
www.it-ebooks.info

http://www.it-ebooks.info/

SQL
A Beginner’s Guide
Third Edition

Andy Oppel
Robert Sheldon

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

www.it-ebooks.info

http://dx.doi.org/10.1036/0071548645
http://www.it-ebooks.info/

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-154865-3

The material in this eBook also appears in the print version of this title: 0-07-154864-5.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy
of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit,
distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work
for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO
THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUD-
ING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND
EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WAR-
RANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or
guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free.
Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the
work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the
work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential
or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such
damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

DOI: 10.1036/0071548645

www.it-ebooks.info

http://dx.doi.org/10.1036/0071548645
http://www.it-ebooks.info/

About the Authors
Andrew (Andy) J. Oppel is a proud graduate of the Boys’ Latin School of Maryland and of
Transylvania University (Lexington, Kentucky) where he earned a BA in computer science
in 1974. Since then he has been continuously employed in a wide variety of information
technology positions, including programmer, programmer/analyst, systems architect, project
manager, senior database administrator, database group manager, consultant, database designer,
data modeler, and data architect. In addition, he has been a part-time instructor with the
University of California (Berkeley) Extension for over 20 years, and received the Honored
Instructor Award for the year 2000. His teaching work included developing three courses for
UC Extension, “Concepts of Database Management Systems,” “Introduction to Relational
Database Management Systems,” and “Data Modeling and Database Design.” He also earned
his Oracle 9i Database Associate certification in 2003. He is currently employed as a senior data
modeler for Blue Shield of California. Aside from computer systems, Andy enjoys music (guitar
and vocals), amateur radio (Pacific Division vice director, American Radio Relay League) and
soccer (referee instructor, U.S. Soccer).

Andy has designed and implemented hundreds of databases for a wide range of applications,
including medical research, banking, insurance, apparel manufacturing, telecommunications,
wireless communications, and human resources. He is the author of Databases Demystified
(McGraw-Hill/Osborne, 2004) and SQL Demystified (McGraw-Hill/Osborne, 2005). His database
product experience includes IMS, DB2, Sybase, Microsoft SQL Server, Microsoft Access,
MySQL, and Oracle (versions 7, 8, 8i, 9i, and 10g).

Robert Sheldon has worked as a consultant and technical writer for a number of years.
As a consultant, he has managed the development and maintenance of web-based and client-
server applications and the databases that supported those applications. He has designed and
implemented various Access and SQL Server databases and has used SQL to build databases,
create and modify database objects, query and modify data, and troubleshoot system- and
data-related problems. Robert has also written or cowritten eight books on various network
and server technologies, one of which received a Certificate of Merit from the Puget Sound
Chapter of the Society for Technical Communication. In addition, two of the books that
Robert has written focus exclusively on SQL Server design and implementation. Robert
has also written and edited a variety of other documentation related to SQL databases and
other computer technologies. His writing includes material outside the computer industry—
everything from news articles to ad copy to legal documentation—and he has received two
awards from the Colorado Press Association.

About the Technical Editor
James Seymour is a graduate of the University of North Carolina at Chapel Hill with a BA in
history and political science and the University of Kentucky with a MA in history. He became
first involved with computer technology in 1965 with the mainframe environment at North
Carolina. While in the United States Army during the Vietnam War, he was on the small team
that worked with the mainframe setup at the Pentagon for various military strategic scenarios.
Since 1972, he has been involved in varied computer environments with the second point-of-sale

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

and inventory control project in the retail industry, analytical programs and database initiatives in
the insurance and benefits industries, loss control startups, and other inventory control and sales
tracking projects throughout many different industries.

From 1987 through 1995, James was an instructor of database management in the community
college system of the state of Kentucky. In this capacity, he created the first database management
and C programming courses in the state of Kentucky and helped both public and private entities
with urgent training needs, including the programming of guidance systems on cruise missiles for
Desert Storm.

Before 1985, he was a system administrator, network administrator, programmer, and
database administrator. Since 1985, James has been a senior database administrator working
primarily with DB2 and Oracle DBMSs on multiple platforms including SQL Server
beginning with version 7.0. He is currently the senior database administrator and data
architect for a Fortune 100 company overseeing major projects in the United States, Canada,
and the United Kingdom.

