCK column
of the COMPACT _DISCStable. However, the statement returns values only for those rows
with an IN_STOCK value less than 25. Enter and execute the following SQL statement:

SELECT CD TITLE, | N_STOCK,
(IN_STOCK * 2) AS DOUBLED, (IN_STOCK * 3) AS TRI PLED
FROM COVPACT DI SCS
WHERE | N_STOCK < 25;

Your SELECT statement should return nine rows that each include IN_STOCK values that
have been multiplied by 2 and by 3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Working with Functions and Value Expressions 249

8. The next value expression you'll try isthe CASE expression. The statement will provide
updated IN_STOCK vauesin the TO_ORDER column of the query results. For IN_STOCK
values less than 10, the values will be doubled. For IN_STOCK values that fall within
the range of 10 through 15, 3 will be added to the values. All other IN_STOCK values will
remain the same. The statement operates only on those rows whose origina IN_STOCK
valueislessthan 20. Enter and execute the following SQL statement:

SELECT CD_TI TLE, I N_STCCK, TO ORDER =
CASE
VWHEN | N_STOCK < 10 THEN I N_STOCK * 2
VHEN | N_STOCK BETWEEN 10 AND 15 THEN I N_STCCK + 3
ELSE | N_STOCK
END
FROM COVPACT_DI SCS
VWHERE | N_STOCK < 20;

Y our query results should include only seven rows, and the TO_ ORDER column of the
query results should contain the updated values.

9. Now you will try the CAST value expression. You will query the MUSIC_TYPES table
but will convert the data type of the TYPE_NAME column in your query results. Enter and
execute the following SQL statement:

SELECT TYPE_ I D, CAST(TYPE_NAVE AS CHAR(20)) AS CHAR TYPE
FROM MUSI C_TYPES;

Y our query should return 11 rows. The query results should include a CHAR_TY PE column
that contains the converted values.

10. Close the client application.

Try This Summary

Y ou should now be fairly comfortable with the various functions and val ue expressions that
we reviewed in this chapter. Remember that each SQL implementation supports different
functions and value expressions, usually many more than what you have seen here. In fact, in
many cases, the functions and value expressions you saw in this chapter represent only thetip
of theiceberg. Be sureto review your product documentation to find out what functions and
value expressions are supported and how they’ re implemented. Y ou'll find them useful toolsin
avariety of situations and well worth the effort you invest now.

www.it-ebooks.info

http://www.it-ebooks.info/

250

SQL: A Beginner's Guide

Chapter 10 Self Test

. What is a set function?
. You're creating a SELECT statement that queries the ARTIST_CDS table. The table

includesthe ARTIST_NAME and CD_NAME columns. Y ou want your statement to return
the total number of rowsin the table. Which COUNT function should you include in your
SELECT clause?

A COUNT(*)

B COUNT(ARTIST NAME)

C COUNT(CD_NAME)

D COUNT(ARTIST NAME, CD_NAME)

. Which set function should you use to add together the values in a column?

A MAX
B COUNT
C SUM
D AVG

. Set functions require that the data be in some way.
. What are value functions?
. You're using the SUBSTRING function to extract characters from the COMPACT_DISC

column of the SALES DATES table. Y ou want to start with the third character and extract
eight characters. What parameters should you use in the SUBSTRING function?

. You're using the LOWER function on the Past Light value of the CD_NAME column. What

value will be returned?

. Which function returns a value that represents the current date and time aswell asinformation

related to UCT?
A LOCALTIMESTAMP
B CURRENT_DATE
C LOCALTIME
D CURRENT_TIMESTAMP

. What are four types of operators that you use in anumeric value expression?
10.

Y ou are querying data from the CD_TRACKING table. Y ou want to add values in
the IN_STOCK column to valuesin the ON_ORDER column. Y ou then want to double
the column totals. How do you set up the numeric value expression?

www.it-ebooks.info

http://www.it-ebooks.info/

11.
12.

13.
14.
15.

16.

Chapter 10: Working with Functions and Value Expressions 251

Which value expression do you use to set up a series of conditions that modify values?

You're creating a SELECT statement that includes a CA SE value expression. Y ou want
one of the conditions to specify that any ON_ORDER values greater than 10 should be
increased by 5. How should you set up the WHEN/THEN clause?

What isthe last word in a CASE value expression?
What isa CAST value expression?

You'requeryingthe DATE_SOLD columninthe SALES DATEStable. Y ouwant to convert
the valuesto a CHAR (25) data type, and you want the data displayed in the CHAR_DATE
column in the query results. How do you define the CAST value expression?

Which specia value can you use to identify the current SQL session user identifier?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Accessing Multiple
Tables

253

http://www.it-ebooks.info/

254

SQL: A Beginner's Guide

Key Skills & Concepts

Perform Basic Join Operations

Join Tables with Shared Column Names
Use the Condition Join

Perform Union Operations

An important component of any relational database is the relationship that can exist between

any two tables. This relationship allows you to tie datain one table to datain another
table. These sorts of relationships are particularly useful when you want to query related data
from more than one table and you want to retrieve that datain a meaningful way so that the
relationships between the tables are, for all practical purposes, invisible. One method that
SQL:2006 supports for querying data in this manner isto join the tablesin one statement.
A join isan operation that matches rows in one table with rows in another so that columns
from both tables may be placed side by side in the query results asif they all came from a
single table. SQL defines several types of join operations. The type you can use in any given
situation depends on your SQL implementation (with regard to statements supported and how
performance might be impacted), which data you want returned, and how the tables have been
defined. In this chapter, | discuss a number of operations that combine data from multiple
tables, including joins and unions, and provide details about how they’ re implemented and the
results you can expect when you use them.

Perform Basic Join Operations

One of the simplest types of joins to implement is the comma-separated join. In this type

of operation, you're required only to supply alist of tables (separated by commas) in the
FROM clause of the SELECT statement. Y ou can, of course, qualify the join in the WHERE
clause— which you would want to do to obtain meaningful data from the tables—but you're
not required to do so. However, before | discuss the WHERE clause, let’ sfirst take alook at
the comma-separated join at its most basic.

Suppose you want to display data from the CD_INVENTORY table and the
PERFORMERS table, shown in Figure 11-1. (The figure also includes the PERF_TY PE table,
which we'll be using in the “ Creating Joins with More than Two Tables’ section.) You can
view the datain the CD_INVENTORY and PERFORMERS tables by querying each table
separately, or you can join the tablesin one statement.

Tojoin the two tables, you can create a SELECT statement as simple as the following one:

SELECT *
FROM CD_| NVENTORY, PERFORVERS;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Accessing Multiple Tables
CD_INVENTORY PERFORMERS PERF_TYPE
CD_NAME: PERF_ID: IN_STOCK:| | PERF_ID:| PERF_NAME: TYPE_ID: TYPE_ID: | TYPE_NAME:
VARCHAR(60) INT INT INT VARCHAR(60) INT INT CHAR(20)
Famous Blue Raincoat |102 12 101 Joni Mitchell 10 10 Popular
Blue 101 24 102 Jennifer Warnes | 12 11 Blues
Court and Spark 101 17 103 B.B. King 11 12 Folk
Past Light 105 9 104 Bonnie Raitt 10 13 Rock
Fundamental 104 22 105 William Ackerman| 15 14 Classical
Blues on the Bayou 103 19 106 Bing Crosby 16 15 New Age
Longing in Their Hearts | 104 18 107 Patsy Cline 17 16 Classic Pop
Luck of the Draw 104 25 108 John Barry 18 17 Country
Deuces Wild 103 17 109 Leonard Cohen 12 18 Soundtrack
Nick of Time 104 11
Both Sides Now 101 13

Figure 11-1

Joining the CD_INVENTORY, PERFORMERS, and PERF_TYPE tables

The query produces what is known as a Cartesian product table (named after French

mathematician and philosopher René Descartes), which is alist of each row in one table joined

together with each row in the other table, as shown (in part) in the following query results:

Fanous Bl ue Rai ncoat
Bl ue

Court and Spark
Past Li ght

Fundanent al

Bl ues on the Bayou
Longing in Their Hearts
Luck of the Draw
Deuces Wl d

N ck of Tine

Bot h Si des Now
Fanous Bl ue Rai ncoat
Bl ue

Court and Spark
Past Li ght

PERF_ | D

IN_STOCK PERF ID PERF_NAMVE

19
18
25
17
11
13
12
24
17
9

Jenni f er
Jenni f er
Jenni f er
Jenni f er
Jenni f er
Jenni f er
Jenni f er
Jenni f er
Jenni f er
Jenni f er
Jenni fer \Warnes
Joni Mtchell

Joni Mtchell

Joni Mtchell

Joni Mtchell

10
10
10
10

Actually, the preceding SELECT statement would return far more rows than are shown here.
These results represent only a partid list. Becausethe CD_INVENTORY table contains 11 rows

www.it-ebooks.info

255

http://www.it-ebooks.info/

256

SQL: A Beginner's Guide

and the PERFORMERS table contains 9 rows, the entire query results would contain 99 rows.
Let'stake acloser ook at this. The Famous Blue Raincoat row inthe CD_INVENTORY table
has been joined with each row in the PERFORMERS table, which totals 9 rows. Each of the
remaining 10 rowsin the CD_INVENTORY tableis matched to each row in the PERFORMERS
table in the same way. Asaresult, there are 99 rows (11 x 9 = 99).

Asyou can see, these query results are not the most useful. However, you can generate
more meaningful resultsif you use a WHERE clause to create an equi-join (also written as
equijoin), which is atype of join that equates the values in one or more columnsin the first
table to the values in one or more corresponding columnsin the second table. Asyou might
guess from the name, the comparison operator in an equi-join is always an equal to (=)
operator. For example, you can qualify the previous SELECT statement in the following way:

SELECT *
FROM CD_| NVENTORY, PERFORMERS
WHERE CD_| NVENTORY. PERF_| D = PERFORMERS. PERF_I D;

Now your query results will include only those rows in which the value in the PERF_ID
column of the CD_INVENTORY table matches the value in the PERF_ID column of the
PERFORMERS table. Notice that you have to qualify the column names by adding the table
names. Y ou must do this whenever columns from different tables have the same name. If you
execute this statement, you' |l receive the following query results:

CD_NAME PERF ID IN STOCK PERF ID PERF_NAMVE TYPE I D

Fanous Bl ue Rai ncoat 102 12 102 Jenni fer Warnes 12
Bl ue 101 24 101 Joni Mtchell 10
Court and Spark 101 17 101 Joni M tchell 10
Past Li ght 105 9 105 W1 1liam Ackerman 15
Fundanent al 104 22 104 Bonni e Raitt 10
Bl ues on the Bayou 103 19 103 B.B. King 11
Longing in Their Hearts 104 18 104 Bonni e Raitt 10
Luck of the Draw 104 25 104 Bonni e Raitt 10
Deuces WId 103 17 103 B.B. King 11
Ni ck of Tine 104 11 104 Bonni e Raitt 10
Bot h Si des Now 101 13 101 Joni Mtchell 10

The data returned by this query is now alot more meaningful. Each CD is matched with
the appropriate performer, and only 11 rows are displayed, rather than 99. However, even these
query resultsinclude repetitive data (the PERF_ID column). In addition, you might find that
not only do you want to eliminate duplicate columns, but you also want to display only certain
columns and perhaps qualify your search condition even further.

Let’s modify the SELECT statement we' ve been looking at by specifying column namesin
the SELECT clause to limit the columns returned and adding another predicate to the WHERE
clause to limit the rows returned, as shown in the following example:

SELECT CD_| NVENTORY. CD_NAME, PERFORVERS. PERF_NAME, CD_| NVENTCRY. | N_STOCK
FROM CD_| NVENTORY, PERFORMERS

WHERE CD_| NVENTORY. PERF_| D = PERFORVERS. PERF_| D
AND CD_| NVENTCRY. | N_STOCK < 15;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Accessing Multiple Tables 257

In this statement, | have specified that three columns should be included in the query
results. Notice that I’ ve qualified the column names by including the table names. Notice also
that the WHERE clause includes an additional predicate, connected with the first predicate by
the AND keyword. Now any rows that are returned must also have IN_STOCK valueslessthan
15. If you execute this statement, you' Il receive the following query results:

CD_NAME PERF_NAVE I N_STOCK
Fanous Bl ue Rai ncoat Jennifer Warnes 12

Bot h Si des Now Joni M tchell 13

Past Li ght Wl liam Ackerman 9

Ni ck of Tine Bonnie Raitt 11

Asyou can see, we' ve refined the query results down to just the most essential information.
Of course, you can create all sorts of queries, depending on your needs, aslong as you follow
the basic guidelines for creating a comma-separated join:

The FROM clause must include all table names.
The WHERE clause should define ajoin condition, avoiding a Cartesian product.

The column references must be qualified when column names are shared among tables.

Aside from these guidelines, you' re free to create whatever sort of SELECT statement is
necessary to extract the information you need from the participating tables. And while using
the WHERE clause to specify the join condition was the original way to do joinsin SQL,
later in this chapter you will see that there are now other syntax variations using the JOIN
keyword, which most SQL programmers prefer over the original syntax. But no matter what
syntax you use, aways keep in mind that there needs to be some sort of logical connection
between the tables. This connection is often seen in the form of aforeign key, but that doesn’t
have to be the case. (For more information about foreign keys, see Chapter 4.) Tables can be
joined whether or not aforeign key exists. And although the equi-join is the most common,
you may occasionally find a different join comparison operator useful, such asless than (<) or
BETWEEN, in which casethejoin is referred to as atheta-join.

Usmg Corre|o’r|on Names

As| stated earlier, you must qualify your column references by adding table names to
those columns that share a name. However, as a general policy, it's agood ideato always
qualify column references when joining tables, whether or not it’s necessary. This makes
referencing the code at alater time much easier if the statement is fully self-documented.
However, as your queries become more complex, it can become increasingly tedious to
reenter table names every time you reference a column. Because of this, SQL supports
correlation names, or aliases, that can be used for the duration of a statement. A correlation
name is simply a shortened version of the actual table name that is used to simplify code
and make it more readable.

www.it-ebooks.info

http://www.it-ebooks.info/

258

SQL: A Beginner's Guide

Take, for example, the last SELECT statement that we looked at. Y ou can recast this
statement by using correlation names for the two tables:

SELECT c. CD NAME, p.PERF_NAME, c.|N_STOCK
FROM CD_| NVENTORY AS ¢, PERFORMERS AS p
WHERE c. PERF_ID = p. PERF_ID
AND c.|N_STOCK < 15;

The SELECT statement produces exactly the same results as the preceding statement, only
now the tables are referenced by different names, except in the FROM clause. In fact, you use
the FROM clause to define the aliases that are used in the rest of the statement. In this case, the
CD_INVENTORY tableisrenamed c, and the PERFORMERS table is renamed p. As aresult,
¢ and p must be used everywhere else in the SELECT statement when referring to those tables.
Once a correlation name has been defined, you cannot use the actual table name. And yes, this
can be confusing because you use the aliasin the SELECT clause, but yet it is not defined until
the FROM clause that follows the SELECT clause. However, it makes sense when you recall
that the FROM clause is always processed first.

To better understand how the renaming process works, let’srevisit the issue of how
SELECT statements are processed. As you might recall from Chapter 7, the FROM clauseis
processed first and the SELECT clauseis processed last. That iswhy the correlation names are
defined in the FROM clause. Once they are defined, all other clauses can (and must) use those
aliases when qualifying column references. The correlation names are used throughout the
remainder of the statement, but they only apply to the statement in which they are defined. If
you create anew SELECT statement, you must redefine those names in order to use them in the
new statement.

Asyou can see in the previous SELECT statement, a correlation name is defined
immediately after the actual table name. The new name follows the AS keyword. However,
the AS keyword is not required. In most implementations, you can aso use the following
convention to rename the tables within a query:

SELECT c. CD_NAME, p.PERF_NAME, c.|N_STOCK
FROM CD_| NVENTORY c, PERFORMERS p
WHERE c. PERF_ID = p.PERF_ID
AND c. | N_STOCK < 15;

Notice that only the new name is specified, without the AS keyword. This makes the SQL
statement that much simpler. In fact, some implementations, such as Oracle, do not allow
you to use the AS keyword at all, even though it is part of the SQL standard. Again, this last
SELECT statement will provide the same query results that you saw in the two previous
examples. Only the statement itself has been changed.

Creating Joins with More than Two Tables

Up to this point, the examples that we' ve looked at have joined only two tables. However,
you can use a comma-separated join to display data from more than two tables. If you refer
again to Figure 11-1, you'll see that the PERF_TY PE table isincluded in the illustration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Accessing Multiple Tables 259

You can, if you want, join all three tablesin asingle SELECT statement, as shown in the
following example:

SELECT c. CD _NAME, p.PERF_NAME, t.TYPE NAVE
FROM CD_| NVENTORY ¢, PERFORMERS p, PERF_TYPE t

WHERE c. PERF_I D = p. PERF_ID
AND p. TYPE_ID = t. TYPE_ID
AND TYPE_NAME = ' Popul ar';

In this statement, the FROM clause includes all three tables. In addition, the WHERE clause
provides two equi-join conditions: one that maps the PERF_ID columns and one that maps the
TYPE_ID columns. If you execute this statement, you'll receive the following query results:

CD_NAMVE PERF_NAME TYPE_NAME
Bl ue Joni Mtchell Popul ar
Court and Spark Joni Mtchell Popul ar
Fundarnent al Bonni e Raitt Popul ar
Longing in Their Hearts Bonnie Raitt Popul ar
Luck of the Draw Bonni e Raitt Popul ar
Ni ck of Tine Bonni e Raitt Popul ar
Bot h Si des Now Joni Mtchell Popul ar

Notice that information from all three tablesisincluded in the results: the name of the CD,
the name of the performer, and the category of performer. Even though a relationship might
exist between the CD_INVENTORY table and the PERFORMERS table, as well as between
the PERFORMERS table and the PERF_TY PE table, your query results provide a seamless
display that hides these relationships and shows only the information that you need.

Creating the Cross Join

In addition to the comma-separated join, SQL supports another type of operation called the
crossjoin. Thecrossjoinis nearly identical to the comma-separated join. The only difference
isthat, instead of separating column names with a comma, you use the CROSS JOIN
keywords. For example, let’s take a statement we used earlier and modify it by replacing the
comma with the CROSS JOIN keywords:

SELECT c. CD_NAME, p.PERF_NAME, c.|N_STOCK
FROM CD_| NVENTORY ¢ CROSS JO N PERFORMERS p
WHERE c. PERF_ID = p.PERF_ID
AND c. | N_STOCK < 15;

This statement returns three columns from two tables, and the WHERE clause contains
an equi-join condition. If you execute the statement, you'll receive the same results as if you
were using a comma-separated join. Using one over the other may simply be a matter of
determining which statement your SQL implementation supports and, if both are supported,
which provides better performance. In all likelihood, it will come down to a matter of personal
preference, with little advantage of one over the other.

www.it-ebooks.info

http://www.it-ebooks.info/

260

SQL: A Beginner's Guide

Ask the Expert

Q: it you'rejoining tables, it seemslikely that in some cases you will return duplicate

A

rowsin your query results, depending on how your SELECT statement is constructed.
How can you avoid duplicate rows?

Aswith most queries, it is possible to return duplicate rows. For example, the following
statement will return duplicate performer names and types.

SELECT P. PERF_NAME, T. TYPE_NAME

FROM CD_| NVENTORY C, PERFORMERS P, PERF_TYPE T
WHERE C. PERF_ID = P. PERF_ID

AND P. TYPE_ID = T. TYPE_I D;

For those performers who made more than one CD, the query resultswill contain a
row for each of those CDs. However, aswith any other SELECT statement, you can add the
DISTINCT keyword to your SELECT clause, as shown in the following example:

SELECT DI STI NCT P. PERF_NAME, T. TYPE_NAME
FROM CD_| NVENTORY C, PERFORMERS P, PERF_TYPE T
WHERE C. PERF_I D = P. PERF_ID
AND P. TYPE_ID = T. TYPE_I D;

This statement will return fewer rows than the previous statement (5 compared to 11),
and no rows will be duplicated. Also note that you can achieve the same results without the
DISTINCT keyword by using a GROUPBY clause that lists both columns.

Creating the Self-Join
Another type of join that you can create is the self-join, which can be either a comma-
separated join or acrossjoin. In aself-join, you create ajoin condition that references the same
table two times, essentialy joining the table to itself. Thisis almost always done to resolve
arecursive relationship, finding other rows in the same table that are related to the selected
rows. For example, suppose you add an EMPLOY EES table to your database, as shown in
Figure 11-2. The EMPLOQOY EES table includes a list of employee I Ds, employee names, and
the employee I Ds of their managers, who are also listed in the table. For example, the manager
of Mr. Jones (EMP_ID 102) is Ms. Smith (EMP_ID 101).

To create a self-join on thistable, you must create ajoin that treats the table as if it was
two separate tables with the same name, same columns, and same data:

SELECT a. EMP_I D, a. EMP_NAME, b. EMP_NAME AS NMANAGER
FROM EMPLOYEES a, EMPLOYEES b
VWHERE a. MN\GR = b. EMP_ID
ORDER BY a. EMP_I D

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Accessing Multiple Tables 261

EMP_ID: | EMP_NAME: MNGR:
INT VARCHAR(60) INT
101 Ms. Smith NULL
102 Mr. Jones 101
103 Mr. Roberts 101
104 Ms. Hanson 103
105 Mr. Fields 102
106 Ms. Lee 102
107 Mr. Carver 103

Figure 11-2 Self-joining the EMPLOYEES table

In this statement, each instance of the tableis given a correlation name. As aresult, you
now have (in this example) table aand table b. Y ou pull the EMP_ID value and EMP_NAME
value from table a, but you pull the MANAGER value from table b. The equi-join condition is
defined in the WHERE clause by equating the MNGR value in table awith the EMP_ID value
intable b. This providesthe link that treats one physical table astwo logical tables. When you
execute this statement, you receive the following query results:

EMP_ID EMP_NAME MANAGER

102 M. Jones Ms. Smith
103 M. Roberts M. Snmith
104 Ms. Hanson M. Roberts
105 M. Fields M. Jones
106 Ms. Lee M. Jones
107 M. Carver M. Roberts

The results include the employee ID and name of each employee, along with the name of
the employee’ s manager. As you can see, the self-join can be a handy tool to use in cases such
asthiswhere atable referencesitself.

Join Tables with Shared Column Names

SQL provides two methods for setting up joins that you can use when you' re working with
columns that have the same names. These two methods—the natural join and the named
column join—allow you to easily specify ajoin condition between two tables when one or
more columns within those tables are the same. In order to use either of these two methods, the
tables must meet the following conditions:

Thejoined columns must share the same name and have compatible data types.

The names of the joined columns cannot be qualified with table names.

www.it-ebooks.info

http://www.it-ebooks.info/

262

SQL: A Beginner's Guide

When you're using either the natural join or the named column join, each table must
share at least one column in common. For example, the TITLES IN_STOCK and the TITLE_
COST Stables, shown in Figure 11-3, have two columns that are the same: CD_TITLE and
CD_TYPE. Naotice that each set of matching columnsis configured with the same data type.
You can use anatural join or a named column join to join these two tables. | describe each
of these types of join operations in the next several sections, and | use the tablesin Figure 11-3
to illustrate how each of these methods work.

NOTE

Not all SQL implementations support natural joins or named column joins. For example,
SQL Server does not support either of these methods, MySQL supports natural joins but
not named column joins, and Oracle supports both.

Creating the Natural Join

The natural join automatically matches rows for those columns with the same name. Y ou do
not have to specify any sort of equi-join condition for natural joins. The SQL implementation
determines which columns have the same names and then tries to form a match. The drawback
to thisisthat you cannot specify which columns are matched up, although you can specify
which columns are included in the query results.

In the following example, anatural joinisused to jointhe TITLES IN_STOCK tableto
the TITLE_COSTS table:

SELECT CD_TI TLE, CD_TYPE,

WHERE s. | NVENTCORY > 15;

c. RETAI L
FROM TI TLES_I N_STOCK s NATURAL JO N TI TLE_COSTS c¢

TITLES_IN_STOCK TITLE_COSTS
CD_TITLE: CD_TYPE: |[INVENTORY: CD_TITLE: CD_TYPE: | WHOLESALE: | RETAIL:
VARCHAR(60) CHAR(20) [INT VARCHAR(60) CHAR(20) | NUMERIC(5,2) | NUMERIC(5,2)
Famous Blue Raincoat | Folk 12 Famous Blue Raincoat | Folk 8.00 16.99
Blue Popular 24 Blue Popular 7.50 15.99
Past Light New Age 9 Court and Spark Popular 7.95 15.99
Blues on the Bayou Blues 19 Past Light New Age |6.00 14.99
Luck of the Draw Popular 25 Fundamental Popular 8.25 16.99
Deuces Wild Blues 17 Blues on the Bayou Blues 7.25 15.99
Nick of Time Popular 11 Longing in their Hearts | Popular 7.50 15.99
Both Sides Now Popular 13 Deuces Wild Blues 745 14.99
Nick of Time Popular 6.95 14.99

Figure 11-3 Joining the TITLES_IN_STOCK and TITLE_COSTS tables

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Accessing Multiple Tables 263

In this statement, the tables are joined through the CD_TITLE and CD_TY PE columns.
Notice that neither column name is qualified—qualified names are not permitted in natural
joins. If either of these column names had been included in the WHERE clause, they still would
not be qualified. When you execute this statement, you receive the following query results:

CD_TITLE CD_TYPE RETAIL

Bl ues on the Bayou Bl ues 15. 99
Deuces Wld Bl ues 14.99
Bl ue Popul ar 15.99

Asyou can see, only three rows are returned. These are the rowsin which the CD_
TITLE valuesin both tables are equal and the CD_TY PE values are equal . In addition, the
INVENTORY values are greater than 15.

Creating the Named Column Join

Although natural joins can be handy for simple join operations, you might find that you do not
always want to include every matching column as part of the join condition. The way around
thisisto use a named column join, which allows you to specify which matching columns to
include. For example, suppose you want to include only the CD_TITLE in the join condition.
Y ou can modify the previous example as follows:

SELECT CD TITLE, s.CD _TYPE, c.RETAIL
FROM TI TLES_I N_STOCK s JO N TI TLE_COSTS c
USI NG (CD_TI TLE)
WHERE s. I nventory > 15;

In this statement, |’ ve removed the NATURAL keyword and added a USING clause,
which identifies the matching columns. Notice that the CD_TY PE column name has now been
qualified, but the CD_TITLE column has not. Only the columns identified in the USING clause
are not qualified. This statement returns the same results as the preceding example, although
this does not necessarily have to be the case, depending on the data in the tables. If, however,
you include both matching columns in the USING clause, you would definitely see the same
results as you saw in the natural join. By identifying all matching columnsin the USING clause,
you are performing the same function as a natura join.

Use the Condition Join

So far in this chapter, we' ve looked at comma-separated joins, cross joins, natural joins, and
named column joins. In comma-separated and cross joins, the equi-join condition is defined
in the WHERE clause. In natural joins, the equi-join condition is automatically assumed

on al matching columns. And in named column joins, the equi-join condition is placed on
any matching columns defined in the USING clause. The condition join takes an approach
different from any of these. In a condition join, the equi-join condition is defined in the

ON clause, which works in away very similar to the WHERE clause. However, despite the
use of the ON clause, a basic condition join is similar in many ways to the previous join
operations we' ve looked at, except that, unlike the natural join and named column join,

www.it-ebooks.info

http://www.it-ebooks.info/

264

SQL: A Beginner's Guide

the condition join allows you to match any compatible columns from one table against those
in another table. Column names do not have to be the same. The condition join is the syntax
preferred by most SQL programmers because of its clarity, flexibility, and wide support
across SQL implementations.

A condition join can be separated into two types of joins: inner joins and outer joins. The
difference between the two is the amount of data returned by the query. Aninner join returns only
those rows that meet the equi-join condition defined in the SELECT statement. In other words,
theinner join returns only matched rows. Thiswasthe origind join availablein SQL, and thusis
called a“standard join” by some SQL programmers, athough thisis amisnomer because all the
joins presented in this chapter are described in the SQL standard. An outer join, on the other hand,
returns matched rows and some or al of the unmatched rows, depending on the type of outer join.

NOTE

According to the SQL:2006 standard, natural joins and named column joins support
both inner and outer joins. However, this can vary from SQL implementation to
implementation, so be sure to check the product documentation. By default, a join is
processed as an inner join unless specifically defined as an outer join.

Creating the Inner Join

Now that you have a general overview of the condition join, let’s take a closer look at the inner
join. Theinner join is the most common of the condition joins and is specified by using the
INNER JOIN keywords. However, the INNER keyword is not required. If JOIN is used alone,
an inner join is assumed. In addition to the JOIN keyword (specified in the FROM clause), you
must also define an ON clause, which immediately follows the FROM clause. Let’s take alook
at an example to see how this works.

Suppose you want to jointhe CD_TITLEStable and the TITLES ARTISTS table, shown

in Figure 11-4. In the following example, an inner join has been created that is based on the
TITLE_ID columnsin the two tables:

SELECT t. TITLE, ta.ARTIST_ID
FROM CD_TITLES t INNER JO N Tl TLES_ARTI STS ta
ONt.TITLEID = ta. TITLE_ID
VWHERE t. TI TLE LIKE (' %8Bl ue%) ;

The statement uses the INNER JOIN keywordsto jointhe CD_TITLESand TITLES
ARTISTS tables. The equi-join condition is defined in the ON clause, using the TITLE_ID
column in each table. Notice that correlation names have been defined on both tables. The
SELECT statement is further qualified by the WHERE clause, which returns only those rows
that contain Blue in the TITLE column of the CD_TITLES table. When you execute this
query, you receive the following query results:

TITLE ARTI ST_I D

Fanobus Bl ue Rai ncoat 2001
Bl ue 2002
Bl ues on the Bayou 2013

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Accessing Multiple Tables

CD_TITLES TITLES_ARTISTS CD_ARTISTS
TITLE_ID: TITLE: TITLE_ID: | ARTIST_ID:| |ARTIST_ID:| ARTIST:
INT VARCHAR(60) INT INT INT VARCHAR(60)
101 Famous Blue Raincoat 101 2001 2001 Jennifer Warnes
102 Blue 102 2002 2002 Joni Mitchell
103 Court and Spark 103 2002 2003 William Ackerman
104 Past Light 104 2003 2004 Kitaro
105 Kojiki 105 2004 2005 Bing Crosby
106 That Christmas Feeling 106 2005 2006 Patsy Cline
107 Patsy Cline: 12 Greatest Hits 107 2006 2007 Jose Carreras
108 Carreras Domingo Pavarotti in Concert 108 2007 2008 Luciano Pavarotti
109 Out of Africa 108 2008 2009 Placido Domingo
110 Leonard Cohen The Best of 108 2009 2010 John Barry
111 Fundamental 109 2010 2011 Leonard Cohen
112 Blues on the Bayou 110 2011 2012 Bonnie Raitt
113 Orlando 111 2012 2013 B.B. King

112 2013 2014 David Motion

113 2014 2015 Sally Potter

113 2015

Figure 11-4 Joining the CD_TITLES, TITLES_ARTISTS, and CD_ARTISTS tables

Asyou can see, the results include information from both tables: the TITLE column
from the CD_TITLEStable and the ARTIST _ID column fromthe TITLES ARTISTStable.
Although this information can be useful, it might be better for some usersif they can view the
actual names of the artists, rather than numbers. The way to achieve thisisto include a third
tablein the join.
Let’sreturn to the previous example and add a second join condition to the CD_ARTISTS
table (shown in Figure 11-4). In the following example, the second condition is added

immediately after the original ON clause:

SELECT t. TITLE, a.ARTIST

FROM CD_TI TLES t

VWHERE t. TI TLE LI KE (' 9Bl ue%);

ONt.TITLE.ID = ta. TITLE_I D

INNER JO N CD_ARTI STS a

ON ta. ARTI ST_ID = a. ARTI ST_I D

INNER JO N TI TLES_ARTI STS ta

www.it-ebooks.info

265

http://www.it-ebooks.info/

266 SQl: A Beginner's Guide

Notice that the INNER JOIN keywords are repeated, followed by the name of the third
table, which is then followed by another ON clause. In this clause, the equi-join condition is
defined onthe ARTIST_ID columnsinthe TITLES ARTISTSand CD_ARTISTStables. Keep
in mind that you do not need to include the INNER keyword, nor do the columns specified in
the ON clause need to have the same name.

If you execute this statement, you' Il receive the following query results:

Fanous Bl ue Rai ncoat Jennifer Warnes
Bl ue Joni M tchell
Bl ues on the Bayou B.B. King

Notice that the artist names are now listed in the results. Also notice that the fact that three
tables have been used to retrieve thisinformation is invisible to whoever views the query
results.

Creating the Outer Join

As| mentioned earlier in this chapter, an outer join returns all matched rows and some or al
unmatched rows, depending on the type of outer join you create. SQL supports three types of
outer joins:

Left Returnsall matched rows and al unmatched rows from the left table—the table to
the left of the JOIN keyword.

Right Returnsall matched rows and all unmatched rows from the right table—the table
to the right of the JOIN keyword.

Full Returns al matched and unmatched rows from both tables.

NOTE

Because it is a relatively new feature, few SQL implementations currently support full
outer joins—Oracle and SQL Server do, but MySQL does not.

An outer join follows the same syntax as an inner join, except that, rather than using the
INNER JOIN keywords (or just the JOIN keyword), you use LEFT OUTER JOIN, RIGHT
OUTER JOIN, or FULL OUTER JOIN. Note that the OUTER keyword is optional. For
example, you can specify LEFT JOIN instead of LEFT OUTER JOIN.

The best way to illustrate the differences between the types of outer joinsisto show you
examples of query results from each type. To illustrate the differences, | usethe CD_INFO
table and the CD_TY PE table, shown in Figure 11-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Accessing Multiple Tables
CD_INFO CD_TYPE
TITLE: TYPE_ID: STOCK: TYPE_ID: | TYPE_NAME:
VARCHAR(60) CHAR(4) INT CHAR(4) | CHAR(20)
Famous Blue Raincoat FROK 19 FROK Folk Rock
Blue CPOP 28 CPOP Classic Pop
Past Light NEWA 6 NEWA New Age
Out of Africa STRK 8 CTRY Country
Fundamental NPOP 10 STRK Soundtrack
Blues on the Bayou BLUS 11 BLUS Blues

JAZZ Jazz

Figure 11-5 Joining the CD_INFO and CD_TYPE tables

In the first example, | define an inner join on the two tables, just to show you how the

query results would normally look:

SELECT i.TITLE, t.TYPE_NAME,

FROM CD_INFO i JO N CD TYPE t
ONi.TYPE_ID = t.TYPE_I D

i . STOCK

This statement returns the following query results:

Fanobus Bl ue Rai ncoat
Bl ue

Past Li ght

Qut of Africa

Bl ues on the Bayou

In most cases, the inner join will provide all the information you need. But suppose you
want to include the unmatched rows from the CD_INFO table. In that case, you would create a

TYPE_NAVE

Fol k Rock
Cl assic Pop

New Age

Soundt r ack

Bl ues

left outer join, as shown in the following example:

SELECT i.TITLE, t.TYPE_NAME,

i . STOCK

FROM CD_I NFO i LEFT OQUTER JO N CD_TYPE t
ONi.TYPE_ID = t.TYPE_I D

www.it-ebooks.info

267

http://www.it-ebooks.info/

268

SQL: A Beginner's Guide

Notice that I ve replaced JOIN (for INNER JOIN) with LEFT OUTER JOIN. Asl|
mentioned earlier, you can omit the OUTER keyword in most implementations. If you execute
this statement, you’ll receive the following query results:

TYPE_NAVE

Fol k Rock 19

Fanobus Bl ue Rai ncoat

Bl ue Classic Pop 28
Past Li ght New Age 6
Qut of Africa Soundt r ack 8
Fundanent al NULL 10
Bl ues on the Bayou Bl ues 11

Asyou may have noticed, the Fundamental row is now included in the query results.
Although this row doesn’t include matched columns, it is still included in the query results
because it is part of the left table. For thisrow, the TYPE_NAME column is assigned a null
value because no logical value can be returned for this column. The null value serves as a
placeholder.

Y ou can a'so return the unmatched rows from the CD_TY PE table, which isthe table to
the right of the JOIN keyword:

SELECT i.TITLE, t.TYPE_NAME, i.STOCK
FROM CD_INFO i RI GHT QUTER JO N CD_TYPE t
ONi.TYPE_ID = t.TYPE_I D

This statement is nearly the same as the preceding statement, except that RIGHT has been
specified. The statement returns the following query results:

TYPE_NAVE

Fol k Rock 19

Fanobus Bl ue Rai ncoat

Bl ue Classic Pop 28
Past Li ght New Age 6
NULL Country NULL
Qut of Africa Soundt r ack 8

Bl ues on the Bayou Bl ues 11
NULL Jazz NULL

This time the unmatched columns from the right table are included in the results, and null
values are shown for the TITLE and STOCK column.

If you want to return all unmatched rows, you would need to modify the statement to
define afull outer join:

SELECT i.TITLE, t.TYPE_NAME, i.STOCK
FROM CD_ I NFO i FULL OUTER JO N CD_TYPE t
ONi.TYPE_ID = t.TYPE_I D

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Accessing Multiple Tables 269

This statement will return the following query results:

TITLE TYPE_NAVE STOCK
Fanous Bl ue Rai ncoat Fol k Rock 19

Bl ue Classic Pop 28
Past Li ght New Age 6

Qut of Africa Soundt r ack 8
Fundanent al NULL 10

Bl ues on the Bayou Bl ues 11
NULL Jazz NUL L
NULL Country NULL

Asyou can see, all matched and unmatched rows are included in the query results. Notice that
al six rows areincluded from the CD_INFO table and all seven rows are included from the
CD_TYPE table.

Perform Union Operations

SQL provides yet one more method to combine data from different tablesin a manner that is
abit different from the joins shown earlier in this chapter. The UNION operator is a method
you can use to combine the results of multiple SELECT statementsinto asingle result set,
essentially concatenating rows from one query with rows from another. In contrast with
joins, which add columns from multiple tables side by side, unions add rows to the end of
the result set. In order to use the UNION operator, each SELECT statement must produce
union-compatible columns; meaning that each must produce the same number of columns, and
corresponding columns must have compatible data types. For example, if the first column of
a SELECT statement produces a character column, then other SELECT statements combined
with it using the UNON operator must have a character data type in the first column rather
than a numeric or datetime data type.

Let’'stake alook at an example to show you what | mean. Figure 11-6 shows two tables:
the CDS_CONTINUED table and the CDS DISCONTINUED table. The tables are nearly
identical in structure but serve two different purposes, which should be obvious from the
table names.

Suppose you want to combine the data in these two tables so you can view information
from both tables. Y ou can, of course, execute two separate SELECT statements, or you can
combine those statements into one statement that combines the information, as shown in the
following example:

SELECT *
FROM CDS_CONTI NUED
UNI ON
SELECT *
FROM CDS_DI SCONTI NUED;

www.it-ebooks.info

http://www.it-ebooks.info/

270 SQL: A Beginner's Guide

CDS_CONTINUED CDS_DISCONTINUED

CD_NAME: CD_TYPE: | IN_STOCK: CD_NAME: CD_TYPE: | IN_STOCK:
VARCHAR(60) CHAR(4) |INT VARCHAR(60) CHAR(4) INT
Famous Blue Raincoat | FROK 19 Court and Spark FROK 3

Blue CPOP 28 Kojiki NEWA 2

Past Light NEWA 6 That Christmas Feeling XMAS 2

Out of Africa STRK 8 Patsy Cline: 12 Greatest Hits| CTRY 4
Fundamental NPOP 10 Leonard Cohen The Best of | FROK 3

Blues on the Bayou BLUS 11 Orlando STRK 1

Figure 11-6 Joining the CDS_CONTINUED and CDS_DISCONTINUED tables

Asyou can see, the two SELECT statements are combined using the UNION operator. If
you execute this statement, you' Il receive the following results:

CD_NANVE CD TYPE | N_STOCK
Bl ue CPOP 28
Bl ues on the Bayou BLUS 11
Court and Spark FROK 3
Fanous Bl ue Rai ncoat FROK 19
Fundanent al NPOP 10
Koj i ki NEWA 2
Leonard Cohen The Best O FROK 3
O | ando STRK 1
Qut of Africa STRK 8
Past Li ght NEWA 6
Patsy Cine: 12 Geatest Hits CITRY 4
That Christnas Feeling XVAS 2

The resultsinclude 12 rows of data, six rows from each table. Y ou can limit the results
even further by specifying search conditionsin WHERE clauses. Y ou can also specify that
your search return only specific columns, asin the following statement:

SELECT CD_TYPE
FROM CDS_CONTI NUED
UNI ON
SELECT CD_TYPE
FROM CDS_DI SCONTI NUED;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Accessing Multiple Tables 271

Now when you generate your query, only values from the CD_TY PE column are displayed:

NPCOP
STRK
XVAS

Notice that only 8 rows are returned, rather than 12. Thisis because duplicate rows are
filtered out by default. If you want all rows included in the query results, regardless of whether
there are duplicate values, you can add the ALL keyword after the UNION operator, as shown
in the following example:

SELECT CD_TYPE
FROM CDS_CONTI NUED
UNI ON ALL
SELECT CD_TYPE
FROM CDS_DI SCONTI NUED;

This statement will return 12 rows rather than 8, with several values duplicated.

Asyou can see, the UNION operator is useful only in very specific cases. If you want
more control over your query results, you should use one of the several types of joins
supported by SQL.

Ask the Expert

Q: Arethere any typesof joinsthat are comparableto using a UNION operator ?

A: SQL :2006 actually supports a union join that performs many of the same functions as the
UNION operator. The union joinis similar to the full outer join, in terms of how query
results are consolidated. However, the full outer join allows you to specify (in the ON
clause) which columns will be matched, while aunion join does not. In addition, the union
join has generally not been implemented in SQL relational database management systems
(RDBMSs), and it has been deprecated in the SQL :2006 standard, which meansthat itisa
candidate for deletion from future versions of SQL. So for al practical purposes, the union
join is not something with which you need to be concerned.

www.it-ebooks.info

http://www.it-ebooks.info/

272

SQL: A Beginner's Guide

In addition, the SQL:2006 standard supports the INTERSECT and EXCEPT operators,
which have syntax similar to UNION. INTERSECT works like UNION except it returns
only rows that appear in the results of both SELECT statements. EXCEPT, on the other hand,
returns only rows that appear in the results of the first SELECT statement but not in the results
of the second one. SQL Server supports both INTERSECT and EXCEPT. Oracle and MySQL
support INTERSECT but use the operator MINUS instead of EXCEPT.

Querying Multiple Tables

In this chapter, you have been introduced to a variety of join operations as well asthe UNION
operator, which, technically, is not considered ajoin. Now you will have the opportunity

to practice several of these join techniques by querying data from the INVENTORY

database. Specifically, you will query some of the tables that are configured with foreign key
relationships, which are the sort of relationships that tie data from one table to data in another
table. Because you will not be changing any data, you should feel free to try out various types
of join operations, beyond what we review in this Try This exercise. Y ou can download the
Try_This 11.txt file, which contains the SQL statements used in this Try This exercise.

Step by Step

1. Open the client application for your RDBM S and connect to the INVENTORY database.

2. Thefirst type of operation you'll perform is a commarseparated join on the ARTISTS and
ARTIST_CDStables. Thejoin will usethe ARTIST_ID column to establish the equi-join
condition. Enter and execute the following SQL statement:

SELECT * FROM ARTI STS a, ARTIST_CDS c
VWHERE a. ARTI ST_I D = c. ARTI ST_I D

Y our query results should include 19 rows and should include the ARTIST _ID columns
from both tables as well asthe ARTIST_NAME, PLACE_OF BIRTH, and COMPACT _
DISC_ID columns.

3. You will now modify the preceding statement so that it also joinsthe COMPACT_DISCS
table. That way, you can display the actual name of the CDs. In addition, you will specify the
names of the columns that should be returned. Enter and execute the following SQL statement:

SELECT d.CD TITLE, a.ARTI ST_NAVE, a.PLACE_OF Bl RTH
FROM ARTI STS a, ARTI ST_CDS ¢, COMPACT DI SCS d
WHERE a. ARTI ST_I D c. ARTI ST_I D
AND d. COVPACT DI SC I D = c. COMPACT DI SC I D;

Y our query results should again include 19 rows. However, this time the results will display
only the CD_TITLE, ARTIST_NAME, and PLACE_OF_BIRTH columns.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Accessing Multiple Tables 273

4. Now let’sturn the last SELECT statement into a cross join. Enter and execute the following
SQL statement:

SELECT d. CD TITLE, a. ARTI ST _NAMVE, a.PLACE OF Bl RTH
FROM ARTI STS a CROSS JO N ARTI ST_CDS ¢ CROSS JO N COVPACT_DI SCS d
WHERE a. ARTI ST_I D c. ARTIST_I D
AND d. COVPACT DI SC I D = c. COMPACT DI SC I D;

Y ou should receive the same query results as you did in the preceding SELECT statement.

5. The next type of statement that you'll try isa condition join. Asyou probably recall,
acondition join can be either an inner join or an outer join. Thefirst typeyou'll try is
theinner join. In this statement, you'll join together three tables: COMPACT_DISCS,
COMPACT DISC _TYPES, and MUSIC_TYPES. Enter and execute the following SQL
Statement:

SELECT d. CD_TI TLE, t.TYPE_NAMVE
FROM COMPACT_DI SCS d JO N COMPACT_DI SC_TYPES dt
ON d. COVPACT DI SC I D = dt. COVPACT DI SC I D
JO N MJSI C_TYPES t
ON dt.MUSIC TYPE_ID = t. TYPE_I D,

Y our query results should include 24 rows. Only the CD_TITLE column and the TY PE_
NAME column should be displayed.

6. Now let's modify the last SELECT statement to create a full outer join on both join
conditions. Enter and execute the following SQL statement:

SELECT d. CD_TITLE, t.TYPE_NAME
FROM COVPACT DI SCS d FULL JO N COVPACT DI SC TYPES dt
ON d. COVPACT DI SC I D = dt. COMPACT DI SC I D
FULL JO N MJSI C TYPES t
ON dt. MUSIC TYPE ID = t. TYPE I D;

Y our query results should now include 26 rows rather than 24. Thisis because the MUSIC _
TYPES table includes two rows that are unmatched: the Jazz row and the International row.
In other words, no CDs match up to either of these two music types.

7. Close the client application.

Try This Summary
Inthis Try This exercise, you created comma-separated, cross, and condition joins. The
condition joinsincluded inner and outer joins. Asyou can see, join operations provide a great
dedl of flexibility when querying data from the tables in your database. However, they’ re not
the only solution when accessing data from more than one table. A subquery will often provide
the same functionality asajoin. In Chapter 12, | discuss subqueriesin great detail. As you will
see, they provide yet one more way for you to access data from multiple tables.

www.it-ebooks.info

http://www.it-ebooks.info/

274 SQl: A Beginner's Guide

Chapfer 11 Self Test

. You are using a comma-separated join operation to join two tables. The first table contains
five rows and the second table contains three rows. How many rows will the Cartesian
product table contain?

. What constitutes an equi-join condition in a WHERE clause?
. Which clause contains the equi-join condition in a commarseparated join?

. What basic guidelines should you follow when creating a comma-separated join?

O b W N

. You're creating ajoin on two tables. Y ou assign correlation names to each of these tables.
Which names should you use in the SELECT clause: the correlation names or the actual
table names?

6. Which type of join is nearly identical to the comma-separated join?
A Conditionjoin
B Natural join
C Crossjoin
D Named columnjoin
7. How many tables are contained in a self-join?
8. What guidelines must you follow when creating natural joins or named column joins?
9. What is the difference between a natural join and a named column join?
10. Which type of join contains a USING clause to specify the equi-join condition?
11. What are the two types of condition joins?
12. What are the three types of outer joins?
13. Which type of condition join should you use if you want to return only matched rows?
A Innerjoin
B Left outer join
C Right outer join
D Full outer join
14. Which type of condition join returns all matched and unmatched rows?
A Innerjoin
B Left outer join
C Right outer join

D Full outer join

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Accessing Multiple Tables 275

15. Which type of join contains an ON clause?
A Crossjoin
B Comma-separated join
C Natural join
D Condition join

16. A(n) operator allows you to combine separate SELECT statementsinto one
statement in order to join datain a query result.

17. What keyword can you use with a UNION operator to return all rows in the query results,
regardless of whether there are duplicate values?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Using Subqueries to
Access and Modify
Data

277

. IC ere 1or terms o
www.it-ebooks.info

http://www.it-ebooks.info/

278

SQL: A Beginner's Guide

Key Skills & Concepts

Create Subqueries That Return Multiple Rows
Create Subqueries That Return One Value
Work with Correlated Subqueries

Use Nested Subqueries

Use Subqueriesto Modify Data

S ubqueries, like joins, provide away to access data in multiple tables with asingle query.
A subquery can be added to a SELECT, INSERT, UPDATE, or DELETE statement in
order to allow that statement to use the query results returned by the subquery. The subquery
isessentialy an embedded SELECT statement that acts as a gateway to datain a second
table. The data returned by the subquery is used by the primary statement to meet whatever
conditions have been defined in that statement. In this chapter, | discuss how subqueries

are used in various statements, particularly SELECT statements, and provide examples that
demonstrate how to create subqueries and what type of query results to expect.

Create Subqueries That Return Multiple Rows

In Chapter 9, | include several examples of subqueries that are used to demonstrate certain
types of predicates, such asIN and EXISTS. This chapter, in many ways, is an extension of
that discussion because of the way in which subqueries are most commonly implemented—in
the WHERE clause of a SELECT statement. An understanding of these types of subqueries
goes hand in hand with an understanding of how certain predicates are formulated to create
specific search conditions, search conditions that rely on those subqueries to return data from
areferenced table.

Y ou can divide subqueries in a WHERE clause into two general categories: those that
can return multiple rows and those that can return only one value. In this section, | discuss
the first of these categories. In the next section, “ Create Subqueries That Return One Value,”
| discuss the second category. As | expand on each subject, you'll no doubt recognize the
statement formats from my discussion of predicates. Although this information might seem
a bit repetitive (which iswhy | keep it brief), it is presented here not only to provide a
cohesive overview of subqueries, but also to provide a different perspective. In other words,
rather than looking at subqueries through the perspective of the predicate, we'll ook directly
at the subquery itself.

Despite the fact that my discussion focuses on subqueries that are implemented through
the WHERE clause, the use of subqueriesis not limited to that clause. Indeed, you can include

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Using Subqueries to Access and Modify Data 279

subqueriesin a SELECT clause or HAVING clause. However, using subqueriesin a SELECT
clauseis not very common. In addition, you would use subqueriesin aHAVING clause only
when defining search conditions on grouped data. Even so, the principles for using subqueries
inaHAVING clause are similar to using them in a WHERE clause. For these reasons, my
discussion here focuses on using subqueries in the WHERE clause. As you become amore
advanced SQL programmer, you will likely want to try using subqueries in other places within
a SELECT statement.

Using the IN Predicate

The first type of subquery that we'll look at is the type used within the IN predicate. As
you might recall from Chapter 9, the IN predicate compares values from a column in the
primary table to values returned by the subquery. If the column value is in the subquery
results, that row (from the primary table) is returned in the query results of the SELECT
statement. For example, suppose you want to query data from the CD_STOCK table,
shown in Figure 12-1.

CD_STOCK CD_ARTISTS

CD_TITLE: STOCK: TITLE: ARTIST_NAME:

VARCHAR(60) INT VARCHAR(60) VARCHAR(60)

Famous Blue Raincoat | 13 Famous Blue Raincoat Jennifer Warnes

Blue 42 Blue Joni Mitchell

Court and Spark 22 Court and Spark Joni Mitchell

Past Light 17 Past Light William Ackerman

Kojiki 6 Kojiki Kitaro

That Christmas Feeling | 8 That Christmas Feeling Bing Crosby

Out of Africa 29 Patsy Cline: 12 Greatest Hits Patsy Cline

Blues on the Bayou 27 After the Rain: The Soft Sounds of Erik Sat| Pascal Roge

Orlando 5 Out of Africa John Barry
Leonard Cohen The Best of Leonard Cohen
Fundamental Bonnie Raitt
Blues on the Bayou B.B. King
Orlando David Motion

Figure 12-1 Querying the CD_STOCK and CD_ARTISTS tables

www.it-ebooks.info

http://www.it-ebooks.info/

280

SQL: A Beginner's Guide

Y our query results should include only those rows whose CD_TITLE value matches one
of the values returned by the subquery. The subquery results should include only those rows
that contain an ARTIST_NAME value of Joni Mitchell (from the CD_ARTISTStable). The
following SELECT statement will return this data:

SELECT *
FROM CD_STCOCK
WHERE CD TI TLE I N
(SELECT TITLE
FROM CD_ARTI STS
VWHERE ARTI ST_NAME = 'Joni Mtchell");

Let'stake acloser look at the subquery in this statement. Asyou can seg, itisincluded in
the IN predicate, after the IN keyword. The subquery is basically a SELECT statement that
includes a search condition defined in the WHERE clause:

SELECT TITLE
FROM CD_ARTI STS
VWHERE ARTI ST_NAME = 'Joni Mtchel |’

If you were to execute only the subquery, you would receive the following query results:

Bl ue
Court and Spark

These results are then used by the IN predicate to compare them to the CD_TITLE values
inthe CD_STOCK table. When you execute the entire SELECT statement, you receive the
following results:

CD_TITLE STOCK

Bl ue 42
Court and Spark 22

Notice that only two rows are returned from the CD_STOCK table. These rows represent
the two CDs performed by Joni Mitchell. Even though the CD_STOCK table does not include
artist information, you can still tie data from the two tables together because they include
similar columns, alowing you to use the data returned by a subquery.

NOTE

In the case of the example table shown in Figure 12-1, it is conceivable that a foreign
key would be configured on the CD_TITLE column of the CD_STOCK table to reference
the TITLE column of the CD_ARTISTS table. However, a foreign key relationship is not
required. The primary requirement that a subquery must meet is that it return results that
are |ogicq||y compqrqb|e to the referencing column values. Otherwise, the subquery
serves no purpose, and no rows will be returned by the primary SELECT statement
because the condition of the IN predicate cannot be met.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Using Subqueries to Access and Modify Data

Using the EXISTS Predicate

In some circumstances, you might want your subquery to return only a value of true or false.
The content of the data itself is unimportant, in terms of meeting a predicate condition. In
this case, you can use an EXISTS predicate to define your subquery. The EXISTS predicate
evaluates to true if one or more rows are returned by the subquery; otherwise, it evaluates
to false.

For an EXISTS predicate to be useful, the associated subquery should include a search
condition that matches values in the two tables that are being linked through the subquery.
(I explain this type of subquery in more detail in the “Work with Correlated Subqueries’
section later in this chapter.) This search condition is similar to the equi-join condition
used in certain join operations. (See Chapter 11 for information about joins and equi-join
conditions.) For example, returning to the CD_STOCK table and the CD_ARTISTS tables
(shown in Figure 12-1), we can create a SELECT statement that uses an EXISTS predicate
to query the CD_ARTISTS table;

SELECT *
FROM CD_STOCK s
WHERE EXI STS
(SELECT TITLE
FROM CD_ARTI STS a
VWHERE a. ARTI ST_NAME
AND s. CD_TI TLE

‘Joni Mtchell'
a. TITLE);

In this statement, each row returned by the primary SELECT statement is eval uated
against the subquery. If the condition specified in the EXISTS predicate is true, the row is
included in the query results; otherwise, the row is omitted. When the specified condition
istrue, that means at |east one row has been returned by the subquery. In this case, the row
returned will include an ARTIST_NAME value of Joni Mitchell. In addition, the CD_TITLE
valuein the CD_STOCK table will bethe same asthe TITLE valueinthe CD_ARTISTS
table. Asaresult, only two rows will be returned by the entire SELECT statement:

CD_TI TLE STOCK

Bl ue 42
Court and Spark 22

As was the case with the IN predicate, the EXISTS predicate allows you to use a subquery
to access information in another table. Even though the CD_STOCK table doesn’t include
information about the performing artists, the subquery allows you to return data that is based
on artist information.

NOTE

The manner in which an EXISTS predicate is processed can sometimes be a little unclear.
Be sure to refer to Chapter 9 for a more complete discussion of that predicate.

www.it-ebooks.info

281

http://www.it-ebooks.info/

282

SQL: A Beginner's Guide

Using Quantified Comparison Predicates

The IN and EXISTS predicates are not the only predicates that rely on the type of subqueries
that can return one or more rows for the search condition to evaluate to true. Quantified
comparison predicates—SOME, ANY, and ALL—also use subqueries that can return
multiple rows. These predicates are used in conjunction with comparison operators to
determine whether any or all returned values (from the subquery) meet the search condition
set by the predicate. The SOME and ANY predicates, which perform the same function,
check to see whether any returned values meet the search requirement. The ALL predicate
checks to see whether all returned values meet the search requirement.

When a quantified comparison predicate is used, the values in a column from the primary
table are compared to the values returned by the subquery. Let’stake alook at an example to
clarify how this works. Suppose your database includes the RETAIL_PRICES table and the
SALES PRICEStable, shown in Figure 12-2.

Now suppose that you decide to query the RETAIL_PRICES table, but you want to return
only those rows with an R_PRICE value greater than all valuesinthe S PRICE columnin the
SALES PRICEStable, for those S PRICE values less than 15.99. To set up this query, you
can create a statement similar to the following:

SELECT CD_NAME, R PRI CE
FROM RETAI L_PRI CES
WHERE R PRI CE > ALL
(SELECT S _PRICE
FROM SALES_PRI CES
VWHERE S PRICE < 15.99);

Notice that the subguery returns only one column of data—the S PRICE valuesthat are
less than 15.99. The valuesin the R_PRICE column are then compared to the subquery results.

RETAIL_PRICES SALES_PRICES

CD_NAME: R_PRICE: AMOUNT:| | CD_TITLE: S_PRICE:
VARCHAR(60) NUMERIC(5,2) [INT VARCHAR(60) NUMERIC(5,2)
Famous Blue Raincoat 16.99 5 Famous Blue Raincoat 14.99

Blue 14.99 10 Blue 12.99

Court and Spark 14.99 12 Court and Spark 14.99

Past Light 15.99 11 Past Light 14.99

Kojiki 15.99 4 Kojiki 13.99

That Christmas Feeling 10.99 8 That Christmas Feeling 10.99

Patsy Cline: 12 Greatest Hit§ 16.99 14 Patsy Cline: 12 Greatest Hits| 16.99

Figure 12-2 Querying the RETAIL_PRICES and SALES_PRICES tables

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Using Subqueries to Access and Modify Data 283

If aspecific R_PRICE valueis greater than all the subquery results, that row is returned. When
you execute the entire SELECT statement, you receive the following results:

CD_NAME R PRI CE
Fanobus Bl ue Rai ncoat 16. 99
Past Li ght 15. 99
Koj i ki 15. 99

Patsy Cine: 12 Geatest Hits 16. 99

Asyou can see, only four rows are returned. For each row, the R_PRICE value is greater than
the highest price returned by the subquery, which in this case would be 14.99.