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents

ACKNOWLEDGMENTS . xi
INTRODUCTION . xi

PART I Relational Databases and SQL

 1 Introduction to Relational Databases and SQL . 3
Understand Relational Databases . 4

The Relational Model . 5
Learn About SQL . 15

The SQL Evolution . 15
Types of SQL Statements . 18
Types of Execution . 19
SQL Standard versus Product Implementations . 21

 2 Working with the SQL Environment . 29
Understand the SQL Environment . 30
Understand SQL Catalogs . 32

Schemas . 34
Schema Objects . 35
Then What Is a Database? . 37

Name Objects in an SQL Environment . 40
Qualified Names . 41

For more information about this title, click here

www.it-ebooks.info

http://dx.doi.org/10.1036/0071548645
http://www.it-ebooks.info/

 vi SQL: A Beginner’s Guide

Create a Schema . 42
Create a Database . 44

 3 Creating and Altering Tables . 49
Create SQL Tables . 50
Specify Column Data Types . 54

String Data Types . 55
Numeric Data Types . 57
Datetime Data Types . 58
Interval Data Type . 60
Boolean Data Type . 61
Using SQL Data Types . 62

Create User-Defined Types . 63
Specify Column Default Values . 64
Delete SQL Tables . 69

 4 Enforcing Data Integrity . 73
Understand Integrity Constraints . 74
Use NOT NULL Constraints . 76
Add UNIQUE Constraints . 77
Add PRIMARY KEY Constraints . 79
Add FOREIGN KEY Constraints . 83

The MATCH Clause . 88
The <referential triggered action> Clause . 89

Define CHECK Constraints . 95
Defining Assertions . 97
Creating Domains and Domain Constraints . 98

 5 Creating SQL Views . 103
Add Views to the Database . 104

Defining SQL Views . 108
Create Updateable Views . 114

Using the WITH CHECK OPTION Clause . 116
Drop Views from the Database . 117

 6 Managing Database Security . 123
Understand the SQL Security Model . 124

SQL Sessions . 126
Accessing Database Objects . 128

Create and Delete Roles . 130
Grant and Revoke Privileges . 131

Revoking Privileges . 135
Grant and Revoke Roles . 137

Revoking Roles . 138

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents vii

PART II Data Access and Modification

 7 Querying SQL Data . 145
Use a SELECT Statement to Retrieve Data . 146

The SELECT Clause and FROM Clause . 147
Use the WHERE Clause to Define Search Conditions . 152

Defining the WHERE Clause . 156
Use the GROUP BY Clause to Group Query Results . 159
Use the HAVING Clause to Specify Group Search Conditions . 164
Use the ORDER BY Clause to Sort Query Results . 166

 8 Modifying SQL Data . 175
Insert SQL Data . 176

Inserting Values from a SELECT Statement . 180
Update SQL Data . 182

Updating Values from a SELECT Statement . 185
Delete SQL Data . 186

 9 Using Predicates . 193
Compare SQL Data . 194

Using the BETWEEN Predicate . 199
Return Null Values . 200
Return Similar Values . 203
Reference Additional Sources of Data . 209

Using the IN Predicate . 209
Using the EXISTS Predicate . 213

Quantify Comparison Predicates . 216
Using the SOME and ANY Predicates . 216
Using the ALL Predicate . 218

 10 Working with Functions and Value Expressions . 225
Use Set Functions . 226

Using the COUNT Function . 227
Using the MAX and MIN Functions . 229
Using the SUM Function . 231
Using the AVG Function . 232

Use Value Functions . 232
Working with String Value Functions . 233
Working with Datetime Value Functions . 236

Use Value Expressions . 238
Working with Numeric Value Expressions . 238
Using the CASE Value Expression . 241
Using the CAST Value Expression . 244

Use Special Values . 245

www.it-ebooks.info

http://www.it-ebooks.info/

 viii SQL: A Beginner’s Guide

 11 Accessing Multiple Tables . 253
Perform Basic Join Operations . 254

Using Correlation Names . 257
Creating Joins with More than Two Tables . 258
Creating the Cross Join . 259
Creating the Self-Join . 260

Join Tables with Shared Column Names . 261
Creating the Natural Join . 262
Creating the Named Column Join . 263

Use the Condition Join . 263
Creating the Inner Join . 264
Creating the Outer Join . 266

Perform Union Operations . 269

 12 Using Subqueries to Access and Modify Data . 277
Create Subqueries That Return Multiple Rows . 278

Using the IN Predicate . 279
Using the EXISTS Predicate . 281
Using Quantified Comparison Predicates . 282