Ask the Expert

Q: You statethat a SELECT clause can include a subquery. How would you include the
subquery in that clause?

A: You caninclude the subquery in a SELECT clause just as you would a column name. The
values returned from the subquery are inserted in the query results in the same way column
values would be inserted. For example, you can insert a subquery in a SELECT clause of a
statement that is used to query the CD_STOCK table (shown in Figure 12-1). The subquery
pulls data from the CD_ARTISTS table, as shown in the following example:

SELECT CD_TI TLE,
(SELECT ARTI ST_NANME
FROM CD_ARTI STS
VWHERE s. CD_TI TLE

a. TITLE) AS ARTI ST,
STOCK FROM CD_STOCK s;

L2

In the main part of this statement, values are pulled fromthe CD_TITLE and
STOCK columns. In addition to these values, alist of artistsis returned by the subquery.
The artists' names are matched up to their CDs by using a comparison predicate to
compare valuesinthe CD_TITLE and TITLE columns.

When using a subquery in a SELECT clause, you must be careful not to create a
subquery that returns only one value when multiple values are needed. When you return
only one value, that value might be inserted into all rows returned by the main SELECT
statement, depending on how you’ ve constructed your query.

Create Subqueries That Return One Value
So far, we have looked at subqueries that can return one or more rows of data. Thisisfinein
many circumstances; however, there might be times when you want your subquery to return
only one value so that you can compare the values in one column with a single subquery value.
In these cases, you can use comparison operators.

www.it-ebooks.info

http://www.it-ebooks.info/

284

SQL: A Beginner's Guide

Asyou learned in Chapter 9, the comparison operators include equal to (=), not equal
to (<>), less than (<), greater than (>), less than or equal to (<=), and greater than or equal
to (>=). For example, let’s take another look at the RETAIL_PRICES and SALES PRICES
tables (shown in Figure 12-2). Suppose you want to retrieve data from the RETAIL_PRICES
table. You want the R_PRICE values to equal the maximum price listed inthe S PRICE
column of the SALES PRICES table. The following query allows you to return the
necessary data:

SELECT CD _NAME, R PRI CE
FROM RETAI L_PRI CES
WHERE R PRI CE =
(SELECT MAX(S_PRI CE)
FROM SALES PRI CES)

Notice that the subquery returns only one value, which is 16.99 in this case. As aresult,
only rows with an R_PRICE value of 16.99 are returned by the SELECT statement, as shown
in the following query results:

Fanmpus Bl ue Rai ncoat 16. 99
Patsy Cine: 12 Geatest Hits 16.99

Y ou do not have to use an aggregate function (such as MAX) to return asingle valuein
asubquery. For example, the subquery’s WHERE clause might include a condition that will
return only one value. The important point to remember is that you must be sure that your
subquery returns only one value; otherwise, you will receive an error when using a comparison
operator. However, if you' ve set up your subquery properly, you can use any of the comparison
operators to compare column values. In addition, you’ re not limited to numbers. Character
strings can aso be compared in comparison predicates.

NOTE

In many cases, you can use predicates such as IN with subqueries that return only
one value. However, these predicates can support only the conditions equal to (=)
or not equal to (<>), not the conditions less than (<), less than or equal to (<=),
greater than (>), or greater than or equal to (>=), all of which you can use with
comparison operators.

Work with Correlated Subqueries

In the “Using the EXISTS Predicate” section earlier in this chapter, | mention that, for the
EXISTS predicate to be useful, it should include in the subquery a search condition that
matches values in the two tables that are being linked through the subquery. To illustrate this
point, | include in that section an example SELECT statement that contains such a subquery.
I'll repeat that statement here for your convenience:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Using Subqueries to Access and Modify Data 285

SELECT *
FROM CD_STOCK s
WHERE EXI STS
(SELECT TITLE
FROM CD_ARTI STS a
WHERE a. ARTI ST_NAVE
AND s. CD_TI TLE

"Joni Mtchell'
a. TITLE);

This statement references the CD_STOCK and CD_ARTISTStablesin Figure 12-1.
Notice that the subquery includes a predicate that matches CD_TITLE valuesinthe CD_
STOCK tableto TITLE valuesin the CD_ARTISTS table. This matching of valuesis similar
to the equi-join conditions you define when joining tables.

The reason I’ ve returned to this statement is that it includes a type of subquery | have not
discussed before—the correlated subquery. A correlated subquery is one that is dependent
on the outer statement in some way. In this case, the outer statement is the main SELECT
statement that includes a SELECT clause, a FROM clause, and a WHERE clause, which
itself contains a subquery. Because that subquery referencesthe CD_STOCK table, whichis
acomponent of the outer statement, the subquery is dependent on that statement in order to
return data.

In most of the subquery examples we' ve looked at in this chapter, the subqueries have
stood independent of the outer statement. For example, in the following SELECT statement
(which was used as an example in the “Using the IN Predicate” section earlier in this chapter),
the subquery is not dependent on the outer statement:

SELECT *
FROM CD_STOCK
WHERE CD_TITLE I N
(SELECT TITLE
FROM CD_ARTI STS
WHERE ARTI ST_NAME = 'Joni Mtchell"');

In this case, the subquery merely returns results, which are then used in an outer
statement. The subquery is evaluated (executed) just once, and the results are used by the
main statement as necessary. However, with a correlated subquery, the subquery must
often be reevaluated for each row returned by the outer statement. The correlated subquery
cannot be evaluated just once because at least one of the values changes for each row. For
example, looking again at the SELECT statement that contains the correlated subquery
(as part of the EXISTS predicate), you can see that the CD_TITLE value changes for
each row returned by the outer SELECT statement. This can have a severe impact on
performance, particularly when you are returning a large number of values. In these cases,
you might find that creating a join provides better performance than a correlated subquery,
but of course much depends on how your particular SQL implementation handles joins
and correlated subqueries.

www.it-ebooks.info

http://www.it-ebooks.info/

286

SQL: A Beginner's Guide

Ask the Expert

Q: You state that creating ajoin might be a better alternativeto creating a correlated
subquery. How would you restate the preceding SELECT statement asajoin?

A: inthe preceding SELECT statement, you' ve aready identified your equi-join condition

in the subquery, and you already know the names of the two tables that are being joined.
One way you can modify this statement is to use a comma-separated join, as shown in the
following example:

SELECT CD_TI TLE, STOCK
FROM CD_STOCK s, CD_ARTI STS a
VWHERE a. ARTI ST_NAME = 'Joni M tchel |’
AND s. CD_TI TLE = a. TITLE;

Notice that the CD_TITLE and TITLE columns are still equated with each other.
This statement produces the same results as the statement that included the correl ated
subquery, only the SQL implementation is not being forced to reprocess a subquery for
each row returned by the outer statement. Instead, the WHERE clause merely takes the
results returned by the FROM clause and applies the search conditions defined in the
two predicates. For more information about join operations, see Chapter 11.

Use Nested Subqueries

Up to this point, we have looked at SELECT statements that include only one subquery.
However, a SELECT statement can contain multiple subqueries. The SQL:2006 standard
does not limit the number of subqueries that can be included in a statement, although practical
application, performance, and the limitations of the SQL implementation all play an important
role in determining what a reasonable number might be. Make certain that you refer to the
documentation for your SQL implementation to determine what restrictions might apply to the
use of subqueries.

One way you can include multiple subqueriesin a SELECT statement isto include them
as different components of the statement. For example, your WHERE clause might include
two predicates, each of which contains a subquery. Another way in which multiple subqueries
can beincluded in a SELECT statement isto nest one subquery inside the other. These are the
types of subquerieswe'll ook at in this section.

A nested subquery is one that is a component of another subquery. The “outer” subquery
actsasaprimary SELECT statement that includes a subquery within one of its clauses. In
most cases, the nested subquery will be part of a predicate in the WHERE clause of the outer
subquery. Let’stake alook at an example to help clarify this concept. The example uses the
DISC _INVENTORY, DISC_ARTISTS, and DISC_TY PES tables, shown in Figure 12-3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Using Subqueries to Access and Modify Data
DISC_INVENTORY DISC_ARTISTS DISC_TYPES
DISC_NAME: ARTIST_ID:] STOCK_AMOUNT: ARTIST_ID:| ARTIST_NAME: DISC_TYPE_ID: DISC_TYPE_ID: | DISC_TYPE_NAME:
VARCHAR(60) INT INT INT VARCHAR(60) INT INT CHAR(20)
Famous Blue Raincoat| 102 12 101 Joni Mitchell 10 10 Popular
Blue 101 24 102 Jennifer Warnes | 12 11 Blues
Court and Spark 101 17 103 B.B. King 11 12 Folk
Past Light 105 9 104 Bonnie Raitt 10 13 Rock
Fundamental 104 22 105 William Ackerman| 15 14 Classical
Blues on the Bayou 103 19 106 Bing Crosby 16 15 New Age
Longing in Their Hearts | 104 18 107 Patsy Cline 17 16 Classic Pop
Luck of the Draw 104 25 108 John Barry 18 17 Country
Deuces Wild 103 17 109 Leonard Cohen 12 18 Soundtrack
Nick of Time 104 11

Both Sides Now

101

13

Figure 12-3 Querying the DISC_INVENTORY, DISC_ARTISTS, and DISC_TYPES tables

Suppose that you want to display the names of CDs and the amount in stock for CDs
that are performed by blues artists. The DISC_INVENTORY table contains the names of the
CDs and the amount in stock for each one, the DISC_ARTISTS table contains the names of
the artists, and the DISC_TY PES table contains the names of the artist types. The DISC_
INVENTORY and DISC_ARTISTS tables are related through the ARTIST_ID column in each
table. The DISC_ARTISTS and DISC_TY PEStables are related through the DISC_TYPE_ID
column in each table. In order to return the information you need, you must query all three
tables, as shown in the following SELECT statement:

SELECT DI SC_NAME, STOCK_AMOUNT
FROM DI SC_| NVENTORY
WHERE ARTI ST ID IN
(SELECT ARTI ST ID

FROM DI SC_ARTI STS

WHERE DI SC TYPE ID I N
(SELECT DI SC TYPE_I D
FROM DI SC_TYPES
WHERE DI SC_TYPE_NAME = ' Bl ues’

)).

In this statement, the primary SELECT statement queriesthe DISC_INVENTORY table.
The statement includes a subquery in an IN predicate in the WHERE clause. The subquery is
a SELECT statement that queries the DISC_ARTISTS table. The subquery, like the primary
SELECT statement, includes an IN predicate in the WHERE clause, and this predicate also
includes a subquery. Asis the case with the outer subquery, the inner subquery includes a
SELECT statement. However, in this case, the statement is querying the DISC_TY PES table.

www.it-ebooks.info

287

http://www.it-ebooks.info/

288

SQL: A Beginner's Guide

To better understand how the entire SELECT statement works, let’s first look at the inner
subquery. If you were to execute this statement alone, it would return avalue of 11, whichis
the DISC_TYPE_ID vauefor the DISC_TYPE_NAME value of Blues. The outer subquery
usesthisvaluein the IN predicate to return those rows with aDISC_TYPE_ID value of 11.

In this case, the only row returned is the B.B. King row, which hasan ARTIST _ID value of 103.
The ARTIST_ID valueisthen used in the IN predicate of the primary SELECT statement

to return only those rows that contain an ARTIST _ID value of 103. If you execute the entire
SELECT statement, you'll receive the following query results:

DI SC_NAME STOCK_AMOUNT

Bl ues on the Bayou 19
Deuces Wld 17

Asyou can see, only two rows are returned. Notice that the results don’t include any
information from the DISC_ARTISTS table or the DISC_TY PES table, although these two
tables areintegral to arriving at these results. If you had wanted, you could have nested
additional subqueriesin your statement. Each one would have been processed in the same
manner as the subqueries shown in the previous example.

Use Subqueries to Modify Data

At the beginning of this chapter, | told you that you can use subqueries to modify data as well

as query data. We'll now ook at the three primary data modification statements—INSERT,
UPDATE, and DEL ETE—and how they use subqueries to modify datain your database.

For each statement, | provide an example that modifiesdatainthe TITLE_TYPES table,

shown in Figure 12-4. Each example includes a subquery that returns data from the TITLES
INVENTORY table. Thisinformation is used as a basis for the datamodificationinthe TITLE_
TYPEStable.

NOTE

This section focuses on the subqueries used in the INSERT, UPDATE, and DELETE
statements. For more information about the statements themselves, see Chapter 8.

Using Subqueries to Insert Data

An INSERT statement, as you no doubt recall, allows you to add data to an existing table.
Y ou can add that data directly to the table or through a view that allows you to insert data
into the underlying table. If you use a subquery in an INSERT statement, you must include
it as one of the values defined in the VALUES clause. For example, suppose you want

to insert datainto the TITLE _TYPES table. The VALUES clause should include a value
for the CD_TITLE column and the CD_TY PE column. Now suppose that you know the
TITLE_ID value (from the TITLES INVENTORY table), but you don’'t know the exact

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Using Subqueries to Access and Modify Data 289

TITLES_INVENTORY TITLE_TYPES
TITLE_ID: | TITLE: STOCK: CD_TITLE: CD_TYPE:
INT VARCHAR(60) INT VARCHAR(60) CHAR(20)
101 Famous Blue Raincoat 12 Famous Blue Raincoat Folk
102 Blue 24 Blue Popular
103 Past Light 9 Court and Spark Popular
104 Blues on the Bayou 19 Past Light New Age
105 Luck of the Draw 25 Fundamental Popular
106 Deuces Wild 17 Blues on the Bayou Blues
107 Nick of Time 11 Longing in their Hearts Popular
108 Both Sides Now 13 Deuces Wild Blues
Nick of Time Popular

Figure 12-4 Modifying the TITLE_TYPES table

name of the CD. Y ou can create an INSERT statement that pulls the name of the CD from
the TITLES INVENTORY table and inserts that value into the TITLE _TYPES table, as
shown in the following example:

I NSERT | NTO TI TLE_TYPES VALUES
((SELECT TITLE FROM TI TLES_| NVENTORY WHERE TI TLE ID = 108), 'Popul ar');

Notice that the subquery appears as one of the valuesin the VALUES clause. The subquery
returns the value of Both Sides Now. This value and the value Popular are inserted into the
TITLE_TYPEStable.

For the most part, using a subquery in an INSERT statement is arelatively simple process.
However, you must be sure that your subquery returns only one value; otherwise, you will
receive an error. In addition, the value must be compatible with the data type and any other
constraints defined on the target column.

NOTE

Not all SQL implementations support the use of a subquery as a value in the INSERT
statement. For example, SQL Server does not allow you to insert values in this manner,

although Oracle and MySQL do.

www.it-ebooks.info

http://www.it-ebooks.info/

290

SQL: A Beginner's Guide

Using Subqueries to Update Data

An UPDATE statement allows you to modify existing datain atable. Aswith an INSERT
statement, you can modify data directly or through aview, if that view is updatable. To use a
subquery in an UPDATE statement, you can include it in a predicate in the WHERE clause, as
you did with the SELECT statements we looked at earlier in this chapter. For example, if you
want to update the Both Sides Now row that was inserted in the preceding INSERT statement
example, you can create an UPDATE statement similar to the following:

UPDATE Tl TLE_TYPES
SET CD_TYPE = ' Fol k'
WHERE CD_TITLE IN
(SELECT TITLE
FROM TI TLES_| NVENTORY
VWHERE TI TLE_ID = 108);

In this statement, the IN predicate compares the valuesin the CD_TITLE column of
the TITLE_TYPES table with the value returned by the subquery. The subquery isasimple
SELECT statement that returns data from the TITLES INVENTORY table. The subquery
here works the same way as you saw in earlier SELECT statement examples. In this case, the
subquery returns a value of Both Sides Now. Thisvalue isthen used to determine which row
inthe TITLE_TY PES table to update. Once this row is determined, the CD_TY PE valueis
changed to Folk.

Subqueries are not limited to the WHERE clause of an UPDATE statement. Y ou can also
use asubquery in the SET clause to provide a value for the identified column. For example,
suppose you want to once again update the Both Sides Now row that was inserted in the
preceding INSERT statement example. Y ou can pull avalue from the TITLES INVENTORY
table to use as the new value for the TITLE_TYPES table, as shown in the following UPDATE
statement:

UPDATE Tl TLE_TYPES
SET CD_TITLE =
(SELECT TITLE
FROM TI TLES_| NVENTORY
VWHERE TITLE_ID = 108)
WHERE CD_TI TLE = 'Both Sides Now ;

Notice that, instead of specifying avalueinthe SET clause (to the right of the equals sign),
you can specify a subquery. The subquery returns avalue of Both Sides Now and inserts that
valueintothe TITLE TYPEStable.

NOTE

In the preceding example, all we've done is write the same value over the existing one.
The purpose of this statement is only fo demonstrate how a subquery can be used in a
SET clause. Even if a new value were being written into the row, the principles would
be the same. For example, if the title had changed in the TITLES_INVENTORY table, the
preceding statement would update the fitle in the TITLE_TYPES table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Using Subqueries to Access and Modify Data 291

Using Subqueries to Delete Data

A DELETE statement is similar to an UPDATE statement, in terms of how a subquery can

be used in the WHERE clause. Y ou simply include a predicate that contains a subquery.

In the following example, | delete the Both Sides Now row that | modified in the previous
UPDATE statement example. To determine which row to delete, | use a subquery to return the
appropriate TITLE vauefromthe TITLES INVENTORY table:

DELETE TI TLE_TYPES
WHERE CD_TITLE IN
(SELECT TITLE
FROM TI TLES_| NVENTORY
VWHERE TI TLE_ID = 108);

Asyou would expect, the subquery returns the value of Both Sides Now. The IN predicate
compares this value to the valuesin the CD_TITLE column of the TITLE_TYPES table. Every
row with matching valuesis deleted. In this case, only one row hasa CD_TITLE value of Both
Sides Now, so that isthe row that is deleted.

Working with Subqueries

In this chapter, | discussed how you can use subqueries to query and modify data. The
subqueries we looked at, for the most part, relied on the use of predicates to define the
subquery condition. In this Try This exercise, you will create a number of SELECT statements
that include WHERE clauses. Those clauses will each include a predicate that defines a
subquery, alowing you to access data from more than one table. Y ou will also modify

data by using an UPDATE statement that contains subqueries in the SET clause and the
WHERE clause. For this exercise, as with previous Try This exercises, you will be using the
INVENTORY database. Y ou can download the Try_This 12.txt file, which contains the SQL
statements used in this exercise.

Step by Step
1. Open the client application for your RDBMS and connect to the INVENTORY database.

2. Thefirst SELECT statement that you'll create allows you to return the name and number of
CDsthat are produced by MCA Records. Enter and execute the following SQL statement:

SELECT CD TI TLE, | N_STOCK
FROM COWPACT_DI SCS
WHERE LABEL_ID IN
(SELECT LABEL_ID
FROM CD_LABELS
WHERE COVPANY_NAME = ' MCA Records');

This statement uses a subquery to return the LABEL_ID value for MCA Records, which is
stored in the CD_LABEL Stable. The value isthen used in the IN predicate to compare it to
the LABEL _|ID valuesinthe COMPACT_DISCStable. Y our query should return four rows.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

292 SQl: A Beginner's Guide

3. In the next statement, you will use an EXISTS predicate to define a subquery. The predicate
determines whether the COMPACT_DISCS table contains any rowswithaCD_TITLE
value of Out of Africa. Enter and execute the following SQL statement:

SELECT COMPANY_NAVE
FROM CD_LABELS |
WHERE EXI STS
(SELECT *
FROM COVPACT DI SCS d
WHERE | . LABEL_I D = d.LABEL_I D
AND CD TITLE = 'Out of Africa);

The statement will return the name of the company that produces the Out of Africa CD,
which in this caseis MCA Records. The MCA Records row inthe CD_LABELStableisthe
only row that evaluatesto true for the subquery in the EXISTS predicate.

4. In the next statement you create, you'll determine the distributor names for those CDs in
which the LABEL_ID valueinthe CD_LABELStableisequal to any LABEL _ID values
returned by the subquery. Enter and execute the following SQL statement:

SELECT COVPANY_NANE
FROM CD_LABELS
WHERE LABEL_I D = ANY
(SELECT LABEL_ID
FROM COVPACT DI SCS
WHERE | N_STOCK > 30);

The subquery returns only those LABEL _ID values for rows that contain an IN_STOCK
value greater than 30. When you execute this statement, the names of only three companies
should be returned.

5. Now you'll create a SELECT statement that uses a comparison predicate to define a subquery.
The subquery returnsthe LABEL_ID value (fromthe CD_L ABEL Stable) for Capitol Records.
That value is then compared to the LABEL _ID valuesin the COMPACT_DISCStable.
Enter and execute the following SQL statement:

SELECT CD TITLE, | N_STOCK
FROM COWPACT_DI SCS
VWHERE LABEL_I D =
(SELECT LABEL_ID
FROM CD_LABELS
WHERE COWVPANY_NAME = ' Capitol Records');

This statement should return only two rows.

6. Now let’ sredo the statement in step 5 and turn it into a comma-separated join. Remember
that you should assign correlation names to the tables to simplify the code. Also remember

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Using Subqueries to Access and Modify Data 293

that the WHERE clause should include an equi-join condition that matches up LABEL _ID
values. Enter and execute the following SQL statement:

SELECT CD TITLE, | N_STOCK

FROM COMPACT DI SCS d, CD LABELS |
WHERE d. LABEL_I D | . LABEL_I D

AND COVPANY_NAME = ' Capitol Records';

Asyou can seg, this statement is alot simpler than the subquery used in the preceding
statement, and it returns the same results.

7. Inthe next statement that you' Il create, you will use a nested subquery to return values to
the outer subquery. Enter and execute the following SQL statement:

SELECT ARTI ST_NAME
FROM ARTI STS
WHERE ARTI ST ID IN
(SELECT ARTIST_ID
FROM ARTI ST_CDS
WHERE COMPACT DISC ID IN
(SELECT COWPACT DI SC ID
FROM COVPACT DI SCS
WHERE CD TITLE = 'Past Light'));

The inner subquery returns the COMPACT_DISC_ID valuefor the Past Light CD. The
outer subquery then uses this value to determine the ARTIST_ID value for that CD. This
valueisthen used in the main SELECT statement, which returns one value: William
Ackerman. He isthe artist on the Past Light CD.

8. Now we're going to move on to using subqueriesin an UPDATE statement. However,
let’ sfirst take alook at the table we're going to update, which isthe COMPACT_DISC
TYPES table. In order to know what to update, we're going to use values from the
COMPACT_DISCStable and the MUSIC_TY PES table to help identify the IDs used in the
COMPACT_DISC_TYPES table. Enter and execute the following SQL statement:

SELECT CD_TI TLE, TYPE_NAME

FROM COVPACT_DI SCS d, COVPACT_DI SC TYPES t, MJUSIC TYPES m
WHERE d. COVPACT DI SC I D = t. COMPACT DI SC | D

AND t. MJSI C_TYPE_I D m TYPE_I D

AND CD TI TLE ' Koj i ki ;

In this statement, you join three tables to return the CD_TITLE valueand TYPE_NAME
value for the Kojiki CD. The CD isclassified as New Age.

9. Inthis step, you will update the row in the COMPACT_DISC_TY PES table that matches
the COMPACT_DISC_ID for the Kojiki CD with the MUSIC_TY PE_ID vaue for the

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

294 SQl: A Beginner's Guide

New Age music type. You'll change the music type from New Ageto Classical. Enter and
execute the following SQL statement:

UPDATE COVPACT_DI SC_TYPES
SET MUSI C_TYPE_ID =
(SELECT TYPE_ID
FROM MJSI C_TYPES
VWHERE TYPE_NAME = 'C assical')
WHERE COMPACT_DI SC ID =
(SELECT COVMPACT_DI SC I D
FROM COVPACT_DI SCS
VWHERE CD TITLE = 'Kojiki')
AND MJSI C TYPE_ID =
(SELECT TYPE_ID
FROM MJSI C_TYPES
WHERE TYPE_NAME = ' New Age');

The statement uses a subquery in the SET clause to pull the TYPE_ID value from the
MUSIC_TY PEStable. The statement also uses two subqueries in the WHERE clause of the
UPDATE statement to determine which row to update in the COMPACT_DISC TYPES
table. Thefirst subquery in the WHERE clause returns the COMPACT_DISC_ID valuefor
the Kojiki CD. The second subquery returnsthe TY PE_ID value for the Classical music type.

10. Now let’'s query the COMPACT_DISC_TY PES table to view the changes. Enter and
execute the following SQL statement:

SELECT CD_TITLE, TYPE NAME

FROM COVPACT_DI SCS d, COVPACT_DI SC TYPES t, MJUSIC TYPES m
WHERE d. COVPACT DI SC I D = t. COMPACT DI SC | D

AND t. MJSI C_TYPE_I D m TYPE_I D

AND CD TI TLE ' Koj i ki ;

The TYPE_NAME value should now be Classical.

11. Finally, you will return the COMPACT _DISC_TYPEStableto its original state. Enter and
execute the following SQL statement:

UPDATE COVPACT_DI SC TYPES
SET MJUSIC TYPE ID =
(SELECT TYPE_ID
FROM MJSI C_TYPES
VWHERE TYPE_NAME = ' New Age')
WHERE COWVPACT _DISC ID =
(SELECT COWPACT _DISC ID
FROM COVPACT_DI SCS
WHERE CD_TI TLE
AND MUSI C_TYPE_I D
(SELECT TYPE_ID
FROM MJSI C TYPES
WHERE TYPE_NAME = 'Cl assical');

"Kojiki')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Using Subqueries to Access and Modify Data

This statement is similar to the preceding UPDATE statement that you used, only now the
New Age music type will be used (which was the original music type).

12. Let's check the table one more time. Enter and execute the following SQL statement:

SELECT CD_TI TLE, TYPE_NAME
FROM COMPACT_DI SCS d, COVPACT DI SC_TYPES t, MJSIC TYPES m
WHERE d. COVPACT DI SC I D = t. COVPACT DI SC I D
AND t. MJUSI C_TYPE_I D m TYPE_I D
AND CD TI TLE "Koj i ki

The COMPACT_DISC_TY PES table should now contain the same values as it did when
you started this exercise.

13. Close the client application.

Try This Summary

Inthis Try Thisexercise, you created several SELECT statements that contained subqueries.
These subqueries were included in predicates that permit the subqueries to return one or
more rows. Specifically, the WHERE clauses included the IN, EXISTS, and ANY predicates.
In addition, you created a SELECT statement that included a comparison predicate, which
permits the subquery to return only one row. Y ou also created a SELECT statement that
included nested subqueries. These subqueries used the IN predicate. In addition to querying
datain the INVENTORY database, you updated the COMPACT_DISC_TY PEStable by using
subqueries that accessed other tables. Asyou can see, subqueries provide you with a versatile
tool for accessing datain your database. However, when creating statements that include
subqueries, you should alwaystry to determine whether a join would perform better in any
given situation.

Chapter 12 Self Test

1. In which types of statements can you include subqueries?
A SELECT
B INSERT
C UPDATE
D DELETE
2. What is a subquery?

www.it-ebooks.info

http://www.it-ebooks.info/

296

SQL: A Beginner's Guide

3. Inwhich clauses of a SELECT statement can you include a subquery?
A SELECT
B WHERE
C GROUPBY
D HAVING
4. Into what two general categories can you divide subqueriesin a WHERE clause?
5. Which types of predicates are you prevented from using with subqueries that return
multiple rows?
A IN and EXISTS predicates
B SOME, ANY, and ALL predicates
C Comparison predicates
D Quantified comparison predicates
6. When does an EXISTS condition evaluate to true?
7. What should be included in a subquery’ s search condition when using an EXISTS
predicate?
8. In addition to numbers, data can be compared in comparison predicates.
9. What are the three quantified comparison predicates?
10. Which types of predicates allow you to use subqueries that return multiple rows?
A IN and EXISTS predicates
B SOME, ANY, and ALL predicates
C Comparison predicates
D Quantified comparison predicates
11. What is a correlated subquery?
12. How often isa correlated subquery evaluated when a SELECT statement is processed?
13. A(n) is asubquery that is a component of another subquery.
14. How many subqueries can beincluded in a SELECT statement, as specified by the SQL
standard?
15. Which clausein an INSERT statement can contain a subquery?
16. How many values can a subquery return if it isused in an INSERT statement?
17. Which clausesin an UPDATE statement can contain a subquery?

www.it-ebooks.info

http://www.it-ebooks.info/

Part I”

Advanced Data Access

. IC ere 1or terms o
www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

Creating SQL-Invoked
Routines

299

http://www.it-ebooks.info/

300

SQL: A Beginner's Guide

Key Skills & Concepts

Understand SQL -Invoked Routines

Create SQL-Invoked Procedures

Add Input Parametersto Y our Procedures
Add Local Variablesto Your Procedures
Work with Control Statements

Add Output Parametersto Y our Procedures
Create SQL-Invoked Functions

Pri or to the release of SQL:1999, the American National Standards Institute (ANSI) and the
International Organization for Standardization (1SO) published an interim standard in 1996
that added procedures and functions, along with related language, to the existing SQL standard
as Part 4. This new publication, also referred to as SQL/PSM, or PSM-96 (PSM standing for
persistent stored module), represented the first step toward including procedural capabilities
within SQL itself. Part 4 (SQL/PSM) was revised and incorporated into the SQL :1999
standard, and revised again for the SQL:2003 standard. These procedural capabilities define,
among other components, the creation of SQL-invoked routines—specifically, SQL-invoked
procedures and SQL -invoked functions. In this chapter, we'll take a close ook at both
procedures and functions, including how to create them and how to invoke them once they’re
created. We'll also take alook at a number of examples that demonstrate the various types of
procedures and functions and the components that make up each.

Understand SQL-Invoked Routines

| first introduced you to the concept of SQL-invoked routines in Chapter 2, where | describe
the schema objects that can exist within an SQL environment. As you might recall, an SQL-
invoked routine is afunction or procedure that can be invoked from SQL. Both functions and
procedures are stored sets of predefined SQL statements that perform some sort of action on
the datain your database. For example, you can define a SELECT statement and store it as an
SQL-invoked procedure. Once you have created that procedure, you can invoke it simply by
calling its name and, if appropriate, supplying the necessary parameters.

Unlike views, all SQL-invoked routines support the use of parameters, which are values
passed to and from aroutine when you invoke that routine. A function can receive input parameters
and return a va ue based on the expression included in the function definition. A procedure
can pass input and output parameters. Regardless of whether it's a procedure or function,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQlInvoked Routines 301

an SQL -invoked routine can be a schema object or can be embedded in an SQL server module,
which isaso aschemaobject. (A moduleis an object that contains SQL statements or routines.)

NOTE

SQL:2006 also supports a third type of SQL-invoked routine—the SQL-invoked method.
A method, which is used in user-defined types, is a type of function that performs
predefined tasks. SQL supports two types of user-defined types: structured types and
distinct types. Methods are used in structured types. The subject of structured user-defined
types is beyond the scope of the book, so | won't be covering methods in this chapter.

Most SQL implementations support some form of the SQL-invoked routinein their
products. Within various SQL implementations, SQL-invoked procedures are often referred
to as stored procedures, and SQL -invoked functions are often referred to as user-defined
functions. Regardless of the names used, the fundamental concepts are the same, and the
basic functionality supported is similar from product to product. However, while concepts and
functionality are similar, the implementation of SQL-invoked routines can vary widely, and
the specifics of how SQL -invoked routines are created and called, differ not only between the
SQL standard and the individual product, but also between the products themselves. The main
reason for thisis that many products had already implemented PSM technology prior to the
initial publication of the SQL/PSM standard in 1996. As aresult, proprietary functionality has
persisted among the different implementations, with few SQL products conforming to the actual
SQL/PSM standard, or, consequently, the PSM-related portion of the SQL:2006 standard.

Despite the product differences, it is still worthwhile to have alook at the basic concepts
behind SQL-invoked routines, asthey are defined in the SQL standard. The standard provides
insight into the underlying structure used by the various SQL implementations and can give you
acohesive overview of the basic concepts shared by all products that implement SQL-invoked
procedures and functions. However, as with other SQL -related technology, you should refer to
the product documentation for your specific SQL implementation. In few cases will you be able
to use pure (standard) SQL to create an implementati on-specific SQL-invoked routine.

SQL-Invoked Procedures and Functions

As | mentioned earlier, an SQL-invoked routine can be either an SQL-invoked procedure

or an SQL-invoked function (or, in the case of user data types, an SQL-invoked method).

SQL -invoked procedures and functions are similar in many ways, athough there are some

basic differences. Table 13-1 provides an overview of the main differences and similarities.
The easiest way to distinguish between SQL -invoked procedures and functionsis to think

of aprocedure as a set of one or more stored SQL statements, similar to how aview stores a

SELECT statement (as described in Chapter 5) and to think of afunction as atype of operation

that returns avalue, similar to set functions such as SUM or AV G (as described in Chapter 10).

Working with the Basic Syntax
There are many similarities between the syntax used to create procedures and that used to create
functions. In fact, they’ re defined as one syntactic element in SQL:2006. In addition, the syntax

www.it-ebooks.info

http://www.it-ebooks.info/

302

SQL: A Beginner's Guide

Procedures

Functions

Invoked from SQL statements, not from
a programming language.

Invoked from SQL statements, not from a programming
language.

Can be written in SQL or another
programming language.

Can be written in SQL or another programming language.

Invoked by using the CALL statement.

Invoked as a value in an expression.

Support input and output parameters,
although neither is required.

Support inputForomefers, although none are required.
You cannot define output or input/output parameters for
a function. The function returns a single output value.

Table 13-1 Differences and similarities of SQL procedures and functions

is, at itsmost basic level, similar to how procedures are created in most SQL implementations.
Let'stake alook at the syntax for each one to better understand their basic elements.

Using the CREATE PROCEDURE Statement
Thefirst syntax we'll look at isthat for creating a procedure. At its most basic, the CREATE
PROCEDURE statement |ooks like the following:

CREATE PROCEDURE <procedure name>
([<parameter declaration> [{ , <parameter declaration>} ...]])

[<routine characteristic> . . .]
<routine body>

Asyou can see, you must provide a name for the procedure—in the CREATE
PROCEDURE clause—followed by zero or more parameter declarations, which are enclosed
in parentheses. If no declarations are defined, you must still provide the parentheses. If
more than one declaration is defined, you must separate them using commas. Following the
parameter declarations, you have the option of defining one or more routine characteristics.
For example, you can specify whether the routine is an SQL routine or one written in another

language such as C or Java.

NOTE

The type of routine characteristics that you can define vary greatly among the SQL
implementations, not only in terms of which options are supported, but also with regard
to how they’re defined. Consequently, | will keep my discussion of these options short,
so be sure to check the product documentation for more information. For example,

the procedural extensions in Oracle are defined using a language that Oracle calls
PL/SQL, while in SQL Server and Sybase, the procedural extensions are part of a
language called Transact-SQL, both of which are significantly different from the SQL
standard. On the other hand, MySQL and DB2 generally follow the SQL standard in

defining functions and stored procedures.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQl-Invoked Routines

After you've defined the procedure’ s characteristics, you' re ready to add the SQL
statements, which are represented by the <routine body> placeholder. Many of the statements
you'll usein this section will be similar to those you’ ve already seen in this book. However,
the SQL/PSM standard introduced new language el ements that make procedures more
dynamic. Aswe continue through this chapter, we'll look at many of these elements and how
they’re used to extend the functionality of SQL-invoked procedures.

Using the CREATE FUNCTION Statement
Now let’stake alook at the statement used for creating an SQL-invoked function. As you can
seein the following syntax, a function contains afew more elements than a procedure:

CREATE FUNCTION <function name>

([<parameter declaration> [{ , <parameter declaration>} ...]])
RETURNS <data type>

[<routine characteristic> . . .]

[STATIC DISPATCH]

<routine body>

Aswith procedures, you must first provide a name for your function, followed by the
parameter declaration list. Functions support only input parameters, and if none are provided,
you must still use the parentheses. If more than one input parameter is provided, you must
separate them using commas. Following the parameter declarationsis the RETURNS clause.

Y ou must provide the data type for the value that’ s returned by the function. After that, you
can include any of the optional routine characteristics, depending on what options your SQL
implementation supports. Next isthe STATIC DISPATCH clause. Y ou must specify this clause
if you use a user-defined type, areference datatype, or an array data type. Because these

types are al beyond the scope of this book, you do not need to be concerned with the STATIC
DISPATCH clause at thistime.

The last thing that you must include in the procedure definition is, of course, the routine
body. Aswith procedures, these are the SQL statements that make up the core of your
procedure. However, there is one additional element you'll find in the routine body that is not
included in a procedure’ s routine body—a RETURN statement (not to be confused with the
RETURNS clause). The RETURN statement specifies the value that will be returned by the
function. Later in this chapter, in the “ Create SQL-Invoked Functions” section, I'll discussthe
RETURN statement and other elements of the CREATE FUNCTION statement in more detail.

Create SQL-Invoked Procedures

Now that you have an overview of SQL-invoked routines and the syntax used to create them,
let’ stake acloser look at how to create SQL-invoked procedures. A procedure can perform
most functions that you can perform by using SQL statements directly. In addition, procedures
can be used to pass parameters and define variables, which we'll get into later in this chapter.
For now, let’slook at a procedure at its most basic, one that includes no parameters or special
types of SQL statements.

www.it-ebooks.info

http://www.it-ebooks.info/

304 SQl: A Beginner's Guide

CD_INVENTORY CD_TYPES

CD_TITLE: CD_TYPE_ID: | CD_STOCK: CD_TYPE_ID: | CD_TYPE_NAME:
VARCHAR(60) CHAR(4) INT CHAR(4) CHAR(20)
Famous Blue Raincoat FROK 19 FROK Folk Rock

Blue CPOP 28 CPOP Classic Pop

Past Light NEWA 6 NEWA New Age

Out of Africa STRK 8 CTRY Country
Fundamental NPOP 10 STRK Soundtrack
Blues on the Bayou BLUS 11 BLUS Blues

Kojiki NEWA 10 JAZZ Jazz

Figure 13-1 Using procedures to access the CD_INVENTORY and CD_TYPES tables

Suppose you need to query the datain the CD_INVENTORY and CD_TY PEStables
shown in Figure 13-1. Y ou want your query results to return the CD names and number in
stock for all New Age CDs.

To view thisinformation, you can create a SELECT statement that joins the two tables, as
shown in the following example:

SELECT CD TI TLE, CD_STOCK
FROM CD_| NVENTORY i, CD TYPES t
WHERE i . CD_TYPE_ ID = t.CD TYPE_ID
AND CD TYPE_NAME = ' New Age' ;

Of course, every time you want to view this information, you would have to recreate the
SELECT statement. However, another option is to store the SELECT statement within the
schema. That way, all you need to do is call that statement whenever you want to view the
New Age CDs. One way to store the SELECT statement iswithin aview definition:

CREATE VI EW NEW AGE AS
SELECT CD TI TLE, CD_STOCK
FROM CD_| NVENTORY i, CD TYPES t
WHERE i . CD_TYPE ID = t.CD TYPE_ID
AND CD TYPE_NAME = ' New Age' ;

Once the view is created, you can use a SELECT statement to call the view, as shown in the
following statement:

SELECT * FROM NEW AGE;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQlInvoked Routines 305

However, views are very limited with regard to the types of statements and functionality
that are supported. For example, you cannot include an UPDATE statement in aview, nor
can you pass parameters to and/or from views. As aresult, a better way to store this SELECT
statement is as an SQL-invoked procedure. To do this, you must create a schema object by
using the CREATE PROCEDURE statement, as shown in the following example:

CREATE PROCEDURE NEW AGE_CDS ()
SELECT CD TI TLE, CD STOCK
FROM CD_| NVENTORY i, CD TYPES t
WHERE i . CD_TYPE ID = t.CD TYPE_ID
AND CD_TYPE_NAME = ' New Age'

This statement represents the minimum amount of information that you must provide
in order to create a procedure. It includes a CREATE PROCEDURE clause that names the
procedure (NEW_AGE_CDS), a set of parentheses, and a routine body, which isthe SELECT
statement. If you were defining parameters, their declarations would be enclosed in the
parentheses.

Asyou might well imagine, a CREATE PROCEDURE statement can be far more complex
than what you see here. However, the statement in the example represents the basic structure
on which you would build more extensive statements. Before | discuss more complicated
procedures, let’ s first touch on the issue of how this statement is created in various SQL
implementations.

Earlier in the chapter, | told you that SQL implementations can vary widely with regard
to the specifics of how SQL-invoked routines are created and called. As aresult, few
implementations support pure SQL when attempting to define your procedures. For example,
both SQL Server and Oracle require that you use the AS keyword before the routine body.

In addition, SQL Server does not use parentheses after the procedure name, whether or not
parameters are being defined. Oracle, on the other hand, does use the parentheses, and it also
requires some additional statements that enclose executable statementsin BEGIN...END
blocks. As mentioned earlier, MySQL and DB2 closely follow the SQL standard. From this
it should be clear that you simply must consult your product documentation whenever you're
creating a procedure to determine how the product-specific language differs from the SQL
standard.

Invoking SQL-Invoked Procedures
Once you' ve created your procedure, you can invoke (call) it by using a CALL statement. The
basic syntax for the CALL statement is as follows:

CALL <procedure name>
([<vaue>[{,<vaue>}...11)

Asyou can see, you must identify the name of the procedurein the CALL clause and
follow that with the values (in parentheses) that are passed into the procedure as parameters.
If no parameters are defined for the procedure, you must still use the parentheses. If more than

www.it-ebooks.info

http://www.it-ebooks.info/

306 SQl: A Beginner's Guide

one parameter is defined for the procedure, you must separate them with commas. In addition,
you must follow these guidelines when entering values:

Your CALL statement must include the same number of values as the number of
parameters defined in the procedure.

The values must be entered in the same order as the order in which they are defined in the
procedure.

The values must conform to the data types that are assigned to the parameters.

I'll be discussing parametersin more detail in the next section, “Add Input Parameters to
Y our Procedures.”

Now let’slook at an example of the CALL statement. If you want to call the procedure that
was created in the preceding example, you can use the following statement:

CALL NEW AGE_CDS();

In this statement, the name of the procedure follows the CALL keyword. Notice the use of
parentheses even though no parameters were defined for the procedure. Had parameters been
defined, they would have been enclosed in the parentheses. When you execute this statement,
you' |l receive the same results as you would have if you had executed the SELECT statement
separately, as shown in the following query results:

CD_TI TLE CD_STOCK

Past Light 6
Koj i ki 10

The CALL statement, like the CREATE PROCEDURE statement, can vary from SQL
implementation to implementation in how it is used and whether it is supported. In fact, you'll

probably find that, for most implementations, you must use an EXECUTE statement, rather
than CALL, to invoke a procedure.

Add Input Parameters to Your Procedures

The NEW_AGE_CDS procedure that we [ooked at in the previous examples can be very
handy because it saves you having to create an SQL statement each time you want to view
information about New Age CDs. However, in order to return information about other types
of CDs, such as Blues or Country, you must create a new query or set up a procedure for the
specific type of music. But there is another alternative. Y ou can create a procedure that does
not specifically define the music type but instead allows you to enter that type whenever you
call that procedure. That way, you need only one procedure to check any desired type of music.
To support this type of procedure, you must declare a parameter within the procedure
definition that allows the procedure to accept input values when you call it. Let’s return to
the CD_INVENTORY table and CD_TY PES table shown in Figure 13-1. If we modify the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQlInvoked Routines 307

language of the procedure we created earlier, we can create a new procedure that includes the
necessary input parameter, as shown in the following CREATE PROCEDURE statement:

CREATE PROCEDURE CDS BY_TYPE (IN p_CD Type CHAR(20))
SELECT CD_TI TLE, CD_STOCK
FROM CD_| NVENTORY i, CD TYPES t
WHERE i.CD TYPE ID = t.CD TYPE_ID
AND CD_TYPE_NAVNVE p_CD Type;

In thefirst line of code, a parameter is defined after the CREATE PROCEDURE clause.
The parameter declaration includes the IN keyword, the name of the parameter (p_CD_Type),
and the data type for that parameter (CHAR(20)), all of which are enclosed in parentheses.

NOTE

The “p_" convention used to name the parameters is not necessary. However, | like to
use some type of naming convention to set parameters apart, making them easier fo
pick out in the code.

SQL supports three types of parameters. input, output, and input/output. The three types
are represented by the parameter mode keywords IN, OUT, and INOUT, respectively. Input
parameters allow you to provide values when you invoke a procedure. Those values are then
used within the routine body when the SQL statements are executed. Output parameters
allow your procedure to provide values as aresult of invoking the procedure. I nput/output
parameters are those that provide the functionality of both input and output parameters. Y ou
do not have to specify one of the parameter mode keywords when you define your parameters.
However, if you don’t specify one of the keywords, SQL assumes that you’ re defining an input
parameter.

NOTE

As with many other aspects of the CREATE PROCEDURE statement, parameter
declarations can vary from product to product. In SQL Server, for example, parameter
names must be preceded by the at (@) symbol, as in @p_CD_Type, the parameter
declarations are not enclosed in parentheses, and the IN keyword is not used. Oracle,
on the other hand, does not require the at symbol and does use parentheses. Oracle
also uses the IN keyword, but it is positioned after the name of the parameter, as in
p_CD_Type IN CHAR (20).

Now let’sreturn to the CDS BY _TY PE procedure that is defined in the previous CREATE
PROCEDURE statement. Once you define your input parameter, you' [l want to useit in some
meaningful way within the routine body. In this case, the p CD_Type parameter is used in the
second predicate in the WHERE clause (CD_TYPE_NAME = p_CD_Type). This means that
the value you enter when you invoke the procedure is compared to the CD_TYPE_NAME
values of the CD_TY PES table when the SELECT statement is executed. As aresult, your
query results will include CD information about the specified music type.

www.it-ebooks.info

http://www.it-ebooks.info/

308

SQL: A Beginner's Guide

Once you create your procedure, you can invokeit by using a CALL statement that
specifies avalue for the parameter. For example, if you want to return information about Folk
Rock CDs, you can use the following CALL statement:

CALL CDS_BY_TYPE(' Fol k Rock');

Notice that you include the value for the parameter in parentheses after the name of the
procedure. The value must conform to the data type assigned to the parameter, which in this
case is CHAR(20). Aswith any other instance in which you’ re working with character string
values, you must enclose the value in single quotes. When you invoke this procedure, the Folk
Rock valueisinserted into the predicate in the WHERE clause and the procedure returns the
following query results:

CD_TI TLE CD_STOCK

Famous Bl ue Raincoat 19

Asyou can see, you how have a procedure that you can use to return CD information
on any music type. Y ou simply provide the name of the music type when you call the
procedure. However, procedures are not limited to only one parameter. Y ou can include
multiple parametersin any procedure definition. For example, suppose you want to modify
the preceding procedure definition to allow you to enter an amount. Y ou want to use that
amount to return CD information for only those CDswith aCD_STOCK value that exceeds
the specified amount. At the same time, you still want to return CD information for only the
specified music type. As aresult, you need to define two parameters, as shown in the following
CREATE PROCEDURE statement:

CREATE PROCEDURE CDS BY_TYPE (IN p_CD Type CHAR(20), IN p_Amount |NT)
SELECT CD _TI TLE, CD_STOCK
FROM CD_| NVENTORY i, CD TYPES t
WHERE i . CD TYPE ID = t.CD TYPE ID
AND CD _TYPE_NAME = p_CD Type
AND CD_STOCK p_Amount ;

Voo

Notice that the parameter declaration clause now includes two input parameters: p CD_
Typeand p_Amount. The p_Amount parameter is configured with the INT datatype. The
p_Amount parameter, likethe p_CD_Type parameter, is used in a predicate in the WHERE
clause (CD_STOCK > p_Amount). Asaresult, the rows returned by the procedure must
include CD_STOCK values greater than the amount specified when calling the procedure.

Once you' ve created the procedure, you can call it by using a CALL statement that
includes values for both parameters, as shown in the following example:

CALL CDS_BY TYPE(' New Age', 5);

Now your CALL statement includes two values (separated by a comma) within the
parentheses. The values must be listed in the order in which the parameters are defined in
the CREATE PROCEDURE statement. When you invoke this statement, the p_C_Typeis

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQlInvoked Routines 309

assigned the value New Age, and the p_Amount parameter is assigned the value 5, making the
SELECT statement embedded in the procedure definition behave as though you entered the
values directly, as shown in the following example:

SELECT CD TI TLE, CD _STOCK
FROM CD_| NVENTORY i, CD TYPES t
WHERE i . CD_TYPE ID = t.CD TYPE_ID
AND CD_TYPE_NAME = ' New Age'
AND CD_STOCK 5;

Voo

If you were to execute this statement, you would return the same query results as you
would if you were to execute the CALL statement using the New Age value and 5 value, as
shown in the following results:

CD TITLE CD STOCK

Past Light 6
Koj i ki 10
Now let’s modify the CALL statement to see how specifying a different value might affect

the results. Suppose you use a numeric value of 8, rather than 5, as shown in the following
statement:

CALL CDS _BY_TYPE (' New Age', 8);
If you were to execute this statement, only one row would be returned:

CD TITLE CD STOCK

If you refer back to the CD_INVENTORY tablein Figure 13-1, you'll seethat only the Kojiki
row isaNew Age CD withaCD_STOCK value that exceeds 8, the value you specified in
your CALL statement. Asyou can see, using multiple parameters can provide you with a
variety of options that make procedures a useful and flexible tool that can eliminate the need to
write multiple statements that are meant to provide similar results. If you define the necessary
parameters, users simply plug in the necessary values to achieve the results they desire.

Using Procedures to Modify Data

Up to this point, the SQL-invoked procedures that we' ve looked at have contained SELECT
statements that query data. However, procedures are not limited to only SELECT statements.
Y ou can include data modification statements such as INSERT, UPDATE, and DELETE.
Let'sreturn to the CD_INVENTORY table and CD_TYPES table, shown in Figure 13-1. You
might have noticed that the CD_INVENTORY table includes a row for the Fundamental CD.
The music type for that CD is New Pop, which is represented by NPOP (the value in the CD _
TYPE_ID column). You might also have noticed that there is no corresponding entry in the
CD_TYPES table for the New Pop type. Y ou can create a procedure that allows you to insert

www.it-ebooks.info

http://www.it-ebooks.info/

310

SQL: A Beginner's Guide

valuesinto that table. Y ou simply need to define that procedure with the appropriate input
parameters and INSERT statement, as shown in the following example:

CREATE PROCEDURE | NSERT_TYPE (IN p_Type CHAR(4), IN p_Name CHAR(20))
I NSERT | NTO CD_TYPES VALUES (p_Type, p_Nane);

Notice that the procedure definition includes two input parameters: p_Type and p_Name,
both of which are defined with the CHAR data type. These parameters are then used in
the INSERT statement, in the same way in which you would normally specify valuesto be
inserted into atable. Any parameter that you declare for this purpose must be defined with a
data type that is compatible with the data type defined on the column that contains the data
to be modified. Once you create the procedure, you can use a CALL statement similar to the
following example to invoke the procedure:

CALL I NSERT_TYPE(' NPOP', ' New Pop');

Notice that the CALL statement includes NPOP and New Pop values. These values are
passed to the two parameters defined in the INSERT_TY PE procedure. Asaresult, they are
inserted into the CD_TY PES table as though you had executed the INSERT statement directly.

In the same way that you create the INSERT_TY PE procedure, you can create procedures
that update and del ete data by including the appropriate UPDATE and DEL ETE statement,
rather than an INSERT statement. Simply create the necessary input parameters and assign the
appropriate values to those parameters when you call the procedure. However, keep in mind
that the value you pass using the parameters must conform not only to the data types defined
in the parameter declarations, but also to the data types and constraints on the columns that
contain the data you' re trying to modify.

Ask the Expert

Q: Up to thispoint, you’ve shown us how to create SQL -invoked procedures, but not how
to modify them. Isthere away to alter or delete procedures?

A: The SQL standard supports both an ALTER PROCEDURE statement and a DROP
PROCEDURE statement. The ALTER PROCEDURE statement allows you to alter some of
the routine characteristics of the procedure, but it does not alow you to ater the procedure
body. However, the functionality supported by the ALTER PROCEDURE statement can
vary so widely from one SQL implementation to another that you’ll need to check the
product documentation to see whether the statement is supported and what you can do
with that statement. In SQL Server, for example, the ALTER PROCEDURE statement
alows you to modify most aspects of the procedure, whereas the same statement in Oracle
is used primarily to recompile the procedure to avoid runtime compiling (which saves on
runtime overhead). However, Oracle provides the CREATE OR REPLACE PROCEDURE
syntax that replaces an existing procedure (including the procedure body) or creates a new
procedure if it does not yet exist.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQlInvoked Routines 311

Asfor the DROP PROCEDURE statement, most implementati ons support this and
itisusualy fairly straightforward. Y ou simply provide the name of the procedurein the
statement and, depending on the SQL implementation, the RESTRICT or CASCADE
keywords, as you’ ve seen them used in other DROP statements. Note that the same istrue
for the ALTER FUNCTION and DROP FUNCTION statements. Although supported by
many implementations, the ALTER FUNCTION statement can vary from one product to
the next, and the DROP FUNCTION statement is fairly similar across implementations.

Add Local Variables to Your Procedures

In addition to alowing you to pass parametersinto a procedure, SQL also provides away for
you to create local variablesin the procedure definition that can be used within the body of
the procedure. Y ou can think of alocal variable as atype placeholder that holds avaluein
memory during the execution of the statementsin the routine body. Once the statements are
executed, the variable ceases to exist.

When you define aloca variable, you must first declare the variable and then set an initial
value for it. You can then use that variable in the remaining block of statements. The basic
syntax for defining avariable is as follows:

DECLARE <variable name> <data type>;

Asyou can see, the syntax is very straightforward. Y ou must provide a name for the variable
and assign a datatype. Once you’ ve declared the variable, you must then assign avalueto it
before it can be referenced. (However, some implementations automatically assign anull value
to variables asthey are defined.) Y ou can use the SET statement to assign avalueto avariable,
which has the following syntax:

SET <variable name> = <value expression>;

In this statement, you must first provide the variable name and then provide the value, which
can be any sort of value expression, such as anumber, a character string, or a subquery.

After you've declared the variable and assigned it avalue, you're ready to use the variable
in your routine body. The best way to illustrate thisis to show you an example of a procedure
that uses a variable. For this example, we'll again use the CD_INVENTORY table, shownin
Figure 13-1. The following statement creates a procedure that retrieves CD information for
a specific music type:

CREATE PROCEDURE CD _AMOUNT (I N p_Type_I D CHAR(4))
BEG N
DECLARE v_Anount | NT;
SET v_Anmount = (SELECT AVG CD_STOCK)
FROM CD_I NVENTORY) ;
SELECT CD _TI TLE, CD_STOCK

www.it-ebooks.info

http://www.it-ebooks.info/

312

SQL: A Beginner's Guide

FROM CD_| NVENTORY
VWHERE CD TYPE ID = p_Type_ID
AND CD STOCK < v_Amount;
END;

Let’ s go through this statement line by line. In the first line, we create a procedure named
CD_AMOUNT and an input parameter named p_Type_ID. The second line contains the
keyword BEGIN. The BEGIN keyword is paired with the END keyword in the last line.
Together they enclose a block of statements that are processed as a unit. We'll take a closer
look at the BEGIN...END block later in the “Working with Control Statements” section.

The third line of the procedure definition includes a DECLARE statement that declares
thev_Amount variable, which is defined with the INT datatype. The next two linesuse a SET
statement to assign an initial value to the parameter. Thisvalueis derived from a subquery
that finds the average for all the CD_STOCK values. The average in this caseis about 13. In
the next four lines of the procedure definition, a SELECT statement retrieves data from the
CD_INVENTORY table based on the values supplied by the parameter and variable.

Once you' ve created your procedure, you can execute it by using a CALL statement and
providing avalue for the parameter, as shown in the following example:

CALL CD_AMOUNT(' NEWA') ;

When the procedure is processed, it uses the NEWA value from the parameter and the
CD_STOCK average from the variable in the SELECT statement defined in the procedure
definition. It would be similar to executing the following statement:

SELECT CD_TI TLE, CD_STOCK
FROM CD_| NVENTORY

WHERE CD TYPE_ ID = ' NEWA
AND CD_STOCK < 13;

This SELECT statement, like the procedure itself, will return the following query results:
CD TITLE CD_STOCK

Past Light 6

Koj i ki 10

Notice that both rows contain CD_STOCK values less than the average amount (13) and both
are New Age CDs.

You're not limited to only one variable in a procedure definition. Y ou can create a
DECLARE statement for each variable that you want to include. Y ou can also include multiple
variablesin one statement, if those variables are assigned the same data type. For example,
suppose you want to declare several variables with an INT data type, as shown in the following
DECLARE statement:

DECLARE Varl, Var2, Var3 |NT;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQlInvoked Routines 313

This statement declaresthe Varl, Var2, and Var3 variables, and each oneis assigned the INT
data type. Once you assign initial values to the variables, you can use them in the routine body
in the same way as any other local variables.

Work with Control Statements

When the SQL/PSM standard was released in 1996, it included not only language that supported
SQL-invoked routines, but language that could be used within those routines to make them more
robust. Such characteristics as grouping statements into blocks and looping statements so that
they could be executed multiple times—behavior traditionally associated with procedurd type
languages—made procedures and functions even more valuable to users needing to access and
manipulate datain their databases. The SQL :2006 standard refers to these new language elements
as control statements because they affect how you can control datain SQL-invoked routines. In
this section, we'll look at several of these control statements, including those that allow you to
group statementsinto ablock, create conditional statements, and set up statementsinto aloop.

Create Compound Statements

The most basic of the control statementsis the compound statement, which allows you to group
statements into a block. The compound statement starts with the BEGIN keyword and finishes
with the END keyword. Everything between the two keywordsis part of the block. The compound
statement is made up of one or more individua SQL statements, which can include statements
such as DECLARE, SET, SELECT, UPDATE, INSERT, DELETE, or other control statements.

Y ou've already seen an example of acompound statement in the preceding CREATE
PROCEDURE statement that defines the CD_AMOUNT procedure. (Thisisthe example
showninthe“Add Local Variablesto Your Procedures’ section.) If you take another look at
that example, you'll see that the procedure definition includes a compound statement. As you
would expect, it starts with the BEGIN keyword and finishes with the END keyword. The
block created by these keywords includes a DECLARE statement, a SET statement, and a
SELECT statement. Notice that each statement is terminated with a semicolon. Although the
BEGIN...END statement is considered one statement, the statements enclosed in the keywords
areindividual statementsin their own right.