Create Subqueries That Return One Value . 283
Work with Correlated Subqueries . 284
Use Nested Subqueries . 286
Use Subqueries to Modify Data . 288

Using Subqueries to Insert Data . 288
Using Subqueries to Update Data . 290
Using Subqueries to Delete Data . 291

PART III Advanced Data Access

 13 Creating SQL-Invoked Routines . 299
Understand SQL-Invoked Routines . 300

SQL-Invoked Procedures and Functions . 301
Working with the Basic Syntax . 301

Create SQL-Invoked Procedures . 303
Invoking SQL-Invoked Procedures . 305

Add Input Parameters to Your Procedures . 306
Using Procedures to Modify Data . 309

Add Local Variables to Your Procedures . 311
Work with Control Statements . 313

Create Compound Statements . 313
Create Conditional Statements . 314
Create Looping Statements . 316

Add Output Parameters to Your Procedures . 320
Create SQL-Invoked Functions . 321

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents ix

 14 Creating SQL Triggers . 329
Understand SQL Triggers . 330

Trigger Execution Context . 331
Create SQL Triggers . 333

Referencing Old and New Values . 334
Dropping SQL Triggers . 335

Create Insert Triggers . 336
Create Update Triggers . 338
Create Delete Triggers . 343

 15 Using SQL Cursors . 351
Understand SQL Cursors . 352

Declaring and Opening SQL Cursors . 353
Declare a Cursor . 355

Working with Optional Syntax Elements . 356
Creating a Cursor Declaration . 360

Open and Close a Cursor . 363
Retrieve Data from a Cursor . 363
Use Positioned UPDATE and DELETE Statements . 368

Using the Positioned UPDATE Statement . 368
Using the Positioned DELETE Statement . 370

 16 Managing SQL Transactions . 377
Understand SQL Transactions . 378
Set Transaction Properties . 381

Specifying an Isolation Level . 382
Specifying a Diagnostics Size . 387
Creating a SET TRANSACTION Statement . 388

Start a Transaction . 389
Set Constraint Deferability . 390
Create Savepoints in a Transaction . 392

Releasing a Savepoint . 394
Terminate a Transaction . 395

Committing a Transaction . 395
Rolling Back a Transaction . 396

 17 Accessing SQL Data from Your Host Program . 403
Invoke SQL Directly . 404
Embed SQL Statements in Your Program . 406

Creating an Embedded SQL Statement . 407
Using Host Variables in Your SQL Statements . 408
Retrieving SQL Data . 411
Error Handling . 413

www.it-ebooks.info

http://www.it-ebooks.info/

 x SQL: A Beginner’s Guide

Create SQL Client Modules . 417
Defining SQL Client Modules . 418

Use an SQL Call-Level Interface . 419
Allocating Handles . 421
Executing SQL Statements . 423
Working with Host Variables . 424
Retrieving SQL Data . 426

 18 Working with XML Data . 433
Learn the Basics of XML . 434
Learn About SQL/XML . 437

The XML Data Type . 437
SQL/XML Functions . 439
SQL/XML Mapping Rule . 441

PART IV Appendices

 A Answers to Self Test . 449

 B SQL:2006 Keywords . 491
SQL Reserved Keywords . 492
SQL Nonreserved Keywords . 494

 C SQL Code Used in Try This Exercises . 497
SQL Code by Try This Exercise . 498
The INVENTORY Database . 514

 Index . 519

www.it-ebooks.info

http://www.it-ebooks.info/

xi

Introduction
Relational databases have become the most common data storage mechanism for modern

computer applications. Programming languages such as Java, C, and COBOL, and
scripting languages such as Perl, VBScript, and JavaScript must often access a data source
in order to retrieve or modify data. Many of these data sources are managed by a relational
database management system (RDBMS), such as Oracle, Microsoft SQL Server, MySQL, and
DB2, that relies on the Structured Query Language (SQL) to create and alter database objects,
add data to and delete data from the database, modify data that has been added to that database,
and of course, retrieve data stored in the database for display and processing.

SQL is the most widely implemented language for relational databases. Much as
mathematics is the language of science, SQL is the language of relational databases. SQL not
only allows you to manage the data within the database, but also manage the database itself.