NOTE

In some SQL implementations, the compound statement might not be necessary under
certain circumstances. In these cases, the semicolon terminator might be enough to
signal to the implementation that one statement has ended and another has begun.
Even those implementations that don’t require the semicolon, such as SQL Server, will
sometimes process multiple statements as a block even if the BEGIN...END construction
has not been used. When the implementation reaches the end of one statement,

it simply continues on to the next. However, as a general rule, you should use the
compound construction to keep together those statements that should be processed as
a unit. When you don’t use it, you can sometimes experience unpredictable behavior,
depending on the implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

314

SQL: A Beginner's Guide

Y ou can use the compound statement wherever you need to keep SQL statements together.
That means that they can be embedded within other compound statements or within other
types of control statements. The BEGIN and END keywords do not affect how data might be
passed from one statement to the next, asin the case of parameters.

The good news about compound statements and the BEGIN...END construction is that
they’re supported by most SQL implementations, although there can be dlight variations from
one product to the next, in terms of the specifics of how they’re implemented. Be sure to check
the product documentation when using these statements.

Create Conditional Statements

The next type of control statement we'll ook at is the conditional statement. This statement
determines whether a statement (or series of statements) is executed based on whether a
specified condition evaluates to true. The statement uses the IF, THEN, and EL SE keywords
to establish the conditions and define the actions to take: if the condition is met, then the SQL
statement is executed, or else another action is taken.

NOTE

The conditional statement is sometimes referred to as an IF statement, an IF...ELSE
statement, an IF...END IF statement, or an IF...THEN...ELSE statement.

Let'stake alook at an example that uses a conditional statement to define different courses
of action, depending on the condition. In the following procedure definition, | modified the
routine body of the CD_AMOUNT procedure (which we used in the preceding example) to
include a conditional statement:

CREATE PROCEDURE CD AMOUNT (IN p_Type_ID CHAR (4))
BEG N
DECLARE v_Anount | NT;
SET v_Anmount = (SELECT SUM CD_STOCK)
FROM CD_| NVENTORY
VWHERE CD TYPE ID = p_Type_ID);
I F v_Anmount < 20 THEN
SELECT CD TITLE, CD_STOCK
FROM CD_| NVENTORY
VWHERE CD TYPE ID = p_Type_ID;
ELSE
SELECT CD TITLE, CD_STOCK
FROM CD_| NVENTORY;
END | F;
END;

Notice that the BEGIN...END block now includes an IF...END IF statement. The IF clause
introduces the statement and sets up the condition. For the condition to evaluate to true, the
value of thev_Amount variable must be less than 20. If the condition evauates to true, the first
SELECT statement is executed. Thisisthe SELECT statement that follows the THEN keyword.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQl-Invoked Routines

If the condition is false, then the second SELECT statement is executed. Thisis the statement that
follows the EL SE keyword. To sum thisall up, if v_Amount isless than 20, the CD_TITLE and
CD_STOCK vauesfromthe CD_INVENTORY table are returned for those rows that contain
the Type ID (column CD_TYPE_ID) specified by thep_Type ID parameter. If v_Amount is not
lessthan 20, the CD_TITLE and CD_STOCK valuesfor al rowsinthe CD_INVENTORY table
are returned.

Once you create your procedure, you can invokeit by using a CALL statement, as you
have for previous procedures. For example, if you want to return New Age (NEWA) CDs, you
can use the following CALL statement:

CALL CD_AMOUNT(‘ NEWA) ;

This statement will return both New Age rows: Past Light and Kojiki. Thisis because the
total number of New Age CDs (16) islessthan 20, so the first SELECT statement is executed.
If you had specified the Classic Pop category (CPOP) when you invoked the CD_AMOUNT
procedure, al rows would have been returned. Thisis because the total number of Classic Pop
CDs (28) exceeds 20. As aresult the IF condition would not be met, so the EL SE statement
would be executed.

If you want to create a conditional statement that includes more than one SQL statement
in either the I F clause or the EL SE clause, you can enclose those statements in a control
statement. For example, if we add an UPDATE statement to the condition in the preceding
example and use a control statement to enclose the UPDATE and SELECT statements, your
procedure definition will look like the following:

CREATE PROCEDURE CD_AMOUNT (IN p_Type_I D CHAR (4))
BEG N
DECLARE v_Anount | NT;
SET v_Amount = (SELECT SUM CD_STCOCK)
FROM CD | NVENTORY
WHERE CD TYPE ID = p_Type_ID);
IF v_Amount < 20 THEN
BEG N
UPDATE CD_| NVENTORY
SET CD STOCK = CD_STOCK + 1
WHERE CD TYPE ID = p_Type_ID;
SELECT CD TI TLE, CD_STOCK
FROM CD | NVENTORY
WHERE CD TYPE ID = p_Type_ID;
END;
ELSE
SELECT * FROM CD_| NVENTORY;
END | F;
END;

The compound statement groups the two statements into one block of code. Thisway, the
tables will be updated and the results of the update will be displayed in your query results.

www.it-ebooks.info

315

http://www.it-ebooks.info/

316

SQL: A Beginner's Guide

Ask the Expert

Q: The condition statement in the preceding example shows only two conditions and
courses of action: the condition/action defined in the | F clause and the condition/
action defined in the EL SE clause. What if you want to include more conditions?

A: The SQL:2006 standard supports more than two condition/action constructionsin a
conditional statement. If more than two are needed, you treat the IF clause and the EL SE
clause as shown in the example. The additional conditions are inserted between the two
clauses by adding an EL SE IF clause or an EL SEIF clause. The syntax for this would be
asfollows:

| F <condition> THEN <acti on>
ELSE | F <conditi on> THEN <acti on>
ELSE <acti on>

The exact way you implement the third condition/action depends on your
implementation. In addition, not all implementations support EL SEIF, and some use
the ELSIF keyword. As always, be sure to refer to your product documentation.

Create Looping Statements

Now let’stake alook at another type of control statement—the looping statement. SQL
actually supports severa types of looping statements. We'll be looking at two of them: the
L OOP statement and the WHILE statement, both of which perform similar functions.

The LOOP statement uses the LOOP and END LOOP keywords to enclose a block of
statements that are executed repeatedly until the loop is explicitly ended, usually through the
use of the LEAVE keyword. Note that Oracle uses the EXIT keyword instead of LEAVE, and
SQL Server does not support the LOOP statement. Let’ s take alook at an exampleto illustrate
how thislooks. Once again using the tables in Figure 13-1, we'll use a LOOP statement to
update the CD_INVENTORY table.

NOTE

If you created and tested the CD_AMOUNT procedure in the preceding example,
assume that the CD_INVENTORY table has been returned to its original condition
shown in Figure 13-1 and that no data has been modified.

In the following procedure definition, | include a LOOP statement that continues to update
the CD_STOCK column until it reaches an amount greater than 14:

CREATE PROCEDURE UPDATE_STOCK (IN p_Title CHAR(20))
BEG N
DECLARE v_Anount | NT;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQlInvoked Routines 317

SET v_Anount = (SELECT CD_STOCK
FROM CD_| NVENTORY
VWHERE CD _TITLE = p_Title);
Loop1l:
LOCP
SET v_Anmount = v_Anmount + 1;
UPDATE CD_I NVENTCORY
SET CD_STOCK = v_Anount
VWHERE CD TITLE = p_Titl e;
IF v_Amount > 14
THEN LEAVE Loopl,;
END | F;
END LOOP;
END;

In this statement, the loop is first assigned a name (Loopl:), which is sometimes called
a statement label. Y ou must include a colon with the name when you first assign it. Next you
create your loop block, which begins with the LOOP keyword and finishes with the END
L OOP keywords. Within the block are SET and UPDATE statements. These two statements
are executed until the loop is terminated. Notice that the CD_STOCK value isincreased by
an increment of 1 each time the statementsin the loop are executed. These two statements are
followed by an IF statement, which specifies the condition in which the loop is terminated. If
the value for the v_Amount variable exceeds 14, then the loop is terminated (LEAVE Loopl).
The IF statement is then ended with the END |F keywords.

NOTE

If you do not include the IF statement within the loop (with the LEAVE termination
operator), the loop will continue to increase the CD_STOCK value until it fills all
available storage or some other event terminates the operation. This is a common
programming error known as an infinite loop.

Y ou can then invoke the procedure by providing the procedure name and a value for
the parameter. For example, suppose you want to update the Fundamental row in the CD_
INVENTORY table. You can invoke the procedure with the following CALL statement:

CALL UPDATE_STOCK(' Fundamental ') ;

When the procedure is executed, avalue of 1 isrepeatedly added to the CD_STOCK
column until the value reaches 15, and then the loop is terminated.

Y ou can receive the same results more elegantly by using a WHILE statement. In the
following example, | modified the UPDATE_STOCK procedural definition by replacing the
L OOP statement with a WHILE statement:

CREATE PROCEDURE UPDATE_STOCK (IN p_Title CHAR(20))
BEG N
DECLARE v_Anount | NT;

www.it-ebooks.info

http://www.it-ebooks.info/

318 SQl: A Beginner's Guide

SET v_Anount = (SELECT CD_STOCK
FROM CD_I NVENTORY
VWHERE CD _TITLE = p_Title);
VWHI LE v_Anmount < 15 DO
SET v_Anmount = v_Anmount + 1;
UPDATE CD_| NVENTORY
SET CD_STOCK = v_Anount
VWHERE CD TITLE = p_Title;
END WHI LE;
END;

NOTE

Again, if you tested the procedure created in the example preceding this one, assume
that the table has been returned to its original condition shown in Figure 13-1 and that
no data has been modified.

The WHILE statement sets up the same type of loop condition as the LOOP statement.
However, instead of using an | F statement to terminate the loop, a condition is specified in the
WHILE clause that terminates the loop automatically when the condition evaluates to false. In
this case, the parameter value for v_Amount must be less than 15 for the WHILE condition to
evaluate to true. Aslong as the condition evaluates to true, the SET statement and UPDATE
statement are executed. If the condition evaluates to false, the WHILE loop is terminated.
Note that many implementations, including Oracle and SQL Server, use aBEGIN block
instead of the keyword DO to enclose the statements to be repeated by the WHILE loop. One
more variance to be aware of is where the condition is evaluated in the looping logic. Some
implementations evaluate the condition at the top of the loop. Others evaluate the condition at
the bottom of the loop, which means that the statementsin the loop will always execute at |east
once, even if the condition is false the first time the loop isinitiated.

Crec:’ring SQL-Invoked Procedures

Inthis Try This exercise, you will apply what you have learned about creating SQL-invoked
procedures to the INVENTORY database. Y ou'll create procedures, invoke procedures,

and drop procedures. One of the procedures will include a parameter and one will include
avariable. For this exercise, even more so than most Try This exercises, you'll need to
reference the product documentation for your SQL implementation to ensure that you take
into account the variations in how a procedure is created, called, and dropped. As| said earlier
in this chapter, procedure implementation can vary widely between the SQL standard and the
individual product. Y ou can download the Try_This 13 1.txt file, which contains the SQL
statements used in this exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQlInvoked Routines 319

Step by Step
1. Open the client application for your RDBMS and connect to the INVENTORY database.

2. Thefirst procedure that you'll createis avery basic one that queries information from the
COMPACT_DISCS, ARTIST_CDS, and ARTISTS tables. You'll join the three tablesin
order to display the CD names and artist names. Y our procedure will include no parameters
or variables. Enter and execute the following SQL statement:

CREATE PROCEDURE GET_CD ARTI STS ()
SELECT cd. CD_TI TLE, a. ARTI ST_NAMVE
FROM COMPACT DI SCS cd, ARTI ST_CDS ac, ARTISTS a
WHERE cd. COMPACT DI SC I D = ac. COVPACT_DI SC_| D
AND ac. ARTI ST I D = a. ARTI ST I D,

Y ou should receive a message indicating that the GET_CD_ARTISTS procedure has been
created.

3. Next, you'll call the GET_CD_ARTISTS procedure. Enter and execute the following SQL
statement:

CALL GET_CD ARTISTS();

When you invoke the procedure, you should receive query results that include alist of all
the CDs and their artists.

4. Now you'll drop the procedure from the database. Enter and execute the following SQL
statement:

DROP PROCEDURE GET_CD_ARTI STS CASCADE;

Y ou should receive a message indicating that the GET_CD_ARTISTS procedure has been
dropped from the database. Note that the CASCADE keyword may not be supported by
your SQL implementation.

5. Your next step is to create a procedure similar to the last one, only thistime you'll define a
parameter that allows you to enter the name of the CD. The SELECT statement will include
apredicate that comparesthe CD_TITLE value to the value in the p_CD parameter. Enter
and execute the following SQL statement:

CREATE PROCEDURE GET_CD ARTI STS (I N p_CD VARCHAR(60))
SELECT cd. CD_TI TLE, a. ARTI ST_NAVE
FROM COMPACT DI SCS cd, ARTI ST_CDS ac, ARTISTS a
WHERE cd. COVPACT DI SC_I D = ac. COVPACT DI SC | D
AND ac. ARTI ST_I D a. ARTI ST_I D
AND cd. CD_TI TLE p_CD;

Y ou should receive a message indicating that the GET_CD_ARTISTS procedure has been
created.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

320 SQL: A Beginner's Guide

6. Now you'll call the GET_CD_ARTISTS procedure. The CALL statement will include
the Fundamental value to insert into the parameter. Enter and execute the following SQL
statement:

CALL GET_CD_ARTI STS(' Fundanental ') ;
Y our query results should now include only the Fundamental row.

7. The next procedure that you' |l createis one that uses a variable to hold a number based on
the average of the IN_STOCK values. The procedure definition will include a compound
statement that groups together the other statements in the routine body. Enter and execute
the following SQL statement:

CREATE PROCEDURE GET_CD AMOUNT ()
BEG N
DECLARE v_I n_Stock | NT;
SET v_In_Stock = (SELECT AVGE | N_STOCK)
FROM COWPACT_DI SCS) ;
SELECT CD TITLE, | N_STOCK
FROM COWPACT_DI SCS
WHERE | N_STOCK < v_I n_Stock;
END;

Y ou should receive a message indicating that the procedure has been created.
8. Now you'll call the procedure. Enter and execute the following SQL statement:
CALL GET_CD AMOUNT();
Y our query results should include alist of CDsthat have an IN_STOCK value less than the
averagefor all IN_STOCK values.

9. Close the client application.

Try This Summary
Inthis Try This exercise, you created three procedures. The first procedure, GET_CD_
ARTISTS, included no parameters or variables. After you dropped that procedure, you
modified the original GET_CD_ARTISTS procedure to include a parameter. Y ou then created
anew procedure (GET_CD_AMOUNT) that included no procedures but did include one
variable. The INVENTORY database should now contain these two procedures. Because both
procedures only retrieve SQL data, you can invoke them at any time.

Add Output Parameters to Your Procedures

Up to this point, we’ ve looked only at procedures that take input parameter values. However,
SQL-invoked procedures also support output parameters. Output parameters provide away to
create a procedure that returns a value (or multiple values).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQlInvoked Routines 321

The process of defining an output parameter is similar to that of defining an input
parameter, only you use the OUT keyword rather than IN. However, you must still provide a
parameter name and assign a data type. In addition, you must assign a value to that parameter
before the procedure ends by using a SET statement, although many implementations
automatically return null values for output parameters that were not assigned a value.

A procedure definition can include both input and output parameters (and i nput/output
parameters if your implementation supports them). Y ou can aso include variables or any other
elements that we' ve looked at so far in this chapter.

Now let’stake alook at an example of an output parameter. The following CREATE
PROCEDURE statement creates a procedure that includes one output parameter (but no input
parameters or variables):

CREATE PROCEDURE NEW AGE_TOTAL (OUT p_Total INT)
BEG N
SET p_Total = (SELECT SUM CD_STOCK)
FROM CD_| NVENTORY i, CD TYPES t
WHERE i .CD TYPE ID = t.CD TYPE_ID
AND CD_TYPE_NAME = ‘ New Age’);
END;

The output parameter (p_Total) isassigned the INT datatype. The SET statement defines
avalue for the parameter. In this case, the value is equal to the total number of New Age CDs.
Thisisthe value that is returned by the procedure when you invokeit.

The process of invoking this procedure is different from what you' ve seen so far. When
invoking a procedure with an output parameter, you must first declare a variable that isthen
used in the CALL statement, as shown in the following example:

BEG N

DECLARE p_Total | NT;

CALL NEW ACGE TOTAL(p_Total);
END;

In this case, | used the same name for the variable as the name of the parameter that was
defined in the procedure definition. However, the variable and parameter are not required to
have the same name, although they must be defined with the same data type.

Create SQL-Invoked Functions

Earlier in the chapter, in the “Understand SQL-Invoked Routines’ section, | introduced you

to the two types of SQL-invoked routines—procedures and functions—and | described the
differences and similarities between the two. The main differences are that procedures support
the definition of input and output parameters and are invoked by using the CALL statement.
Functions, on the other hand, support the definition of input parameters only and are invoked
asavaluein an expression. The function’s output is the value returned by the execution of the
function, and not through the explicit definition of an output parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

322

SQL: A Beginner's Guide

To create afunction, you must use a CREATE FUNCTION statement. The statement is
similar to a CREATE PROCEDURE statement, except for afew critical differences:

Theinput parameter definitions cannot include the IN keyword.

A RETURNS clause must follow the parameter definitions. The clause assigns a data type
to the value returned by the function.

The routine body must include a RETURN statement that defines the value returned by the
parameter.

NOTE

SQL Server also uses a RETURNS clause to assign a data type fo the returned value,
while Oracle uses a RETURN clause for the same purpose. In both cases this clause is
followed by the AS keyword. Both SQL Server and Oracle use a RETURN statement in
the routine body to define the value returned by the parameter.

A function definition can include many of the elements that have been described
throughout this chapter. For example, you can define local variables, create compound
statements, and use conditional statements. In addition, you can define and use input
parameters in the same way you define and use input parametersin procedures (except that
you do not use the IN keyword).

Now that you have an overview of how to create afunction, let’s ook at an example,
which isbased on the IN_STOCK _CDS and PERFORMERS tables, shown in Figure 13-2.

The following CREATE FUNCTION statement defines a function that returns the artist
name for a specified CD, asit appearsin the IN_STOCK_CDStable:

CREATE FUNCTI ON CD_ARTI ST (p_Title VARCHAR(60))
RETURNS VARCHAR(60)
BEG N
RETURN
(SELECT ARTI ST_NAME
FROM | N_STOCK_CDS s, PERFORMERS p
WHERE s. Title p.Title
AND s. Title p_Title);

END;

In the first line of the statement, the CD_ARTIST function and the p_Title parameter have
been defined. In the next line, the RETURNS clause assigns the VARCHAR(60) data type to
the value returned by the function. In the routine body, you can see that a RETURN statement
has been defined. The statement includes a subquery that uses the value of the input parameter
to return the name of the artist.

Asyou can see, defining a function is not much different from defining a procedure;
however, calling the function is another matter. Instead of using the CALL statement to invoke
the function, you use the function as you would any of the SQL predefined functions. (Y ou
saw some of these functionsin Chapter 10.) For example, suppose you want to find the name

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQlInvoked Routines 323

IN_STOCK_CDS PERFORMERS

TITLE: STOCK: TITLE: ARTIST_NAME:

VARCHAR(60) INT VARCHAR(60) VARCHAR(60)

Famous Blue Raincoat| 13 Famous Blue Raincoat Jennifer Warnes

Blue 42 Blue Joni Mitchell

Court and Spark 22 Court and Spark Joni Mitchell

Past Light 17 Past Light William Ackerman

Kojiki 6 Kojiki Kitaro

That Christmas Feeling| 8 That Christmas Feeling Bing Crosby

Out of Africa 29 Patsy Cline: 12 Greatest Hits Patsy Cline

Blues on the Bayou 27 After the Rain: The Soft Sounds of Erik Satie| Pascal Roge

Orlando 5 Out of Africa John Barry
Leonard Cohen The Best of Leonard Cohen
Fundamental Bonnie Raitt
Blues on the Bayou B.B. King
Orlando David Motion

Figure 13-2 Using functions to retrieve values from the IN_STOCK_CDS and PERFORMERS
tables

of an artist based on the CD name and you want to know what other CDs that artist has made.
Y ou can create a SELECT statement similar to the one shown in the following example to
retrieve the data:

SELECT TI TLE, ARTI ST_NAVE
FROM PERFORVERS
VWHERE ARTI ST_NAME = CD_ARTI ST(' Bl ue');

The CD_ARTIST function returns the Joni Mitchell value (the artist of the Blue CD),
which is then compared to the ARTIST_NAME values. As aresult, two rows are returned by
the statement, as shown in the following query resullts:

Bl ue Joni Mtchell
Court and Spark Joni Mtchell

www.it-ebooks.info

http://www.it-ebooks.info/

324

SQL: A Beginner's Guide

Asyou can see, functions help to simplify your queries by storing part of the code as

a schema object (in the form of an SQL-invoked routine) and then invoking that code as
necessary by calling the function as a value in your SQL statement. Functions provide you
with awide range of possibilities for returning values that make your queries |ess complex
and more manageable.

Creating SQL-Invoked Functions

Inthis Try This exercise, you will create afunction named CD_LABEL inthe INVENTORY
database. The function will provide the name of the company that publishes a specified CD.
Once you create the function, you will invoke it by using it asavauein a SELECT statement.
When you are finished, you will drop that function from your database. Y ou can download the
Try_This 13 2.txt file, which contains the SQL statements used in this exercise.

Step by Step
1. Open the client application for your RDBMS and connect to the INVENTORY database.

. You will create afunction that returns the name of the company that publishes a specified

CD. The function will include an input parameter that allows you to pass the name of the
CD into the function. Enter and execute the following SQL statement:

CREATE FUNCTI ON CD_LABEL (p_CD VARCHAR(60))
RETURNS VARCHAR(60)
BEG N
RETURN (SELECT COVPANY_NAMVE
FROM COMPACT DI SCS d, CD LABELS |
WHERE d. LABEL_ID = |.LABEL_ID
AND CD TI TLE p_CD);

END;
Y ou should receive amessage indicating that the CD_LABEL function has been created.

. Now that the function has been created, you can useit in your SQL statements as avalue

in an expression. The next statement that you'll createisa SELECT statement that returns
the name of the CD and the company that publishes the CD for those CDs published by the
same company as the specified CD. Enter and execute the following SQL statement:

SELECT CD_TI TLE, COVPANY_NANME
FROM COMPACT_DI SCS d, CD_LABELS |
VWHERE d. LABEL_I D | . LABEL_I D
AND COVPANY_NAME = CD LABEL (' Blues on the Bayou');

Y our query results should include alist of four CDs, all of which were published by MCA
Records, the company that publishes Blues on the Bayou.

. Try executing the same statement by using various names of CDs to see what results are

returned.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Creating SQlInvoked Routines 325

5. Now you can drop the CD_L ABEL function from your database. Enter and execute the
following SQL statement:

DROP FUNCTI ON CD_LABEL CASCADE;

Y ou should receive a message indicating that the CD_L ABEL function has been dropped
from the database.

6. Close the client application.

Try This Summary

The Try This exercise had you create afunction (CD_LABEL) that includes one parameter
(p_CD). The parameter passes the value of a CD name to the SELECT statement defined in
the RETURN statement of the parameter. The statement uses this information to determine
the name of the company that publishes the CD. Y ou then used the CD_LABEL functionina
SELECT statement to retrieve the names of all CDs that are published by the same company
that published the specified CD. After that, you dropped the function from the database. Now
that you' ve completed this exercise, try creating other functionsin the database, and then use
the functionsin SELECT statements to see what sort of data you can return.

Chapter 13 Self Test

1. Which are types of SQL-invoked routines supported by the SQL standard?
A CHECK Constraint
B Function
C Trigger
D SQL-invoked procedure
2. Which types of parameters can you use in an SQL-invoked function?
A Input
B Output
C Input/output
D Variable
3. Which statement do you use to invoke an SQL -invoked procedure?
A RETURN
B CALL

www.it-ebooks.info

http://www.it-ebooks.info/

326 SQl: A Beginner's Guide

C SET
D DECLARE

4. A(n) isavalue passed to a statement in a procedure when you invoke that
procedure.

5. Which types of parameters can you use in an SQL-invoked function?
A Input
B Output
C Input/output
D Variable
. What is another name for an SQL-invoked procedure?
. What are the two primary differences between procedures and functions?

. What information must you include in a CALL statement when invoking a procedure?

O 0 N o

. Which types of statements can you include in a procedure?
A SELECT
B INSERT
C UPDATE
D DELETE
10. Which statement do you use to assign an initial value to a variable?
A DECLARE
B RETURN
C SET
D CALL
11. A(n) statement allows you to group SQL statements into blocks.
12. Which keyword do you use to begin a conditional statement?
A IF
B BEGIN
C THEN
D ELSE
13. What keyword do you use in a LOOP statement to end that loop?

www.it-ebooks.info

http://www.it-ebooks.info/

14.
15.

16.
17.
18.

19.

20.

21.

Chapter 13: Creating SQlInvoked Routines 327

What is the difference between a conditional statement and a compound statement?
What are two types of looping statements?
A BEGIN...END
B IF..END IF
C LOOP...END LOOP
D WHILE...END WHILE
Which type of parameter can return a value when you invoke a procedure?
What step must you take when calling a procedure that includes an output parameter?

How does a CREATE FUNCTION statement differ from a CREATE PROCEDURE
statement?

You're calling aprocedure named GET_TOTALS. The procedure does not include any
parameters, but doesinclude a SELECT statement that queriesthe CD_INVENTORY table.
What SQL statement should you use to invoke this parameter?

Y ou create a procedure named GET_CD_INFO that selects data about an artist from

the CD_INFO table. The procedure includes one input parameter. Y ou want to call that
procedure with the value Bonnie Raitt. What SQL statement should you use to invoke the
procedure?

What are two types of schema objects that you can use to store a SELECT statement?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Creating SQL Triggers

329

http://www.it-ebooks.info/

330 SQL: A Beginner's Guide

Key Skills & Concepts

Understand SQL Triggers
Create SQL Triggers
Create Insert Triggers
Create Update Triggers
Create Delete Triggers

p to this point in the book, you have learned to create a number of schema objects that you

can access or invoke by using SQL statements. For example, you learned how to create
tables, views, and SQL-invoked routines. In each case, once you create these objects, you
need to take some sort of action to interact directly with them, such as executing a SELECT
statement to retrieve datafrom atable or using a CALL statement to invoke a procedure.
However, SQL supports objects that perform actions automatically. These schema objects,
which are known as triggers, respond to modifications made to data within atable. If a
specified modification is made, the trigger is automatically invoked, or fired, causing an
additional action to occur. As aresult, you never directly invoke the trigger—taking an action
defined in the trigger implicitly causes the invocation. In this chapter, we'll explore triggers
and how they’ re used when table datais modified. We'll also ook at examples of how to
create the three basic types of triggers—insert, update, and delete—and how they can be
defined to extend your database’ s functionality and help to ensure the integrity of the data.

Understand SQL Triggers

If you' ve worked around any SQL products before, you' ve no doubt seen triggers implemented
in one of your organization’s databases, or at least heard the term tossed about. Most relational
database management systems (RDBM Ss) implemented triggers in their products long ago,
although it wasn't until SQL:1999 that triggers were added to the standard. The result of the
products preceding the standard is that trigger implementations are very proprietary among the
SQL products, and thus support different types of functionality and are implemented in different
ways. For example, MySQL 5.0 does not support triggers, but the additional feature is promised
for version 5.1. On the other hand, SQL Server and Oracle currently support triggers, but SQL
Server triggers are somewhat limited in scope, compared to the SQL standard, whereas Oracle
triggers are more robust—yet neither product implements triggers according to the specifications
of the SQL standard. Despite this, there are a number of similarities among the products (such
asthe use of a CREATE TRIGGER statement to create a trigger), and the implementations of
triggersin the various products share some basic characteristics, particularly that of being able to
fire automatically to perform an action secondary to the primary action that invoked the trigger.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Creating SQL Triggers 331

NOTE

The functionality supported by triggers is sometimes referred to as active database. In
fact, this term is used to describe one of the optional packages that are included in the
SQL standard. The package—PKG008—defines how triggers are implemented in SQL.
(A package is a set of features to which a product can claim conformance in addition to
Core SQL.) For more information about SQL:2006 conformance, see Chapter 1.

Before we get into the specifics of how to implement triggers, let’s take alook at the
trigger itself, which, as| said, is a schema object (in the same sense as atable, view, or SQL-
invoked routine). A trigger definition defines the characteristics of the trigger and what actions
are taken when the trigger isinvoked. These actions, which are specified in one or more SQL
statements (referred to as the triggered SQL statements), can include such events as updating
tables, deleting data, invoking procedures, or performing most tasks that you can perform with
SQL statements. Any limitations placed on those statements are usually the ones placed by the
SQL implementation.

Triggers are invoked when you insert datainto atable, update data, or delete data. By
defining one or more triggers on atable, you can specify which data-modification actions
will cause the trigger to fire. The trigger is never invoked unless the specified action is
taken. Asyou can probably conclude from this, SQL supports three types of triggers: insert,
update, and delete. Each type corresponds with the applicable data modification statement.
For example, an insert trigger is fired when the INSERT statement is executed against the
specified table.