Acknowledgments
There were many people involved in the development of SQL: A Beginner’s Guide,

Third Edition, many of whom I do not know by name. First, the editors and staff at
McGraw-Hill Professional provided countless hours of support for this project. I wish to
especially thank executive editor Jane K. Brownlow, acquisitions coordinator Jennifer Housh,
and Wilson Drozdowski who briefly filled in for Jennifer, as the individuals with whom I had
direct contact throughout the writing and editing process. Your comments and suggestions,
as well as quick and accurate answers to my many questions, made the writing tasks flow
without a hitch; your work behind the scenes kept the entire project moving smoothly. I also
wish to thank the copy editor and all the other editors, proofreaders, indexers, designers,
illustrators, and other participants whose names I do not know. My special thanks go to my
friend and former colleague Jim Seymour, the technical editor, for his attention to detail and
his helpful input throughout the editing process. And I wish to acknowledge the work of
Robert Sheldon, author of the first two editions, whose excellent writing made the revisions
required for this edition so much easier to accomplish. Finally, my thanks to my family for
their support and understanding as I fit the writing schedule into an already overly busy life.

—Andy Oppel

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 xii SQL: A Beginner’s Guide

By using SQL statements, you can access an SQL database directly by using an interactive
client application or through an application programming language or scripting language.
Regardless of which method you use to access a data source, a foundation in how to write
SQL statements is required in order to access relational data. SQL: A Beginner’s Guide,
Third Edition provides you with such a foundation. It describes the types of statements that
SQL supports and explains how they’re used to manage databases and their data. By working
through this book, you’ll build a strong foundation in basic SQL and gain a comprehensive
understanding of how to use SQL to access data in your relational database.

This third edition has been updated to include the provisions of the ISO SQL:2006
standard, along with technical corrigenda published in 2007. Chapter 18 has been added
to cover SQL/XML, which was added to the SQL standard in 2006. In addition, the SQL
statements have been reformatted and all database object names folded to uppercase to
improve readability and transportability across the wide variety of commercially available
RDBMS products.

Who Should Read This Book
SQL: A Beginner’s Guide is recommended for anyone trying to build a foundation in SQL
programming based on the ISO SQL:2006 standard. The book is designed specifically for
those who are new or relatively new to SQL; however, those of you who need a refresher in
SQL will also find this book beneficial. Whether you’re an experienced programmer, have had
some web development experience, are a database administrator, or are new to programming
and databases, SQL: A Beginner’s Guide provides a strong foundation that will be useful to
anyone wishing to learn more about SQL. In fact, any of the following individuals will find
this book helpful when trying to understand and use SQL:

● The novice new to database design and SQL programming

● The analyst or manager who wants to better understand how to implement and access SQL
databases

● The database administrator who wants to learn more about programming

● The technical support professional or testing/QA engineer who must perform ad hoc
queries against an SQL data source

● The web developer writing applications that must access SQL databases

● The third-generation language (3GL) programmer embedding SQL within an application’s
source code

● Any other individual who wants to learn how to write SQL code that can be used to create
and access databases within an RDBMS

Whichever category you might fit into, an important point to remember is that the book
is geared toward anyone wanting to learn standard SQL, not a product-specific version of
the language. The advantage of this is that you can take the skills learned in this book and

www.it-ebooks.info

http://www.it-ebooks.info/

apply them to real-world situations, without being limited to product standards. You will, of
course, still need to be aware of how the product you work in implements SQL, but with the
foundation provided by this book, you’ll be able to move from one RDBMS to the next and
still have a basic understanding of how SQL is used. As a result, this book is a useful tool to
anyone new to SQL-based databases, regardless of the product used. SQL programmers need
only adapt their knowledge to the specific RDBMS.

What Content the Book Covers
SQL: A Beginner’s Guide is divided into three parts. Part I introduces you to the basic concepts
of SQL and explains how to create objects within your database. Part II provides you with
a foundation in how to retrieve data from a database and modify (add, change, and delete)
the data that’s stored in the database. Part III provides you with information about advanced
data access techniques that allow you to expand on what you learned in Part I and Part II.
In addition to the three parts, SQL: A Beginner’s Guide contains appendixes that include
reference material for the information presented in the three parts.

Description of the Book’s Content
The following outline describes the contents of the book and shows how the book is broken
down into task-focused chapters.