Although atrigger is a schema object, separate from table objects, it can be associated
with only one table, which you specify when you create your trigger definition. When the
applicable data modification statement is invoked against that table, the trigger fires; however,
it will not fireif asimilar statement isinvoked against a different table, or if a statement other
than the specified type isinvoked against the same table. In this sense, atrigger can be thought
of as atable object, despite the fact that it is created at the schemalevel.

If atrigger fails, raising an error condition, the SQL statement that caused the trigger
tofireaso failsand isrolled back. Thisis how triggers can be used to enforce complex
constraints—the trigger is written to perform whatever tests are necessary to verify that the
constraint conditions are met, and if not, ends by raising an error condition.

Trigger Execution Context

Before we move on to discussing how atrigger is created, | want to touch on the subject

of how triggers are executed, with regard to the trigger execution context, a type of SQL
execution context. Y ou can think of an execution context as a space created in memory that
holds a statement process during the execution of that statement. SQL supports several types of
execution contexts, triggers being one of them.

A trigger execution context is created each time atrigger isinvoked. If multiple triggers
areinvoked, an execution context is created for each one. However, only one execution
context can be activein a session at any one time. Thisisimportant when atrigger in one table
causes atrigger in a second table to befired. Let’stake alook at Figure 14-1 to help illustrate
this point.

www.it-ebooks.info

http://www.it-ebooks.info/

332

SQL: A Beginner's Guide

Table 1 4{ UPDATE statement

Trigger execution context

- I
1
) for update trigger i
Update trigger ™ ____ B e T e e
on Table 1 ! | Transition table | Transition table '
-1 ! forolddata { : fornewdata I !
:._'_'_'_'_'_'_'_'_'_'_'_'_'_l_I_'_'_'_'_'_'_'_'_'_'_'_'_'l__'
Table 2
~. CTT T T T TS TS T TS TS oS TS oSS s--s---sea
NG Trigger execution context
T for insert trigger

Insert trigger
on Table 2

Table 3

Transition table
for new data

\
\

Figure 14-1 Trigger execution contexts for two triggers

Notice that the figure contains three tables. An update trigger is defined on Table 1, and an
insert trigger is defined on Table 2. When an UPDATE statement is executed against Table 1, the
update trigger fires, creating atrigger execution context that becomes active. However, the update
trigger, which is defined to insert datainto Table 2, invokes theinsert trigger on Table 2 when the
first trigger attemptsto insert datainto that table. Asaresult, asecond execution context is created,
which becomes the active one. When the second trigger execution has completed, the second
execution context is destroyed, and the first execution context becomes active once more. When
thefirst trigger execution has completed, the first trigger execution context is destroyed.

A trigger execution context contains the information necessary for the trigger to be
executed correctly. Thisinformation includes details about the trigger itself and the table
on which the trigger was defined, which isreferred to as the subject table. In addition, the
execution context includes one or two transition tables, as shown in Figure 14-1. The transition
tables are virtua tables that hold data that is updated in, inserted into, or deleted from the
subject table. If datais updated, then two transition tables are created, one for the old data and
one for the new data. If dataisinserted, one transition table is created for the new data. If data
is deleted, one transition table is created for the old data. The transition tables and some of the
other information in the trigger execution context are used by the SQL statements that perform
the triggered action. You'll learn more about how thisinformation is used in the following
section, when we look at the CREATE TRIGGER syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Creating SQL Triggers 333

Create SQL Triggers

Now that you have a general overview of triggers, let’ stake alook at the syntax you use to
create them. Most of the syntax is concerned with defining the characteristics of the trigger,
such as the name of the trigger and the type. Only at the end of the statement do you define the
triggered SQL statements that specify the actions taken by the trigger when it is invoked.

The basic syntax for creating atrigger definition is as follows:

CREATE TRIGGER <trigger name>

{ BEFORE | AFTER}

{ INSERT | DELETE | UPDATE [OF <column list>] }
ON <table name> [REFERENCING <alias options>]

[FOREACH { ROW | STATEMENT }]

[WHEN (<search condition>)]

<triggered SQL statements>

Let'stake alook at each line of the syntax. Thefirst lineisfairly straightforward. Y ou
simply provide a name for the trigger following the CREATE TRIGGER keywords. In
the second line, you must designate whether the trigger isinvoked before or after the data
modification statement is applied to the subject table. For example, if you're defining an insert
trigger, you can specify whether the triggered SQL statements are executed before the datais
inserted into the subject table (by using the BEFORE keyword) or after the data is inserted into
the subject table (by using the AFTER keyword). This featureis particularly useful when one
of the tablesis configured with areferential integrity constraint and cannot contain data before
that data exists in the other table. (For information about referential integrity, see Chapter 4.)
Depending on the nature of the triggered action that is defined, it may not matter whether you
designate BEFORE or AFTER because the triggered action may have no direct relation to the
data modified in the subject table.

In the third line of syntax, you specify whether the trigger is an insert, delete, or update
trigger. If it is an update trigger, you have the option of applying the trigger to one or more
specific columns. If more than one column is specified, you must separate the column names
with commas. In the next line of syntax, you must specify an ON clause that includes the name
of the subject table. Thisis the table on which the trigger is applied. The trigger can be applied
to only onetable.

Up to this point, all the syntax we've looked at is required, except for specifying column
names in update trigger definitions, which is optional. However, the next several clauses are
not mandatory, but they add important capabilities to your trigger. Thefirst of these clauses
isthe REFERENCING clause. This clause allows you to specify how datathat is held in
the trigger execution context is referenced within the WHEN clause or the triggered SQL
statements. We'll look at the REFERENCING clause in more detail in the following section,
“Referencing Old and New Values.”

The next line of syntax contains the FOR EACH clause, which includes two options:

ROW or STATEMENT. If you specify ROW, thetrigger isinvoked each time arow isinserted,
updated, or deleted. If you specify STATEMENT, the trigger isinvoked only one time for

www.it-ebooks.info

http://www.it-ebooks.info/

334

SQL: A Beginner's Guide

each applicable data modification statement that is executed, no matter how many rows are
affected. If you do not include this clause in your trigger definition, the STATEMENT option
isassumed, and the trigger fires only once for each statement.

Next in the syntax is the optional WHEN clause. The WHEN clause allows you to define
a search condition that limits the scope of when the trigger isinvoked. The WHEN clauseis
similar to the WHERE clause of a SELECT statement. Y ou specify one or more predicates that
define a search condition. If the WHEN clause evaluates to true, the trigger fires; otherwise, no
trigger action istaken. However, this doesn’t affect the initial data modification statement that
was executed against the subject table; only the triggered SQL statements defined in the trigger
definition are affected.

Finally, the last component that your CREATE TRIGGER statement must include is one or
more SQL statements (sometimes called the trigger body) that are executed when the trigger is
invoked and, if aWHEN clause isincluded, that clause evaluates to true. If the trigger definition
includes more than one triggered SQL statement, or if you are using Oracle, those statements
must be enclosed in aBEGIN...END block, like those you saw in Chapter 13. However, there
is one difference from what you saw before. When used in atrigger definition, the BEGIN
keyword must be followed by the ATOMIC keyword to notify the SQL implementation that the
statements within the block must be handled as a unit. In other words, either all the statements
must be executed successfully, or none of the results of any statement executions can persist.
Without the ATOMIC keyword, it would be possible for some statements to be executed while
othersfail to be executed.

NOTE

Many implementations do not support the use of the ATOMIC keyword in the BEGIN...END
block of the triggered SQL statements. This includes both SQL Server and Oracle. Also,
with Oracle, all trigger and procedure bodies must be enclosed in BEGIN...END blocks.

Aside from the issue of the ATOMIC keyword, the triggered SQL statements, including the
BEGIN...END block, can consist of aimost any SQL statements, depending on the limitations
of your SQL implementation. Be sure to check the product documentation to determine what
limitations might be placed on the triggered SQL statements and how triggers are generally
created and implemented.

Referencing Old and New Values

Now let’s return to the REFERENCING clause of the CREATE TRIGGER statement. The
purpose of this clause isto alow you to define correlation names for the rows stored in the
transition tables or for the transition tables as awhole. Asyou'll recall from the “Understand
SQL Triggers’ section earlier in this chapter, the transition tables hold the data that has been
updated, inserted, or deleted in the subject table. The correlation names, or aliases, can then be
used in the triggered SQL statements to refer back to the data that is being held in the transition
tables. This can be particularly handy when trying to modify datain a second table based on
the data modified in the subject table. (This will be made clearer when we look at examples
later in the chapter.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Creating SQL Triggers 335

If you refer back to the syntax in the previous section, you'll notice that the optional
REFERENCING clause includes the <alias options> placeholder. SQL supports four options
for this clause:

REFERENCING OLD [ROW] [AS] <alias>

REFERENCING NEW [ROW] [AS] <alias>
REFERENCING OLD TABLE [AS] <alias>
REFERENCING NEW TABLE [AS] <dlias>

Notice that, in the first two options, the ROW keyword is not mandatory. If you don’t
specify ROW, it is assumed. Notice too that the AS keyword is optiona in all cases. However,
for the purposes of maintaining clear, self-referencing code, | recommend that you use the
complete option whenever you include it in atrigger definition.

Depending on the type of trigger (update, insert, or delete) and the FOR EACH option
(ROW or STATEMENT), you can include up to four REFERENCING options in your trigger
definition, one of each type. However, you cannot include more than one of any single type.
For example, you cannot include two OLD ROW optionsin your trigger definition. When
adding REFERENCING optionsto your trigger definition, you must follow these guidelines:

Y ou cannot use the NEW ROW and NEW TABLE options for delete triggers because no
new datais created.

Y ou cannot use the OLD ROW and OLD TABLE optionsfor insert triggers because no old
data exists.

You can use al four options in an update trigger because there is old data and new data
when you update atable.

Y ou can use the OLD ROW and NEW ROW options only when you specify the FOR
EACH ROW clause in the trigger definition.

Once you define your REFERENCING clauses and assign the appropriate aliases, you're
ready to use those aliases in your triggered SQL statements, in the same way you used
correlation names in your SELECT statements.

Dropping SQL Triggers

Although the SQL standard does not support any sort of statement that allows you to alter
atrigger, it does support away to delete atrigger, which you achieve by using the DROP
TRIGGER statement. Asyou can see in the following syntax, this statement is quite basic:

DROP TRIGGER <name>

All you need to do is provide the name of the trigger, along with the DROP TRIGGER
keywords. Because no other objects are dependent on the trigger, you do not need to specify
any additional keywords, such as CASCADE or RESTRICT. When you execute the DROP
TRIGGER statement, the trigger definition is deleted from the schema.

www.it-ebooks.info

http://www.it-ebooks.info/

336 SQl: A Beginner's Guide

Create Insert Triggers

So far in this chapter, I’ ve provided you with background information about triggers and the
syntax used to create triggers. Now we'll ook at examples of how triggers are created and
what happens when they’ reinvoked. We'll begin with the insert trigger, which, as you know,
isinvoked when an INSERT statement is executed against the subject table (the table on which
the trigger has been defined). In the first example, we'll create atrigger on the RETAIL _
INVENTORY table (subject table), shown in Figure 14-2. The trigger, when invoked, will
insert datainto the INVENTORY _LOG table.

The following CREATE TRIGGER statement defines an INSERT trigger that fires after
the dataiis inserted into the subject table:

CREATE TRI GGER | NSERT_LOG
AFTER | NSERT ON RETAI L_| NVENTORY
FOR EACH ROW
BEG N ATOM C
I NSERT | NTO | NVENTORY_LOG (ACTI ON_TYPE)
VALUES (' | NSERT') ;

END;

RETAIL_INVENTORY INVENTORY_LOG

CD_NAME: R_PRICE: AMOUNT: ACTION_TYPE:| DATE_MODIFIED:

VARCHAR (60) NUMERIC (5,2)| INT CHAR (6) TIMESTAMP

Famous Blue Raincoat 16.99 5 INSERT 2002-12-22 10:58:05.120

Blue 14.99 10 UPDATE 2002-12-22 12:02:05.033

Court and Spark 14.99 12 UPDATE 2002-12-22 16:15:22.930

Past Light 15.99 11 DELETE 2002-12-23 11:29:14.223

Kojiki 15.99 4 INSERT 2002-12-23 13:32:45.547

That Christmas Feeling 10.99 8 INSERT 2002-12-23 15:51:15.730

Patsy Cline: 12 Greatest Hits| 16.99 14 UPDATE 2002-12-23 17:01:32.270
UPDATE 2002-12-24 10:46:35.123
DELETE 2002-12-24 12:19:13.843
UPDATE 2002-12-24 14:15:09.673

Figure 14-2 Creating an insert trigger on the RETAIL_INVENTORY table

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Creating SQL Triggers 337

NOTE

As | mentioned at the beginning of the chapter, SQL implementations can vary widely
with regard to the semantics of the CREATE TRIGGER statement. For example, SQL
Server does not allow you to specify a FOR EACH clause, nor does it support the use
of the ATOMIC keyword in the BEGIN...END statement. On the other hand, the basic
Oracle trigger definition is a lot closer to the SQL standard, although Oracle also does
not support the use of the ATOMIC keyword in a trigger definition.

Let'stake alook at this statement one element at atime. In thefirst line, the CREATE
TRIGGER clause defines atrigger named INSERT_LOG. In the next line, the AFTER
keyword is used to specify that the triggered SQL statements will be executed after the data
has been inserted into the subject table. The AFTER keyword is followed by the INSERT
keyword, which defines the trigger as an insert trigger. Next is the ON clause, which specifies
the name of the subject table. In this case, the subject tableis RETAIL_INVENTORY .

Aswe move through the statement, we come to the FOR EACH clause, which specifies the
ROW keyword. This clause, when used with ROW, indicates that the trigger will be invoked for
each row that isinserted into the table, rather than for each INSERT statement that is executed
against the table. Following the FOR EACH clause are the triggered SQL statements.

The triggered SQL statements include a BEGIN...END statement and an INSERT
statement. | did not need to include the BEGIN...END statement in the trigger definition
because, without it, there is only one triggered SQL statement. However, | wanted to
demonstrate how the block would be used had there been more than one statement. Notice
that the block includes the ATOMIC keyword following the BEGIN keyword. According to
the SQL standard, ATOMIC isrequired, although it will depend on your SQL implementation
whether the keyword is supported.

The BEGIN...END block encloses an INSERT statement that adds data to the
INVENTORY _LOG table when the trigger isinvoked. Each time arow isinserted into the
RETAIL_INVENTORY table, arow isinserted into the INVENTORY _LOG table. The
INVENTORY _LOG row will contain the INSERT value for the ACTION_TY PE column.

A timestamp value is then added automatically to the DATE_MODIFIED column, whichis
defined with the default CURRENT_TIMESTAMP.

You can, if you want, create other triggers on the RETAIL_INVENTORY table. For
example, you might want to create update and delete triggers that insert rows into the
INVENTORY _LOG table when the applicable data modifications are made. In that case, you
would simply create atrigger definition for each additional trigger that you need.

NOTE

The SQL standard does not place a limit on the number of triggers that can be defined
on any one table; however, SQL implementations can have many restrictions, so check
the product documentation. In addition to these limitations, various implementations
might support different ways in which multiple triggers can be implemented. For
example, SQL Server allows you to define an insert, update, and delete trigger in one
statement.

www.it-ebooks.info

http://www.it-ebooks.info/

338

SQL: A Beginner's Guide

Now let’stake alook at what happens when you insert arow into the RETAIL _
INVENTORY table. Suppose you want to insert information about the Fundamental CD. Y ou
would create an INSERT statement as you would normally do, as shown in the following
example:

I NSERT | NTO RETAI L_I NVENTORY
VALUES (' Fundarental ', 15.99, 18);

If you were to execute the statement, the row would be inserted into the RETAIL _
INVENTORY table. To verify this, you can execute the following SELECT statement:

SELECT * FROM RETAI L_I NVENTORY;

The SELECT statement will return the same rows shown in the RETAIL _INVENTORY
tablein Figure 14-2, plus an additional row for the Fundamental CD, exactly as you would
expect. The trigger has no effect on the data modifications you make to the RETAIL _
INVENTORY table. However, asyou'll recall from the trigger definition that was defined on
the RETAIL_INVENTORY table, the triggered SQL statements should insert data into the
INVENTORY _L OG table when the trigger is invoked, which should have occurred when
you inserted arow into the RETAIL_INVENTORY table. To verify this, you can execute the
following SELECT statement:

SELECT * FROM | NVENTORY_LCOG,

The query results should include not only the rows shown in the INVENTORY _LOG table
in Figure 14-2, but also an additional row that includes an ACTION_TY PE value of INSERT
and aDATE_MODIFIED value for the current date and time. Each time arow isinserted into
the RETAIL_INVENTORY table, arow isinserted inthe INVENTORY _LOG table. You
could have defined your triggered SQL statements to take any sort of action, not just log events
in alog table. Depending on your needs and the database in which you work, you have a great
many possihilities for the type of actions that your triggers will support.

Create Update Triggers

Now that you’ ve seen an example of an insert trigger, let’ s take alook at a couple of update
triggers. The update trigger isinvoked when an UPDATE statement is executed against the
subject table. Aswith any other type of trigger, when the trigger is invoked, the triggered SQL
statements are executed and an action is taken. To illustrate how the update trigger works,
we'll usethe TITLES IN_STOCK and TITLE_COSTS tables shown in Figure 14-3.

Thefirst example that we'll look at is created onthe TITLES IN_STOCK table and
includes triggered SQL statements that update the TITLE _COSTS table, as shown in the
following CREATE TRIGGER statement:

CREATE TRI GGER UPDATE_TI TLE_COSTS
AFTER UPDATE ON TI TLES I N_STOCK
REFERENCI NG NEW ROW AS New
FOR EACH ROW

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Creating SQL Triggers

TITLES_IN_STOCK TITLE_COSTS

CD_TITLE: CD_TYPE: | INVENTORY: CD_TITLE: WHOLESALE: | RETAIL:
VARCHAR (60) CHAR (20)| INT VARCHAR (60) NUMERIC (5,2) | NUMERIC (5,2)
Famous Blue Raincoat| Folk 12 Famous Blue Raincoat| 8.00 16.99

Blue Popular 24 Blue 7.50 15.99

Past Light New Age |9 Past Light 6.00 14.99

Blues on the Bayou Blues 19 Blues on the Bayou 7.25 15.99

Luck of the Draw Popular 25 Luck of the Drive 7.50 15.99

Deuces Wild Blues 17 Deuces Wild 7.45 14.99

Nick of Time Popular 11 Nick of Time 6.95 14.99

Figure 14-3 Creating an update trigger on the TITLES_IN_STOCK table

BEG N ATOM C
UPDATE TI TLE_COSTS ¢
SET RETAIL = RETAIL * 0.9
VWHERE c. CD_TI TLE = New. CD_TI TLE;
END;

Asyou can see, thistrigger definition is similar in many ways to the insert trigger we
looked at in the preceding example. The update trigger definition includes the name of the
trigger (UPDATE_TITLE_COSTS) and specifies the AFTER and UPDATE conditions.

The ON clause then follows the UPDATE keyword and provides the name of the target
table. Following all thisisaline of code we did not see in the preceding example—a
REFERENCING clause.

The REFERENCING clause uses the NEW ROW option to define a correlation name for
the row that has been updated inthe TITLES IN_STOCK table. However, the REFERENCING
clause, and subsequently the search condition or triggered SQL statements that might refer
to the alias defined in this clause, are not directly referencing the TITLES IN_STOCK table.
Instead, they’ re referencing the transition table for new datain the trigger execution context. In
other words, the correlation name defined in the REFERENCING clause references the updated
row that is copied to the transition table. In this case, the correlation name is New. As aresullt,
the New correlation name can be used in the search condition in the WHEN clause or in the
triggered SQL statementsto refer back to the datain the transition table.

Once you' ve defined the correlation name in the REFERENCING clause, you must use it
to qualify the column names of the modified row when they are referenced in the WHEN clause
or inthetriggered SQL statements. In the CREATE TRIGGER statement in the preceding
example, you can seethat the aliasis used in the WHERE clause of the UPDATE statement.
Notice that the word New precedes the column name and that the two are separated by a period.

www.it-ebooks.info

339

http://www.it-ebooks.info/

340

SQL: A Beginner's Guide

Thisistypica of how you would qualify aname. It is similar to the way in which you use the
qualified name c.CD_TITLE for the CD_TITLE columninthe TITLE_COSTStable. If you
had specified a different NEW ROW correlation name or used the name in the WHEN clause or
in another part of the triggered SQL statement, you would still qualify the name of the column
with the alias that references the rowsin the transition table or the table itself.

NOTE

SQL Server does not support the REFERENCING clause. However, it supports similar
functionality by automatically assigning the names Inserted and Deleted to the transition
tables (Inserted for new data and Deleted for old data). In addition, there are some
cases in which you must declare a variable to use values from the Inserted and Deleted
tables, rather than qualifying column names, as you do in the SQL standard. Oracle,
on the other hand, does support the REFERENCING clause, but it also automatically
assigns the names New and Old to the transition tables, which you can use in the
WHEN clause and triggered SQL statements without specifying a REFERENCING
clause. When you do use the aliases in the triggered SQL statements of an Oracle
trigger definition, you must precede the alias name with a colon, as in :New. This is not
the case for the WHEN clause, in which the alias name is used without the colon.

Also, you cannot use the keyword ROW in the REFERENCING clause of an Oracle
trigger definition.

In addition to the REFERENCING clause, the CREATE TRIGGER statement also
includes a FOR EACH clause, which specifies the ROW option. Also notice that the triggered
SQL statementsinclude a BEGIN...END statement, which encloses an UPDATE statement. As
you can see, the UPDATE statement modifies the RETAIL valueinthe TITLE_COSTS table
for the CD that was updated inthe TITLES IN_STOCK table.

Now let’stake alook at what happens when you update the TITLES IN_STOCK column.
The following UPDATE statement changes the INVENTORY value for the Famous Blue
Raincoat row:

UPDATE TI TLES_| N_STOCK
SET | NVENTORY = 30
WHERE CD_TI TLE = ' Fanous Bl ue Rai ncoat';

When the UPDATE statement is executed, the UPDATE_TITLE COSTS trigger
isinvoked, causing the TITLE_COSTStable to be updated. As aresult, not only isthe
INVENTORY valueinthe TITLES IN_STOCK table changed to 30, but the RETAIL vaue
inthe TITLE_COSTStableisreduced to 15.29 (RETAIL * 0.9). Any time you update the
TITLES IN_STOCK table, the corresponding row or rows in the TITLE_COSTS table will be
reduced by 10 percent.

Y ou might find that you want to limit when the triggered SQL statements are executed.
For example, you might want to reduce the price of CDs only when the inventory exceeds a
certain amount. As aresult you decide to change your trigger definition to include a WHEN
clause that defines the necessary search condition. However, as | said earlier, SQL does not
support an ALTER TRIGGER statement (although Oracle supports CREATE OR REPLACE
TRIGGER syntax that can be used to completely replace an existing trigger), so you would

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Creating SQL Triggers 341

need to first delete the trigger from the database. The way to do that is to use the following
DROP TRIGGER statement:

DROP TRI GGER UPDATE_TI TLE_COSTS;

When you execute this statement, the trigger definition is removed from the schema and
you can how recreate the trigger with the necessary modifications. The following example
again creates the UPDATE_TITLE_COSTS trigger, but thistime a WHEN clause has been
added to the statement:

CREATE TRl GGER UPDATE TI TLE_COSTS
AFTER UPDATE ON TI TLES | N_STOCK
REFERENCI NG NEW ROW AS New
FOR EACH ROW
WHEN (New. | NVENTORY > 20)

BEG N ATOM C
UPDATE TI TLE_COSTS ¢
SET RETAIL = RETAIL * 0.9
WHERE c. CD_TI TLE = New. CD TI TLE;
END;

Asyou can see, the WHEN clause specifies that the INVENTORY value must be
greater than 20; otherwise, the triggered SQL statements will not be invoked. Notice that the
INVENTORY column name is qualified with the New correlation name in the same way that
the CD_TITLE column nameis qualified in the WHERE clause of the UPDATE statement.
Asaresult, the WHEN clause will reference the transition table for new datain the trigger
execution context when comparing values.

Now let’ s take alook at what happens when you update the TITLES IN_STOCK table.
The following UPDATE statement changes the INVENTORY value for the Past Light row:

UPDATE Tl TLES_I N_STOCK
SET | NVENTORY = 25
VWHERE CD Tl TLE = ' Past Light';

Asyou would expect, the INVENTORY vaueinthe TITLES IN_STOCK columnis
changed to 25. In addition, because the condition specified in the WHEN clause is met
(New.INVENTORY > 20), the triggered SQL statements are executed and the TITLE_COSTS
table is updated. If you were to query the TITLE_COSTS table, you would see that the
RETAIL value for the Past Light row has been changed to 13.49.

Now let’stake alook at an UPDATE statement that setsthe INVENTORY valueto an
amount |ess than 20:

UPDATE TI TLES_I N_STOCK
SET | NVENTORY = 10
VWHERE CD_TI TLE = ' Past Light';

This statement will still update the INVENTORY valueinthe TITLES IN_STOCK table,
but it will not cause the triggered SQL statements to be executed because the search condition
in the WHEN clause is not met. As aresult, no changes are made to the TITLE_COSTS table,
although the TITLES IN_STOCK tableis still updated.

www.it-ebooks.info

http://www.it-ebooks.info/

342

SQL: A Beginner's Guide

Ask the Expert

Q: When describing trigger execution contexts, you discussed how onetrigger can cause

another trigger to beinvoked. Isthere a point at which multiple triggers can become a
problem if too many are invoked?

Problems can arise when multiple triggers are invoked and they cause a cascading effect
from one table to the next. For example, an attempt to update one table might invoke a
trigger that updates another table. That update, in turn, might invoke another trigger that
modifies datain yet another table. This process can continue on as one trigger after the next
isinvoked, creating undesirable results and unplanned data modifications. The condition
can be made even worseif aloop is created in which atrigger causes a data modification
on atable for which another trigger has fired. For example, a data modification on one table
might invoke atrigger that causes a second modification. That modification might invoke
another trigger, which in turn invokes another trigger, which invokes yet another trigger.
The last trigger might then modify datain the origina table, causing the first trigger to

fire again, repeating the process over and over until the system fails or an implementation-
specific process ends the loop. The best way to prevent unwanted modifications or

trigger loops is through careful planning in the database design. Triggers should not be
implemented unless you're sure of their impact. In addition to careful planning, you should
look to the SQL implementation to determine what sorts of safety nets might be in place

to prevent trigger looping or unwanted cascading. For example, some implementations
alow you to control whether cascading triggers are allowed, and some limit the number

of cascading triggers that can fire. Make sure that you read your product’s documentation
before creating multiple triggers in your database.

Earlier, you mentioned that SQL allowsyou to define multiple triggerson atable.
How aretriggersprocessed if multipletriggersareinvoked?

In SQL, processing of multiple triggersis aconcern only if the triggers are defined to fire
at the same time (BEFORE or AFTER) and if they’ re the same type of trigger (INSERT,
UPDATE, or DELETE). For example, amultiple trigger scenario would exist if two or
more triggers are defined (on the same table) with the AFTER UPDATE keywords. If this
condition exists, then the triggers are invoked in the order in which they were defined.
Let’'stake alook at an example to show you what | mean. If you create Triggerl and then
create Trigger2 and then create Trigger3, Triggerl isinvoked first, then Trigger2, and
then Trigger3. The problem with thisis that SQL does not define any way in which you
can change that order. For example, if you decide that you want Trigger3 invoked before
Triggerl, your only option—based on the SQL standard—isto delete Triggerl and Trigger2
from the schema and then recreate the triggers in the order you want them invoked.
Because you did not delete Trigger3, it will move into the top spot and be the first to be
invoked because it will then be seen as the first to have been created.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Creating SQL Triggers 343

Create Delete Triggers

Thefinal type of trigger that we'll look at is the delete trigger. As you would expect, the
delete trigger isinvoked when a DELETE statement is executed against the subject table, and
as with other triggers, the triggered SQL statements are executed and an action is taken. Now
let’stake alook at an example that usesthe CD_STOCK table and CD_OUT table, as shown
in Figure 14-4.

Suppose you want to create atrigger on the CD_STOCK table. Y ou want the trigger
to insert the deleted values into the CD_OUT table. The following CREATE TRIGGER
statement uses a REFERENCING clause to allow the triggered SQL statement to know which
datato insert into the CD_OUT table:

CREATE TRI GGER | NSERT_CD_OUT
AFTER DELETE ON CD_STOCK
REFERENCI NG OLD ROW AS O d
FOR EACH ROW
| NSERT | NTO CD_OUT
VALUES (O d.CD NAME, O d.CD TYPE);

In this statement, you are creating atrigger named INSERT_CD_OUT. The statement is
defined with the AFTER DELETE keywords, meaning that the old values are inserted into
the CD_OUT table after they have been deleted from the CD_STOCK table. The ON clause
identifiesthe CD_STOCK table as the subject table.

Following the ON clause is the REFERENCING clause. The REFERENCING clause uses
the OLD ROW option to assign a correlation name of Old. Remember that you can use only
the OLD ROW and OLD TABLE optionsin the REFERENCING clause of a delete trigger
definition. Thisis because thereis no new data, only the old data that’ s being del eted.

CD_STOCK CD_ouT

CD_NAME: CD_TYPE: | IN_STOCK: CD_NAME: CD_TYPE:
VARCHAR (60) CHAR (4) | INT VARCHAR (60) CHAR (4)
Famous Blue Raincoat| FROK 19 Court and Spark FROK
Blue CPOP 28 Kojiki NEWA
Past Light NEWA 6 That Christmas Feeling XMAS
Out of Africa STRK 8 Patsy Cline: 12 Greatest Hits CTRY
Fundamental NPOP 10 Leonard Cohen The Best of FROK
Blues on the Bayou BLUS 11 Orlando STRK

Figure 14-4 Creating a delete trigger on the CD_STOCK table

www.it-ebooks.info

http://www.it-ebooks.info/

344

SQL: A Beginner's Guide

The FOR EACH clause follows the REFERENCING clause. The FOR EACH clause
uses the ROW option. Asaresult, arow will be inserted into the CD_OUT table for each row
deleted from the CD_STOCK table.

Next isthe triggered SQL statement. Notice that in this example, a BEGIN...END
statement is not used. Because there is only one triggered statement, you do not have to use the
BEGIN...END block (except Oracle always requires a block). The triggered statement in this
caseisan INSERT statement that specifies two values, each of which is based on the values
deleted from the CD_STOCK table. The Old alias is used to qualify each column name. As
aresult, the deleted values can be inserted directly into the CD_OUT table.

Now let’stake alook at an example of what happens when you delete a row from the
CD_STOCK table. The following DELETE statement deletes the Past Light row from the table:

DELETE CD_STOCK
WHERE CD_NAME = ' Past Light';

Once you execute this statement, the row is deleted and the trigger isinvoked. The row
isthen inserted into the CD_OUT table. Y ou can verify the deletion by using the following
SELECT statement to view the contents of the CD_STOCK table:

SELECT * FROM CD_STCCK;

The query results from this statement should no longer include the Past Light row.
However, if you execute the following SELECT statement, you’ll see that a row has been
inserted into the CD_OUT table:

SELECT * FROM CD_OUT;

Each time arow is deleted from the CD_STOCK table, two values from that row will be
inserted into the CD_OUT table. Aswith other trigger definitions, you could have included
aWHEN clausein your CREATE TRIGGER statement so that the triggered SQL statements
are executed only when the search condition specified in the WHEN clause evaluatesto true.
Otherwise, the statements are not executed. The row will still be deleted from the CD_STOCK
table, but nothing will be inserted into the CD_OUT table.

Creating SQL Triggers

Throughout this chapter, we have looked at how to create the three basic types of triggers—
insert, update, and delete triggers. Y ou will now create your own triggers (one of each of

the three types) in the INVENTORY database. The triggers will be defined to log data
modification activity that occursin the ARTISTS table. Whenever datais modified in the
ARTISTStable, arow will be inserted into alog table, which you will create. The log table
will record the type of action taken (insert, update, delete), the ARTIST _ID value for the
modified row, and a timestamp of when the row was inserted into the table. As aresult,
whenever you execute an INSERT, UPDATE, or DELETE statement against the ARTISTS
table, arow will be inserted into the new table for each row that is modified. Aswith other
Try Thisexercisesin this book (particularly Chapter 13, when you created stored procedures),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Creating SQL Triggers

you should refer to the documentation for your SQL implementation when creating triggers
to make certain you follow that product’s standards. There are alot of variations among the
SQL implementations. Y ou can download the Try_This_14.txt file, which contains the SQL
statements used in this exercise.

Step by Step

1. Open the client application for your RDBM S and connect to the INVENTORY database.

2. Before you create the actual triggers on the ARTISTS table, you must creste a table that will
log the data modifications you make to the ARTISTS table. The log table, named ARTIST _
LOG, will include three columns to record data modification events. One of the columns
will be configured with a default value that records the current date and time. Enter and
execute the following SQL statement:

CREATE TABLE ARTI ST_LOG
(ACTI ON_TYPE CHAR(6),
ARTIST ID INT,
MOD DATE Tl MESTAMP DEFAULT CURRENT TI MESTAWP);

Y ou should receive a message indicating that the table was successfully created.

3. Now you will create an insert trigger on the ARTISTS table. The trigger definition will
include a REFERENCING clause that specifies a correlation name (New) for the new row
that isinserted into the ARTISTStable. That correlation name will then be used in the
triggered SQL statement as a value inserted into the ARTIST_LOG table. Enter and execute
the following SQL statement:

CREATE TRI GGER | NSERT_LOG
AFTER | NSERT ON ARTI STS
REFERENCI NG NEW ROW AS New
FOR EACH ROW
BEG N ATOM C
I NSERT | NTO ARTI ST_LOG (ACTION_TYPE, ARTIST_ID)
VALUES ('INSERT', New. ARTIST_ID);
END;

Y ou should receive a message indicating that the trigger was successfully created.

4. Next you will create an update trigger. Thistrigger definition is similar to the onein step 3,
except that you are specifying that it is an update trigger. Enter and execute the following
SQL statement:

CREATE TRI GGER UPDATE_LOG
AFTER UPDATE ON ARTI STS
REFERENCI NG NEW ROW AS New
FOR EACH ROW
BEG N ATOM C

(continued)

www.it-ebooks.info

345

http://www.it-ebooks.info/

346 SQl: A Beginner's Guide

| NSERT | NTO ARTI ST_LOG (ACTI ON_TYPE, ARTIST_ID)
VALUES (' UPDATE', New. ARTIST ID);
END;

Y ou should receive amessage indicating that the trigger was successfully created.

5. Now you will create adelete trigger. Thistrigger definition is alittle different than the last
two triggers because the REFERENCING clause specifies a correlation name for the old
values, rather than the new. Thisis because new values are not created when you delete data
from atable. The correlation name (Old) isthen used in the VALUES clause of the INSERT
statement. Enter and execute the following SQL statement:

CREATE TRI GGER DELETE_LOG
AFTER DELETE ON ARTI STS
REFERENCI NG OLD ROWAS A d
FOR EACH ROW
BEG N ATOM C
I NSERT | NTO ARTI ST_LOG (ACTI ON_TYPE, ARTIST_ID)
VALUES ('DELETE', A d.ARTIST_ID);
END;

Y ou should receive a message indicating that the trigger was successfully created.

6. Now you can begin to test the triggers that you created. The first step isto insert data into
the ARTISTStable. In this statement, values are specified for the ARTIST_ID column and
the ARTIST_NAME column, but not the PLACE_OF BIRTH column. As aresult, the
default value of Unknown will be inserted in that column. Enter and execute the following
SQL statement:

| NSERT | NTO ARTI STS (ARTI ST_I D, ARTI ST_NAME)
VALUES (2019, 'John Lee Hooker');

Y ou should receive a message indicating that the row was successfully inserted into the
ARTISTS table.

7. Now you will update the row that you just inserted by providing a value for the PLACE_
OF BIRTH column. Enter and execute the following SQL statement:

UPDATE ARTI STS
SET PLACE_OF_BIRTH = ' C arksdal e, M ssi ssippi, USA
WHERE ARTI ST_I D = 2019;

Y ou should receive amessage indicating that the row was successfully updated into the
ARTISTStable.

8. Your next step isto delete the row that you just created. Enter and execute the following
SQL statement:

DELETE ARTI STS
WHERE ARTI ST_I D = 2019;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Creating SQL Triggers 347

Y ou should receive a message indicating that the row was successfully deleted from the
ARTISTStable.

9. Now that you' ve modified datain the ARTISTS table, you will look at the ARTIST_LOG
table to verify that rows have been entered into the table to record your data modifications
of the ARTISTS table. Enter and execute the following SQL statement:

SELECT * FROM ARTI ST_LCG,

Y our query results should include three rows, one for each action type (INSERT, UPDATE,
and DELETE). The rows should all have the same ARTIST_ID value (2019) and include
the current dates and times.

10. Your next step will be to drop the triggers from the database. The first trigger that you'll
drop istheinsert trigger. Enter and execute the following SQL statement:

DROP TRI GGER | NSERT_LGOG,

Y ou should receive a message indicating that the trigger was successfully dropped from
your database.

11. Next you will drop the update trigger. Enter and execute the following SQL statement:
DROP TRI GGER UPDATE_LOG

Y ou should receive a message indicating that the trigger was successfully dropped from the
database.

12. Now drop the delete trigger. Enter and execute the following SQL statement:
DROP TRI GGER DELETE_LOG,

Y ou should receive amessage indicating that the trigger was successfully dropped from the
database.

13. Finally, you will drop the ARTIST_L OG table that you created in step 2. Enter and execute
the following SQL statement:

DROP TABLE ARTI ST_LOG,

Y ou should receive a message indicating that the table was successfully dropped from the
database.

14. Close the client application.

Try This Summary

Inthis Try Thisexercise, you created the ARTIST_L OG table, which was set up to store
information about data modifications to the ARTISTS table. Next you created three triggers on
the ARTIST S table—an insert trigger, an update trigger, and a delete trigger. All three triggers
used REFERENCING clauses to allow you to passthe ARTIST_ID value of the modified

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

348

SQL: A Beginner's Guide

row to the ARTIST_L OG table. After the triggers were created, you inserted, updated, and
deleted datain the ARTISTS table to test the triggers. Y ou then viewed the contents of the
ARTIST_LOG tableto verify that the data modifications had been properly recorded. After
that, you dropped the three triggers and the ARTIST_L OG table. By the time you completed
the exercise, the INVENTORY database should have been returned to the same state it wasin
when you began.

Chapter 14 Self Test

. What isatrigger?
2. What are the three types of triggers?
3. What type of actions can be performed by the triggered SQL statements?
4. Which actions can invoke a trigger?
A Updating data
B Querying data
C Deéleting data
D Inserting data
5. When isan insert trigger invoked?
6. A trigger can be defined on how many tables?
A Only one
B Oneor more
C Onetothree
D Any number of tables

7. A(n) isaspace created in memory that holds a trigger process during the
execution of that trigger.

8. Youinsert datainto Table 1, which invokes an insert trigger defined on that table. The
trigger updates information in Table 2, which invokes an update trigger defined on that
table. The update trigger deletes information in Table 3, which invokes a del ete trigger
defined on that table. Which trigger execution context is active at this point?

A Thetrigger execution context for the insert trigger
B Thetrigger execution context for the update trigger

C Thetrigger execution context for the delete trigger

www.it-ebooks.info

http://www.it-ebooks.info/

10.
11.

12.

13.

14.
15.

16.

Chapter 14: Creating SQL Triggers 349

. If three triggers are invoked during a session, how many trigger execution contexts are

created in that session?
What information isincluded in atrigger execution context?

In which clause of the CREATE TRIGGER statement do you assign correlation names to
old and new data?

A FOREACH

B ON

C REFERENCING
D WHEN

In which clause of the CREATE TRIGGER statement do you specify whether the triggered
SQL statements are executed once for each row or once for each statement?

A FOREACH

B ON

C REFERENCING
D WHEN

You're creating atrigger definition for an insert trigger. Which REFERENCING clauses
can you include in your CREATE TRIGGER statement?

A REFERENCING OLD ROW ASOld
B REFERENCING NEW ROW AS New
C REFERENCING OLD TABLE ASOld
D REFERENCING NEW TABLE AS New
A(n) trigger alows you to specify the column names of a subject table.

What keywords can you use to designate whether the triggered SQL statements are
executed before or after the data modification statement is applied to the subject table?

Y ou're creating an update trigger on the CD_INVENTORY table. The table includes a
column named IN_STOCK. Y ou want the triggered SQL statements to be executed only
when the IN_STOCK value of the updated row exceeds 20. Which clause should you
include in your CREATE TRIGGER statement to restrict when the statements are executed?

A WHERE

B HAVING
C FOREACH
D WHEN

www.it-ebooks.info

http://www.it-ebooks.info/

350 SQl: A Beginner's Guide

17. What statement must you include in your CREATE TRIGGER statement if the trigger
definition includes more than one triggered SQL statement?

18. Which statement can you use to delete a trigger from the schema?

19. What SQL statement do you use to alter atrigger definition?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

Using SQL Cursors

351

http://www.it-ebooks.info/

352

SQL: A Beginner's Guide

Key Skills & Concepts

Understand SQL Cursors

Declare a Cursor

Open and Close a Cursor

Retrieve Data from a Cursor

Use Positioned UPDATE and DELETE Statements

As we have looked at different aspects of SQL throughout this book, we have used direct
invocation to create and access various data objects. Direct invocation, or interactive SQL,
isatype of data access method that supports the ad hoc execution of SQL statements, usually
through some sort of client application. For example, you can use SQL Server Management

Studio or Oracle’ siSQL*Plusto interact directly with your SQL database. However, direct
invocation generally represents only a small percentage of all database use. A far more
common method used to access SQL databases is embedded SQL, a data access model in
which SQL statements are embedded in an application programming language, such as C,

Java, and COBOL. To support embedded SQL, the SQL standard allows you to declare cursors
that act as pointers to specific rows of datain your query results. This chapter explains why
cursors are used and how cursors can be declared, opened, and closed within an SQL session.
You'll also learn how to retrieve data using the cursor so that your programming language can
work with SQL datain aformat that the application can process.

Understand SQL Cursors

One of the defining characteristics of SQL isthe fact that datain an SQL database is managed
in sets. In fact, query results returned by SELECT statements are often referred to as result sets.
These result sets are each made up of one or more rows extracted from one or more tables.

When working with SQL datainteractively, having data returned in setsrarely presents a
problem because you can normally scroll through the query results to find the information you
need. If the size of the resultsistoo great to easily skim through, you can narrow the focus of
your query expression to return a more manageable result set. However, most data accessis
through means other than direct invocation (despite the fact that we access data interactively
throughout the book). One of the most common methods, embedded SQL, accesses data
through SQL statements embedded in an application program. The data elements returned
by the SQL statements are used by the outer programming language—the host language—to
support specific application processes.

The problem we run into with this arrangement is that the application programming
languages are generally not equipped to deal with data returned in sets. As aresult, an impedance

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Using SQL Cursors

mismatch exists between SQL and the programming languages. | mpedance mismatch refersto
differences between SQL and other programming languages. Asyou might recall from Chapter 3,
one example of impedance mismatch is the way in which SQL data types differ from data types
in other programming languages. These differences can lead to the loss of information when an
application extracts data from an SQL database. Another example of impedance mismatch isthe
fact that SQL returns datain sets but other programming languages cannot handle sets. Generaly,
they can process only afew pieces of data (asingle record) at the same time. The way in which
SQL dealswith this type of impedance mismatch is through the use of cursors.

A cursor serves as a pointer that allows the application programming language to deal
with query results one row at atime, much like the way these programming languages handle
records from traditional (flat) data files. Although the cursor can traverse all the rows of a
query result, it focuses on only one row at atime. A cursor still returnsafull result set, but
allows the programming language to call only one row from that set. For example, suppose
your query results are derived from the following SELECT statement:

SELECT PERFORVER_NAME, PLACE_OF_BI RTH
FROM PERFORVMERS;

The query results from this statement will return all rows from the PERFORMERS table,
which includes the PERFORMER_NAME column and the PLACE_OF BIRTH column.
However, your application programming language can deal with only one row at atime, so
the cursor is declared as an embedded SQL statement within the application programming
language. The cursor is then opened, much like the way these application languages open files,
and arow isretrieved from the query results. Figure 15-1 illustrates how a cursor acts as a
pointer to retrieve only one row of data.

In this case, the row that is retrieved through the cursor is the Bing Crosby row. However,
you can retrieve any row from the query results, and you can continue to retrieve rows, aslong
asthey’reretrieved one at atime and the cursor remains open. Once you close the cursor, you
cannot retrieve any more rows from the query results.

Declaring and Opening SQL Cursors

Most application programming languages support the use of cursorsto retrieve data from an
SQL database. The cursor language is embedded in the programming code in much the same
way you would embed any SQL statement. When using a cursor in a programming language,
you must first declare the cursor—similar to how you would declare a variable—and then

use the declaration name (the name you'’ ve assigned to the cursor) in other embedded SQL
statements to open the cursor, retrieve individual rows through the cursor, and close the cursor.

NOTE

You can also use cursors in SQL client modules, which are sets of SQL statements that
can be called from within an application programming language. Client modules,
along with embedded SQL and interactive SQL, provide one more method to invoke
SQL statements. Because client modules are not implemented as widely as embedded
SQL, | focus on using cursors in embedded SQL. For more information about SQL client
modules, see Chapter 17.

www.it-ebooks.info

353

http://www.it-ebooks.info/

354

Figure 15-1

SQL: A Beginner's Guide

PERFORMER_NAME:
VARCHAR (60)

PLACE_OF_BIRTH:
VARCHAR (60)

Jennifer Warnes

Seattle, Washington, USA

Joni Mitchell

Fort MacLeod, Alberta, Canada

William Acherman

Germany

)

Kitaro Toyohashi, Japan
Bing Crosby Tacoma, Washington, United States
Patsy Cline Winchester, Virginia, United States

Jose Carreras

Barcelona, Spain

Luciano Pavarotti

Modena, Italy

Placido Domingo

Madrid, Spain

Although declaring a cursor is pivotal in using that cursor in your application, the
declaration alone is not enough to extract data from an SQL database. In fact, full cursor
functionality is supported through the use of four SQL statements, each of which are
embedded in the application programming language, or host language. The following

Using a cursor fo access the PERFORMERS table

descriptions provide an overview of these four statements:

DECLARE CURSOR Declaresthe SQL cursor by defining the cursor name, the
cursor’s characteristics, and a query expression that isinvoked when the cursor is opened.

OPEN Opensthe cursor and invokes the query expression, making the query results

available to FETCH statements.

FETCH Retrieves datainto variables that pass the data to the host programming

language or to other embedded SQL statements.

CLOSE Closesthe cursor. Once the cursor is closed, data cannot be retrieved from the

cursor’s query results.

The four statements are called from within the host language. Figure 15-2 illustrates how
the cursor-related statements are used. The embedded SQL statements are shown in the boxes

that are shaded gray.

Asyou can see, you must first declare the cursor, and then you open it. Once you've
opened the cursor, you can use the FETCH statement to retrieve rows of data. Y ou can use this
statement as many times as necessary, usually within some sort of looping structure defined by
the host language. Once you' ve retrieved the necessary data, you should close the cursor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Using SQL Cursors 355

Host language statements

DECLARE CURSOR statement

Host language statements

OPEN statement

R
Host language statements
Repeated FETCH
FETCH statement statements within a
host language
looping structure
Host language statements
_J

CLOSE statement

Host language statements

Figure 15-2 Embedding cursor-related SQL statements

NOTE

For most application programming languages, an embedded SQL statement is
preceded by EXEC SQL. This signals to a preprocessor that the following statement

is SQL and must be processed separately from the host language. The preprocessor,
provided by the RDBMS vendor, analyzes the SQL code and converts it into a form that
can be used by the SQL implementation. The host language is compiled in the normal
way. For more information about embedded SQL, see Chapter 17.

Declare a Cursor
Thefirst statement that we'll look at isthe DECLARE CURSOR statement. The cursor must be
declared before you can use the cursor to retrieve data. Y ou can declare acursor at any point in your
application code, aslong asit’s declared before the cursor is referenced by any other statements.

www.it-ebooks.info

http://www.it-ebooks.info/

356

SQL: A Beginner's Guide

NOTE

Many programmers prefer to declare all cursors and variables at the beginning of the
program so that all declarations are kept together. The cursors and variables can then
be referenced at any point in the program.

The syntax for a cursor declaration includes many elements, as shown in the following
syntax:

DECLARE <cursor name>

[SENSITIVE | INSENSITIVE | ASENSITIVE]

[SCROLL | NO SCROLL] CURSOR

[WITH HOLD |WITHOUT HOLD]

[WITH RETURN | WITHOUT RETURN]

FOR <query expression>

[ORDER BY <sort specification>]

[FOR{ READ ONLY | UPDATE[OF <columnlist>]}]

NOTE

Oracle uses the keyword IS instead of FOR preceding the query expression in the cursor
declaration.

Asyou can see, most of the elements that make up the declaration are optional. And as
always, you need to check the documentation for your SQL implementation to see which ones
are supported. We'll ook at these elements in greater detail in the following section. For now,
let’ s focus on those elements that are required. To do so, we can synthesize the syntax down to
the following basic elements:

DECLARE <cursor name> CURSOR FOR <query expression>

This syntax shows only those parts of the cursor declaration that are mandatory. Asyou
can see, thisis a much more manageable chunk of code. All you're required to provideisa
name for the cursor and the query expression that is invoked when the cursor is opened. The
name must be different from the name of any other cursor declared within the same program.
The query expression isbasically a SELECT statement, as you have seen throughout this book.

That’s al thereisto the basic syntax. In the following section, we'll take alook at each
of the optional elements that make up the cursor declaration. After that, we'll ook at some
examples.

Working with Optional Syntax Elements

If you refer back to the full syntax for a cursor declaration (shown in the previous section),
you'll see that the majority of the elements are optional. In this section, we'll ook at each of
these elements. Later in the chapter, after we' ve completed this discussion, you might find that
you'll want to refer back to this section for details about specific options.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Using SQL Cursors 387

Cursor Sensitivity
Thefirst optional element of the DECLARE CURSOR statement that we'll 1ook at is cursor
sensitivity, which is represented with the following syntax:

[SENSITIVE | INSENSITIVE | ASENSITIVE]

Cursor sensitivity is concerned with statements outside the cursor that affect the same rows
as those returned by the cursor. For example, suppose your cursor returns rows from the CDS
IN_STOCK table. While the cursor is open, another statement within the same transaction
deletes some of the same rowsinthe CDS IN_STOCK table that were returned by the cursor.
Whether or not the cursor can see these del etions depends on the cursor sensitivity.

Asyou can seein the syntax, SQL supports three cursor sensitivity options:

SENSITIVE Significant changes made by statements outside the cursor immediately
affect the query results within the cursor.

INSENSITIVE Significant changes made by statements outside the cursor do not affect
the query results within the cursor.

ASENSITIVE Cursor sensitivity isimplementation-defined. Significant changes may or
may not be visible within the cursor.

If no cursor sensitivity option is specified, ASENSITIVE is assumed, in which case the
SQL implementation can take whatever action it has been designed to take.

NOTE

Some SQL implementations provide initialization or system parameters that alter the
behavior of cursors. For example, Oracle provides the CURSOR_SHARING initialization
parameter that specifies which kind of SQL statements can share the same cursors. As
always, you should consult the documentation for your particular implementation.

Cursor Scrollability
The next optional element in the DECLARE CURSOR statement that we' Il [ook at is cursor
scrollability, as shown in the following syntax:

[SCROLL |NO SCROLL]

Scrollability is directly tied to the FETCH statement and the options that the FETCH
statement can use to retrieve data. If the SCROLL option is specified, the FETCH statement
can be defined with one of several options that extend its ability to move through the query
results and return specific rows. The SCROLL option allows the FETCH statement to skip
around through the query results as needed to retrieve the specific row. If NO SCROLL is
specified in the cursor declaration, the FETCH statement cannot make use of the additional
scrolling options and can retrieve only the next available row from the query results. If neither
option is specified, NO SCROLL isassumed. For more information about the FETCH options,
see the “Retrieve Data from a Cursor” section later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

358

SQL: A Beginner's Guide

Cursor Holdability
The next item that we'll look at in the DECLARE CURSOR syntax isrelated to cursor
holdability, as shown in the following syntax:

[WITH HOLD | WITHOUT HOLD]

Cursor holdability refersto a characteristic in cursors that is concerned with whether
acursor isautomatically closed when the transaction in which the cursor was opened is
committed. A transaction is an atomic unit of work. This meansthat all statements within the
transaction must succeed or none of them can have any effect. If some statements within a
transaction are executed and then one statement fails, all executed statements are rolled back
and the database remains unchanged. (Transactions are discussed in more detail in Chapter 16.)

SQL provides two options that allow you to define cursor holdability: WITH HOLD and
WITHOUT HOLD. If you specify WITH HOLD, your cursor will remain open after you
commit the transaction, until you explicitly closeit. If you specify WITHOUT HOLD, your
cursor will be automatically closed when the transaction is committed. If neither optionis
specified, WITHOUT HOLD is assumed and your cursor is automatically closed.

NOTE

Even if your cursor is defined as a WITHOUT HOLD cursor—whether explicitly or by
default—it is still generally considered good practice to explicitly close your cursor when
it is no longer needed. This can free up system resources, and it helps to ensure that
your code is clearly self-documenting. In SQL Server, a cursor must be deallocated after
it is closed in order fo free up all of its resources.

The advantage of defining a holdable cursor (one that is defined with the WITH HOLD
option) isthat there might be times after a transaction is committed when you want your cursor
to persist in order to maintain its position within the query results returned by that cursor.
Closing acursor and reopening it can often make it difficult to restore conditions, including the
cursor’ s position in the query results, to exactly what they were when you first closed the cursor.

Cursor Returnability
Cursor returnability, the next option we'll look at in the cursor declaration definition, uses the
following syntax:

[WITH RETURN |WITHOUT RETURN]

The returnability option applies only to cursors that are opened in an SQL-invoked
procedure. Asyou'll recall from Chapter 13, an SQL-invoked procedure is atype of routine
that isinvoked by using the CALL statement. The CALL statement isan SQL statement that
invokes procedures and allows you to pass parameter values to those procedures. If the cursor
is not opened within a procedure, the returnability option has no effect.

As the syntax shows, SQL supports two returnability options: WITH RETURN and
WITHOUT RETURN. If you specify WITH RETURN, the cursor is considered a result

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Using SQL Cursors 359

set cursor. If you then open the cursor within an SQL-invoked procedure, the cursor’s result
set is returned to the procedure’ s invoker, which might be another SQL -invoked routine

or a host language program. If you specify WITHOUT RETURN, the cursor’sresult set is
returned in the normal manner, whether or not it is opened with an SQL -invoked procedure.
If neither option is specified, WITHOUT RETURN is assumed.

Cursor Ordering
The DECLARE CURSOR statement includes an optional ORDER BY clause, as shown in the
following syntax:

[ORDER BY <sort specification>]

You'll no doubt recognize this clause from Chapter 7, when we looked at the basic clauses
of the SELECT statement. Y ou might recall from that discussion that the ORDER BY clause
can be used when directly invoking SQL, but not in an embedded SQL statement, unless that
statement is contained within a cursor declaration.

The ORDER BY clause allows you to sort the query results returned by your query
specification. In the clause, you can specify which columns form the basis for sorting the rows.
Care must be taken regarding performance because a cursor with an ORDER BY may force
the SQL engineto retrieve and sort the entire result set before the first row can be returned,
and this can be a performance disaster for very large result sets. If you use an ORDER BY
clause, your cursor’s SELECT statement cannot contain a GROUP BY clause or aHAVING
clause. In addition, the SELECT clause portion of the statement cannot specify the DISTINCT
keyword or use a set function.

If your ORDER BY clause includes calculated columnsin the query results (such as
COLUMN_A + COLUMN_B), you should define an alias for the result column, asin
(COLUMN_A + COLUMN_B) ASCOLUMN_TOTALS. In addition, you can also use the
ASC and DESC keywords for any column included in the sort specification to specify that the
column be sorted in ascending or descending order, respectively, with ASC being the default.
(For more information about the ORDER BY clause, see Chapter 7.)

Cursor Updatability
The last optional element of the DECLARE CURSOR statement that we'll look at is cursor
updatability, as shown in the following syntax:

[FOR { READ ONLY | UPDATE [OF <column list>]}]

Cursor updatability refers to the ability to use an UPDATE or DELETE statement to
modify data returned by the cursor’s SELECT statement. As you can see from the syntax, you
must use the FOR keyword along with the READ ONLY or UPDATE option. Let’sfirst go
over the READ ONLY option. If you specify READ ONLY, you cannot execute an UPDATE
or DELETE statement against the query results returned by the cursor’s SELECT statement.
On the other hand, if you specify UPDATE, you can execute the statements. If you specify
neither option, UPDATE is assumed, unless another option overrides the UPDATE defaullt.

www.it-ebooks.info

http://www.it-ebooks.info/

360

SQL: A Beginner's Guide

NOTE

In some cases, even if no updatability option is specified, the cursor will be defined as
a read-only cursor because other options might prevent the cursor from being updated.
For example, if you specify the INSENSITIVE option, the cursor will be read-only. The
same is true if you specify an ORDER BY clause or SCROLL keyword.

You'll notice that the UPDATE option also allows you to specify which columnsin the
underlying table can be updated. To do this, you must include the OF keyword, followed by
one or more column names. If more than one column is specified, the column names must be
separated by commas. If you do not specify any column names (with the OF keyword), the
UPDATE option appliesto all columnsin the underlying table.

Creating a Cursor Declaration

Now that we've looked at each component of the DECLARE CURSOR statement, let’ stake a
look at afew examplesthat help illustrate how to declare a cursor. For these examples, we'll
usethe CD_INVENTORY table, shown in Figure 15-3.

COMPACT_DISC: CATEGORY: PRICE: ON_HAND:
VARCHAR (60) VARCHAR (15) NUMERIC (5,2) INT
Famous Blue Raincoat Vocal 16.99 13
Blue Vocal 14.99 42
Court and Spark Vocal 14.99 22
Past Light Instrumental 15.99 17
Kojiki Instrumental 15.99 6
That Christmas Feeling Vocal 14.99 8
Patsy Cline: 12 Greatest Hits Vocal 16.99 32
Carreras Domingo Pavarotti in Concert Vocal 15.99 27
After the Rain: The Soft Sounds of Erik Satie Instrumental 16.99 21
Out of Africa Instrumental 16.99 29
Leonard Cohen The Best of Vocal 15.99 12
Fundamental Vocal 15.99 34
Blues on the Bayou Vocal 14.99 27
Orlando Instrumental 14.99 5

Figure 15-3 Declaring cursors on the CD_INVENTORY table

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Using SQL Cursors 361

Thefirst example that we'll review isabasic cursor declaration that includes only
the required elements plus an ORDER BY clause, as shown in the following DECLARE
CURSOR statement:

DECLARE CD 1 CURSOR
FOR
SELECT *
FROM CD_| NVENTORY
ORDER BY COMPACT DI SC;

In this statement, |’ ve declared a cursor named CD_1 and defined a SELECT statement.
The cursor name follows the DECLARE keyword. After the cursor name, I’ ve included
the CURSOR keyword and the FOR keyword. The only additional element isthe SELECT
statement, which includes an ORDER BY clause. The statement returns all rows and columns
from the CD_INVENTORY table. The rows are then ordered according to the valuesin the
COMPACT _DISC column. Because | did not specify the ASC or DESC keyword, the rows are
returned in ascending order.

NOTE

In Chapter 7, when discussing the SELECT statement, | explain that, although an asterisk
can be used to return all columns from a table, it is a better practice to identify each
column that you want returned. This is especially important in embedded SQL because
the host language relies on certain values—a specified number in a specified order—
being returned from the database. If the database should change, your application

may not operate properly, and the application code would have to be modified. For the
examples in this chapter, | often use an asterisk to simplify the code and conserve space,
but know that, in the real world, I would usually specify each column.

The ORDER BY clause is an important element because the order in which the rows
are returned affects which rows are retrieved when using a FETCH statement. (I discussthe
FETCH statement later in the chapter, in the “ Retrieve Data from a Cursor” section.) Thisis
especialy trueif defining a scrollable cursor, such as the one in the following example:

DECLARE CD 2 SCROLL CURSOR
FOR
SELECT *
FROM CD_| NVENTORY
ORDER BY COMPACT DI SC
FOR READ ONLY;

Notice that I’ ve added two new elements to this statement: the SCROLL keyword and the
FOR READ ONLY clause. The SCROLL keyword signals to the FETCH statement that the
cursor is scrollable. As aresult, additional options can be used within the FETCH statement
that extend how your application can move through the cursor results. The FOR READ
ONLY clause indicates that neither an UPDATE nor a DELETE statement can be used to
modify data returned by the cursor. However, this clause is not necessary. Because the cursor

www.it-ebooks.info

http://www.it-ebooks.info/

362

SQL: A Beginner's Guide

declaration includes the SCROLL keyword and the SELECT statement includes an ORDER
BY clause, the cursor is automatically limited to read-only operations. The use of either of
these two options—or the use of the INSENSITIVE option—automatically overrides the
cursor’s default updatability.

The next type of read-only declaration that we'll look at also includesthe INSENSITIVE
keyword, as shown in the following example:

DECLARE CD 3 SCROLL | NSENSI TI VE CURSOR
FOR
SELECT *
FROM CD_| NVENTORY
ORDER BY COMPACT DI SC
FOR READ ONLY;

The CD_3 cursor declaration is exactly like the CD_2 cursor declaration except that CD_3
has & so been defined as an insensitive cursor. This means that no modifications made to the
datain the underlying table while the cursor is open will be reflected in the query results
returned by the cursor. Of course, if you close the cursor and then reopen it, any modifications
that had been made when the cursor was originally open will be reflected in the data returned
by the reopened cursor.

The three preceding cursor declarations that we' ve looked at have all been read-only.

Now let’stake alook at an updatable cursor. In the following cursor declaration, the SELECT
statement again returns all rows and columns from the CD_INVENTORY table:

DECLARE CD_4 CURSOR
FOR
SELECT *
FROM CD_| NVENTORY
FOR UPDATE;

Notice that this DECLARE CURSOR statement does not include the SCROLL keyword,
the INSENSITIVE keyword, or an ORDER BY clause, any of which would have prevented us
from creating an updatable cursor. We could have specified the NO SCROLL and SENSITIVE
options, but they’ re not necessary. Also notice, however, that the cursor declaration does
include the FOR UPDATE clause. The clause is also not necessary in this particular
statement because the cursor is, by default, updatable, since it contains no optionsto limit the
updatability.

However, if you want your cursor to be updatable only for a certain column, you must
include the FOR UPDATE clause, along with the column name, as shown in the following
example:

DECLARE CD 5 CURSOR
FOR
SELECT *
FROM CD_| NVENTORY
FOR UPDATE OF COMPACT DI SC;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Using SQL Cursors 363

Now the FOR UPDATE clause includes the OF keyword and the column name,
COMPACT_DISC. If you were to try to modify datain the cursor resultsin columns other
than the COMPACT_DISC column, you would receive an error.

Once you' ve declared your cursor, you can open it and retrieve data from the query results.
However, as you have seen in the preceding cursor declarations, the actions that you can take
are limited to the restrictions defined with the DECLARE CURSOR statement.

Open and Close a Cursor

The process of opening a cursor is very straightforward. Y ou need to provide only the keyword
OPEN and the name of the cursor, as shown in the following syntax:

OPEN <cursor name>

For example, to open the CD_1 cursor, you invoke the following SQL statement:
OPEN CD 1;

Y ou cannot open a cursor until you have declared it. Once you' ve declared it, you can open
it anywhere within your program. The SELECT statement within the cursor is not invoked until
you actually open the cursor. That means that any data modifications made between the time the
cursor is declared and the time the cursor is opened are reflected in the query results returned by
the cursor. If you close the cursor and then reopen it, data modifications that took place between
the time you close it and the time you reopen it are reflected in the new query results.

Once you have finished using your cursor, you should closeit so that you can free up
system resources. To close a cursor, you can use the CL OSE statement, as shown in the
following syntax:

CLOSE <cursor name>

The CLOSE statement does nothing more than close the cursor, which means that the
query results from the cursor’s SELECT statement are released. For example, to close the
CD_1 cursor, use the following SQL statement:

CLOSE CD 1;

Once you close the cursor, you cannot retrieve any more rows from the cursor’ s query
results. In other words, you cannot use a FETCH statement to retrieve data from a closed
cursor. If you reopen the cursor, you can again retrieve data, but you will get a new result set
and (assuming no scrolling options) will start with the first row in the query results, which can
mean retrieving rows that have already been processed by a prior invocation of the cursor.

Retrieve Data from a Cursor

So far, you' ve learned how to declare a cursor, open it, and then close it. However, these
actions alone do not allow you to retrieve any of the datathat is provided by the cursor. In
order to do that, you must use a FETCH statement.

www.it-ebooks.info

http://www.it-ebooks.info/

364

SQL: A Beginner's Guide

Before we take alook at the syntax for the FETCH statement, let’s briefly review the
purpose of acursor and its related statements. As| said earlier, one of the problems with
embedding SQL statementsin a programming host language is the impedance mismatch. One
form of that mismatch isthat SQL returns datain sets and traditional application programming
languages cannot handle sets of data. In general, they can deal only with individual values.

In order to address this form of impedance mismatch, you can use cursors to retrieve data
one row at atime—regardless of how many rows are returned—from which you can extract
individual values that can be used by the host language.

Asyou have seen, a cursor declaration includes a SELECT statement that returns a set
of data. The OPEN statement executes the SELECT statement, and the CL OSE statement
releases the query results from the SELECT statement. However, it isthe FETCH statement
that identifies individual rows within that set of data and extracts individual values from those
rows, which are then passed to host variables. A host variable is atype of parameter that
passes a value to the host language.

One or more FETCH statements can be executed while a cursor is open. Each statement
points to a specific row in the query results, and values are then extracted from those rows. The
following syntax shows the basic elements that make up the FETCH statement:

FETCH [[<fetch orientation>] FROM]
<cursor name> INTO <host variables>

Asyou can see by the syntax, you must specify the FETCH keyword, the name of the
cursor, and an INTO clause that identifies the host variables that will receive the values
returned by the FETCH statement. These values are derived from the query results that are
generated by the cursor’s SELECT statement when that cursor is opened. If your FETCH
statement includes more than one host variable, you must separate the variables with commas.

In addition to the mandatory components of the FETCH statement, the syntax also
includes the optional <fetch orientation> placeholder and the FROM keyword. If you specify
afetch orientation option in your FETCH statement, you must include the FROM keyword, or
you can specify FROM without the fetch orientation.

SQL supports six fetch orientation options that identify which row is selected from the
cursor’s query results. Most of these options are available only if you declare the cursor as
scrollable. A scrollable cursor, asyou'll recal, is one that extends the ability of the FETCH
statement to move through the cursor’s query results. A cursor is scrollableif the cursor
declaration includes the SCROLL keyword. If you include a fetch orientation in your FETCH
statement, you can choose from one of the following options:

NEXT Retrievesthe next row from the query results. If you use NEXT in your first
FETCH statement after you open your cursor, the first row in the query results will be
returned. A second FETCH NEXT statement will return the second row.

PRIOR Retrievesthe row directly preceding the one that had last been retrieved. If
you use PRIOR in your first FETCH statement after you open the cursor, no row will be
returned because no row precedes the first row.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Using SQL Cursors 365

FIRST Retrievesthefirst row from your cursor’s query results, regardless of how many
FETCH statements have been executed since opening the cursor.

LAST Retrievesthe last row from your cursor’s query results, regardless of how many
FETCH statements have been executed since opening the cursor.

ABSOLUTE <value> Retrievesthe row specified by the <value> placeholder.
The value must be an exact numeric, although it can be derived from a host variable.
The numeric identifies which row is returned by the FETCH statement. For example,
ABSOLUTE 1 returns the first row, ABSOLUTE 2 returns the second row, and
ABSOLUTE -1 returns the last row.

RELATIVE <value> Retrievesthe row specified by the <value> placeholder, relative
to the cursor’s current position. If you use RELATIVE in the first FETCH statement
after you open the cursor, RELATIVE 1 returns the first row from the cursor’ s query
results, and RELATIVE -1 returns the last row. However, if the cursor is not at the
beginning of the query results, asit iswhen you first open the cursor, RELATIVE 1
and RELATIVE -1 return rows relative to the cursor position as it was left after the last
executed FETCH statement.

Whenever you open a cursor, the cursor points to the beginning of the query results. The
FETCH statement moves the cursor to the row designated by the fetch orientation option. If
no option is specified, NEXT is assumed, and the cursor always points to the next row in the
query results.

To help illustrate how the fetch orientation options work, let’s take another look at a cursor
we declared earlier in the chapter:

DECLARE CD_2 SCRCLL CURSCR
FOR
SELECT *
FROM CD_| NVENTORY
ORDER BY COVPACT_DI SC
FOR READ ONLY;

Notice that the SCROLL keyword is specified and that the SELECT statement retrieves all
rows and columns from the CD_INVENTORY table. Also notice that the SELECT statement
includes an ORDER BY clause that sorts the query resultsin ascending order according to the
valuesin the COMPACT_DISC column. Thisisimportant because the FETCH statements
move through the rows in the query results in the order specified by the ORDER BY clause,
regardless of how rows are ordered in the underlying table.

Now let’s take another look at the query results returned by the SELECT statement in the
CD_2 cursor. The query results, in the form of avirtual table, are shown in Figure 15-4. Notice
that the illustration includes pointers that represent the various types of FETCH statements
(based on their fetch orientation). In each case, the pointer is based on a FETCH statement that
isthefirst to be executed after the cursor has been opened.

www.it-ebooks.info

http://www.it-ebooks.info/

366

SQL: A Beginner's Guide

COMPACT_DISC CATEGORY | PRICE |ON_HAND

FETCH PRIOR

’ After the Rain: The Soft Sounds of Erik Satie| Instrumental| 16.99 | 21

Blue Vocal 14.99 42
Blues on the Bayou Vocal 14.99 27
Carreras Domingo Pavarotti in Concert Vocal 15.99 27

FETCH ABSOLUTE 5)| Court and Spark Vocal 14.99 22
Famous Blue Raincoat Vocal 16.99 13
Fundamental Vocal 15.99 34
Kojiki Instrumental| 15.99 6
Leonard Cohen The Best of Vocal 15.99 12

FETCH RELATIVE 10>| Orlando Instrumental| 14.99 5
Out of Africa Instrumental| 16.99 29
Past Light Instrumental| 15.99 17
Patsy Cline: 12 Greatest Hits Vocal 16.99 32
That Christmas Feeling Vocal 14.99 8

Figure 15-4 The query results (virtual table) returned by the CD_2 cursor

Notice that the FETCH FIRST and FETCH NEXT pointers each point to the After
the Rain row. Thisisthe first row in the cursor’s query results. FETCH FIRST will
always point to this row, assuming the data in the underlying tables doesn’'t change.

FETCH NEXT will always point to the first row whenever it is the first FETCH statement

executed after the cursor is opened. In addition, the FETCH LAST pointer will always
point to the That Christmas Feeling row. However, the FETCH PRIOR pointer doesn’t

point to any row. It points instead to a space prior to the first row of the query results. This
is because PRIOR cannot retrieve arow if it isused in the first FETCH statement after the

cursor is opened.

Now let’stake alook at the FETCH ABSOLUTE 5 pointer. Asyou can see, it pointsto the

Court and Spark row, which isthe fifth row in the cursor’ s query results. FETCH ABSOLUTE 5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Using SQL Cursors 367

will always return thisrow. On the other hand, FETCH RELATIVE 10 points to the Orlando
row, which is the tenth row in the cursor’ s query results. However, if RELATIVE wereused in a
FETCH statement other than the first one, FETCH RELATIVE 10 would probably be pointing to
adifferent row.

Asyou can see, the six fetch orientation options provide a great deal of flexibility in
moving through a cursor’ s query results. Keep in mind, however, that most of these options can
be used in read-only cursors only, such asthe CD_2 cursor we've been looking at. The only
option that can be used for updatable cursorsis NEXT, which is the default fetch orientation.
Now let’stake alook at afew examples of FETCH statements so you can see how they can be
used to retrieve data from your cursor’s query results.

Thefirst FETCH statement that we'll look at uses the NEXT fetch orientation option to
retrieve arow from the CD_2 cursor:

FETCH NEXT
FROM CD_2
INTO : CD, :Category, :Price, :On_Hand;

The statement identifies the fetch orientation and the cursor name. Asyou'll recall, the
NEXT keyword is optional because NEXT is the default fetch orientation. The statement
also includesthe INTO clause, which identifies the host variables that will receive values
returned by the FETCH statement. There are four host variables to match the number of
values returned by the FETCH statement. The number of variables must be the same as the
number of columns returned by the cursor’s SELECT statement, and the variables must be
listed in the same order as the columns returned. Notice that the host variables are separated
by commas and their names begin with colons. According to the SQL standard, host variables
must begin with a colon, although this can vary from one SQL implementation to the next.

Now that you' ve seen how a FETCH NEXT statement works, you can create any FETCH
statement for whichever fetch orientation you want to specify. Simply replace one option
with the other. For example, the following FETCH statement uses the ABSOLUTE fetch
orientation:

FETCH ABSOLUTE 5
FROM CD 2
INTO : CD, :Category, :Price, :On_Hand;

Notice that with the ABSOLUTE option, as with the RELATIVE option, you must
specify a numeric value. In this case, the cursor will retrieve the fifth row from the
cursor’s query results. The ABSOLUTE, FIRST, and LAST options are the only fetch
orientation options that will always return the same row from the cursor’s query results,
assuming that the data in the underlying table has not changed. On the other hand, the
NEXT, PRIOR, and RELATIVE options return rows based on the cursor’ s last position.
As aresult, you want to be certain to design your cursors and your FETCH statements
with positioning in mind.

www.it-ebooks.info

http://www.it-ebooks.info/

368

SQL: A Beginner's Guide

Ask the Expert

Q: You mention that a cursor’s SELECT statement is not executed until the cursor is opened.
How doesthis affect special values such as CURRENT_USER or CURRENT_TIME?

A: Because acursor's SELECT statement is not executed until the cursor is opened, specid
values are not assigned values until the cursor is opened, not when the cursor is declared.
For example, if you include the CURRENT _TIME specia valuein your cursor’s SELECT
statement and declare that cursor at the beginning of your program code, the time assigned
to the CURRENT_TIME value is the time when the cursor is opened, not the time when
the cursor is declared. In addition, if you close and then reopen the cursor, the CURRENT _
TIME valueisthat time when you again open the cursor, not when it was first opened.

Q: You state that host variables areatype of parameter that isused in embedded SQL.
How do host variables differ from other types of parameters?

A: Forall practical purposes, a host variable isjust like any other parameter. The main
distinction isthat a host variable is used in embedded SQL to pass values between the host
language and SQL. The only other real distinction isthat a colon must be added to the name
of the variable. The reason that a colon must be included when used in an embedded SQL
statement isto indicate that the nameis a host variable and not a column. Asaresult, you
can use variable names that are meaningful to your application without worrying about
accidentally naming a variable the same as a column name. The colon has nothing to do with
the variableitsalf, only in distinguishing it asavariable. A colon must also be used in SQL
client modules. However, values are passed to modules through parameters, rather than host
variables. Module parameters are essentially the same thing as host variables; only the names
are different. If you were to refer to all of them as parameters, you would not be far off.

Use Positioned UPDATE and DELETE Statements

Once you fetch arow from the query results of an updatable cursor, you might then want
your application to update or delete that row. To do so, you must use a positioned UPDATE
or DELETE statement. The positioned UPDATE and DELETE statements contain a special
WHERE clause that references the opened cursor. Let’s take alook at each of these two
statements to show you how you can use them to modify data returned by your cursor.

Using the Positioned UPDATE Statement

The positioned UPDATE statement is, for the most part, the same as aregular UPDATE
statement, except that it requires a special WHERE clause, as shown in the following syntax:

UPDATE <table name>
SET <set list>
WHERE CURRENT OF <cursor name>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Using SQL Cursors 369

A regular UPDATE statement, as you no doubt recall, contains the UPDATE clause and
the SET clause, just as you see in the syntax for a positioned UPDATE statement. However,
in aregular UPDATE statement the WHERE clause is optional, while in a positioned
UPDATE statement it is required. In addition, the WHERE clause must be defined with the
CURRENT OF option, which identifies the opened cursor. By using the CURRENT OF
option, you're telling your application to use the values returned by the most recent FETCH
statement for the referenced cursor. For example, if your cursor is pointing to the Past
Light row of the CD_INVENTORY table (the row most recently returned by the FETCH
statement), it is that row that is being referenced by the WHERE clause of the positioned
UPDATE statement.

Let'stake alook at an example to demonstrate how this works. In the following set of SQL
statements, we declare the CD_4 cursor, open that cursor, fetch arow from the cursor’s query
results, update that row, and close the cursor:

DECLARE CD 4 CURSOR
FOR
SELECT *
FROM CD_| NVENTCORY
FOR UPDATE;

OPEN CD 4;

FETCH CD 4
INTO : CD, :Category, :Price, :On_Hand;

UPDATE CD_I NVENTCRY
SET ON_HAND = : On_Hand * 2
WHERE CURRENT OF CD 4;

CLCSE CD _4;

| added some blank lines to improve readability, but of course they are not necessary, and
if you include them, your SQL engine will simply ignore them. The first statement declares
the CD_4 cursor and defines a SELECT statement that returns all rows and columns from
the CD_INVENTORY table. Next, we open the cursor and then fetch the next row, which in
this case isthe first row, Famous Blue Raincoat. After we fetch the row, we use a positioned
UPDATE statement to double the amount of the ON_HAND value for that row. Notice that
the UPDATE statement includes a WHERE clause that contains the CURRENT OF option,
which identifiesthe CD_4 cursor. After we update the row, we close the cursor.

NOTE

Keep in mind that the statements shown in the preceding example would be embedded
in a host language, so they are not likely to be grouped so closely together and there
would likely be other host language elements, such as variable declarations, looping
structures, and conditional statements.

www.it-ebooks.info

http://www.it-ebooks.info/

370

SQL: A Beginner's Guide

In the preceding example, we were able to update the ON_HAND column because it was
implicitly included in the FOR UPDATE clause of the cursor’s SELECT statement. When no
column names are specified, al columns are updatable. However, let’slook at another example
that explicitly defines a column. In the following set of SQL statements, I’ ve declared the
CD_5 cursor and used it to try to update arow inthe CD_INVENTORY table:

DECLARE CD 5 CURSOR
FOR
SELECT *
FROM CD_| NVENTCORY
FOR UPDATE OF COMPACT DI SC;

OPEN CD_5;

FETCH CD 5
INTO : CD, :Category, :Price, :On_Hand;

UPDATE CD_| NVENTORY
SET ON_HAND = : On_Hand * 2
WHERE CURRENT OF CD_5;

CLOSE CD 5;

Asyou can see, the cursor declaration specifiesthe COMPACT_DISC column in the FOR
UPDATE clause. If you try to execute the UPDATE statement, you will receive an error indicating
that the ON_HAND column is not one of the columns specified in the cursor declaration.

Using the Positioned DELETE Statement

The positioned DELETE statement, like the positioned UPDATE statement, requires a
WHERE clause that must include the CURRENT OF option. (A regular DELETE statement,
asyou'll recall, does not require the WHERE clause.) A positioned DELETE statement uses
the following syntax:

DELETE <table name>
WHERE CURRENT OF <cursor hame>

Asyou can see, you need to define a DELETE clause that identifies the table and a WHERE
clause that identifies the cursor. The WHERE clause in a positioned DELETE statement works
just like the WHERE clause in a positioned UPDATE statement: The row returned by the last
FETCH statement is the row that is modified. In this case, the row is deleted.

Now let’slook at an example of a positioned DELETE statement. The following SQL
statements declare the CD_4 cursor, open the cursor, return arow from the cursor, delete that
row, and close the cursor:

DECLARE CD 4 CURSOR
FOR
SELECT *

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Using SQL Cursors 371

FROM CD_| NVENTORY
FOR UPDATE;

OPEN CD 4;

FETCH CD 4
INTO : CD, :Category, :Price, :On_Hand;

DELETE CD_| NVENTORY
VWHERE CURRENT OF CD 4;

CLOSE CD 4;

Y ou should be familiar with most of these statements. The only new one is the positioned
DELETE statement. This statement del etes the row returned by the FETCH statement, which
is the Famous Blue Raincoat row. Once the row is deleted, the cursor is closed using a CLOSE
statement. As stated previously, it is always a good ideato explicitly close cursors when they
are no longer needed.

Working with SQL Cursors

In this chapter, we looked at how to declare cursors, open those cursors, retrieve data from them,
and then close them. In addition, we reviewed positioned UPDATE and DELETE statements.
However, as| said earlier, cursors are used primarily in embedded SQL, which makesiit difficult
to fully test cursor functionality if you're limited to directly invoking SQL statements (aswe are
inthis Try Thisexercise). Ideally, it would be best to embed the cursor-related SQL statements
in a host language, but that is beyond the scope of this book. What complicates thisissue even
further isthe fact that different SQL implementations support the use of cursorsin an interactive
environment in different ways, which can make it difficult to directly invoke cursor-related
statements. Still, you should be able to execute most cursor-related statements interactively, but
know that cursors are designed for use in embedded SQL and SQL client modules, so you might
have to modify the statements a great deal in order to execute them. Y ou can download the
Try_This_15.txt file, which contains the SQL statements used in this exercise.

NOTE

Ideally, it would be good to walk you through each step of declaring and opening
a cursor, refrieving data, and c|osing a cursor, but because of the nature of direct
invocation, we will use fewer steps and larger blocks of statements.

Step by Step
1. Open the client application for your RDBM S and connect to the INVENTORY database.

2. Thefirst cursor that you'll declare and access is a basic read-only cursor that retrieves data
from the COMPACT _DISCStable. Thefirst thing you'll notice in the set of statements

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

372

SQL: A Beginner's Guide

you'll be creating is that you'll declare avariable namedv_CD_NAME. You'll need
to create this variable in order to fully test the FETCH statement. Keep in mind that,
depending on the situation, the host language, and the product, you may or may not use
this method for defining your variable. Also notice that the variable name in the FETCH
statement is not preceded by a colon. Thisis because you'll be using direct invocation to
execute these statements and, for most implementations, the name of the variable in the
FETCH statement will have to be the same as the name you declared at the beginning of
this set of statements.

Aswith any SQL statement, you will find that the exact language you use to create
statements varies from one product to the next. In addition, the fact that you' re invoking
the statements directly, rather than embedding the statements, can lead to other variations
between SQL and the implementation (such as not using a colon in the variable name). For
example, if you execute these statementsin SQL Server, you'll have to precede your variable
names with the at (@) character. Oracle deviates from the standard even more. In Oracle,
you declare the cursor and variable in one block of statements. In addition, the CURSOR
keyword precedes the name of the cursor, and you must use the IS keyword, rather than
FOR. Y ou must aso enclose the OPEN, FETCH, and CLOSE statementsin a BEGIN...END
block. Y ou will also find that not all SQL options are supported in all SQL implementations,
and many products include additional features not defined in the SQL standard. Be sure to
check your product’ s documentation before trying to declare and access any cursors.

Now let’s create the cursor-related statements. Enter and execute the following SQL
statements:

DECLARE v_CD_NAME VARCHAR (60);

DECLARE CD cursor_1 CURSOR
FOR
SELECT CD_TI TLE
FROM COVPACT_DI SCS
ORDER BY CD_TI TLE ASC;

OPEN CD_cursor _1;
FETCH CD _cursor_1 I NTO v_CD_NAMNE;

CLOSE CD cursor _1;

In these statements, you first declared a variable named v_CD_NAME. Next, you declared a
cursor named CD_cursor_1. The cursor definition contained a SELECT statement that was
qualified with an ORDER BY clause. Because you included the ORDER BY clause, your
cursor was read-only. After you declared the cursor, you opened it, fetched a row from the
cursor’ s query results, and then closed the cursor. The FETCH statement returned the value
After the Rain: The Soft Sounds of Erik Satie, which could have then been used in some
other operation, had you embedded these statements. After you executed the statements, you
should have received a message saying that the statements were executed successfully.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Using SQL Cursors 373

3. Now you will declare and access a second cursor. This time you will specify that the cursor
isinsensitive and scrollable. In addition, you will specify that the cursor is read-only,
although this clause is optional because you' re making the cursor scrollable and insensitive.
Y ou will also fetch the last row from the cursor’s query results, rather than the first. Enter
and execute the following SQL statements:

DECLARE v_CD_NAVME VARCHAR(60) ;

DECLARE CD cursor_2 SCROLL I NSENSI TI VE CURSOR
FOR
SELECT CD_TITLE
FROM COVPACT_DI SCS
CRDER BY CD_TI TLE ASC
FOR READ ONLY;

OPEN CD _cursor _2;
FETCH LAST FROM CD_cursor_2 | NTO v_CD_NAME;
CLOSE CD_cursor_2;

Thistime the FETCH statement retrieved the value That Christmas Feeling because LAST
was specified. Thisvalue wasinserted intothev_CD_NAME variable. After you executed
the statements, you should have received a message saying that the statements were
executed successfully.

4. Your next cursor will be updatable, which means that it cannot include an ORDER BY
clause and cannot be defined as insensitive or scrollable. Because the cursor is updatable,
you will aso create an UPDATE statement that doubles the value of the IN_STOCK
column for the row returned by the FETCH statement. Enter and execute the following SQL
statements:

DECLARE v_CD_NAME VARCHAR(60);

DECLARE CD cursor_3 CURSCOR
FOR
SELECT CD_TI TLE
FROM COVPACT_DI SCS
FOR UPDATE;

OPEN CD cursor_3;
FETCH CD_cursor_3 I NTO v_CD_NAME;
UPDATE COWVPACT_DI SCS

SET IN_STOCK = I N_STOCK * 2
VWHERE CURRENT OF CD cursor _3;

CLOSE CD_cursor_3;

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

374

SQL: A Beginner's Guide

Notice that your UPDATE statement includes a WHERE clause that contains the
CURRENT OF option, which specifiesthe CD_cursor_3 cursor. This clause is mandatory.
Because no ORDER BY clause was used, the first row in your cursor’s query results was
Famous Blue Raincoat. Thisisthe row that was updated. After you executed the statements,
you should have received a message indicating that a row had been updated.

5. Now let’stake alook at the COMPACT_DISCS table to verify that the change you madeis
correct. Enter and execute the following SQL statement:

SELECT * FROM COVPACT_DI SCS;

TheIN_STOCK value of the Famous Blue Raincoat row should now be 26, double its
original amount.

6. Let’sreturn the database to its original state. Enter and execute the following SQL
statement:

UPDATE COMPACT DI SCS
SET IN_STOCK = 13
WHERE COVPACT DI SC ID = 101;

Y ou should receive a message indicating that the row has been updated.
7. Close the client application.

Try This Summary

Inthis Try This exercise, you declared and accessed three cursors, two that were read-only and
one that was updatable. For all three cursors you declared a variable. The variable was then
used in the FETCH statement to receive the value returned by that statement. For the updatable
cursor, you created an UPDATE statement that modified the IN_STOCK value for the row
returned by the FETCH statement. After you updated the COMPACT _DISCS table, you
updated it once more to return the database to its original state. Because no other changes were
made to the database, your data should be as it was before you started this exercise.

Chapter 15 Self Test

1. What isacursor?
2. Which invocation methods support the use of cursors?
3. What form of impedance mismatch is addressed through the use of cursors?

4. A(n) serves as a pointer that allows the application programming language
to deal with query results onerow at atime.

www.it-ebooks.info

http://www.it-ebooks.info/

11.

12.

13.

Chapter 15: Using SQL Cursors

. When using cursorsin embedded SQL, what is the first step you must take before you can

retrieve data through that cursor?
A Fetch the cursor.
B Declarethe cursor.
C Closethe cursor.

D Open the cursor.

.