Part I: Relational Databases and SQL
Chapter 1: Introduction to Relational Databases and SQL
This chapter introduces you to relational databases and the relational model, which forms the
basis for SQL. You’ll also be provided with a general overview of SQL and how it relates to
RDBMSs.

Chapter 2: Working with the SQL Environment
This chapter describes the components that make up the SQL environment. You’ll also be
introduced to the objects that make up a schema, and you’ll learn how to create a schema
within your SQL environment. You’ll also be introduced to the concept of creating a database
object in an SQL implementation that supports the creation of database objects.

Chapter 3: Creating and Altering Tables
In this chapter, you’ll learn how to create SQL tables, specify column data types, create
user-defined types, and specify column default values. You’ll also learn how to alter a table
definition and delete that definition from your database.

Chapter 4: Enforcing Data Integrity
This chapter explains how integrity constraints are used to enforce data integrity in your
SQL tables. The chapter includes information on table-related constraints, assertions, and
domain constraints. You will learn how to create NOT NULL, UNIQUE, PRIMARY KEY,
FOREIGN KEY, and CHECK constraints.

 Introduction xiii

www.it-ebooks.info

http://www.it-ebooks.info/

 xiv SQL: A Beginner’s Guide

Chapter 5: Creating SQL Views
In this chapter, you’ll learn how to add views to your SQL database. You’ll also learn how to
create updateable views and how to drop views from the database.

Chapter 6: Managing Database Security
In this chapter, you’ll be introduced to the SQL security model and learn how authorization
identifiers are defined within the context of a session. You’ll then learn how to create and
delete roles, grant and revoke privileges, and grant and revoke roles.

Part II: Data Access and Modification
Part II explains how to access and modify data in an SQL database. You’ll also learn how
to use predicates, functions, and value expressions to manage that data. In addition, Part II
describes how to join tables and use subqueries to access data in multiple tables.

Chapter 7: Querying SQL Data
This chapter describes the basic components of the SELECT statement and how the statement
is used to retrieve data from an SQL database. You’ll learn how to define each clause that can
be included in the SELECT statement and how those clauses are processed when querying a
database.

Chapter 8: Modifying SQL Data
In this chapter, you’ll learn how to modify data in an SQL database. Specifically, you’ll learn
how to insert data, update data, and delete data. The chapter reviews each component of the
SQL statements that allow you to perform these data modifications.

Chapter 9: Using Predicates
In this chapter, you’ll learn how to use predicates to compare SQL data, return null values,
return similar values, reference additional sources of data, and quantify comparison predicates.
The chapter describes the various types of predicates and shows you how they’re used to
retrieve specific data from an SQL database.

Chapter 10: Working with Functions and Value Expressions
This chapter explains how to use various types of functions and value expressions in your
SQL statements. You’ll learn how to use set functions, value functions, value expressions, and
special values in various clauses within an SQL statement.

Chapter 11: Accessing Multiple Tables
This chapter describes how to join tables in order to retrieve data from those tables. You will
learn how to perform basic join operations, join tables with shared column names, use the
condition join, and perform union operations.

Chapter 12: Using Subqueries to Access and Modify Data
In this chapter, you’ll learn how to create subqueries that return multiple rows and others
that return only one value. You’ll also learn how to use correlated subqueries and nested
subqueries. In addition, you’ll learn how to use subqueries to modify data.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III: Advanced Data Access
Part III introduces you to advanced data-access techniques such as SQL-invoked routines,
triggers, and cursors. You’ll also learn how to manage transactions, how to access SQL data
from your host program, and how to incorporate XML data into your database.

Chapter 13: Creating SQL-Invoked Routines
This chapter describes SQL-invoked procedures and functions and how you can create them
in your SQL database. You’ll learn how to define input parameters, add local variables to your
routine, work with control statements, and use output parameters.

Chapter 14: Creating SQL Triggers
This chapter introduces you to SQL triggers and explains how to create insert, update, and
delete triggers in your SQL database. You’ll learn how triggers are automatically invoked and
what types of actions they can take.

Chapter 15: Using SQL Cursors
In this chapter, you’ll learn how SQL cursors are used to retrieve one row of data at a time
from a result set. The chapter explains how to declare a cursor, open and close a cursor, and
retrieve data from a cursor. You’ll also learn how to use positioned UPDATE and DELETE
statements after you fetch a row through a cursor.

Chapter 16: Managing SQL Transactions
In this chapter, you’ll learn how transactions are used to ensure the integrity of your SQL
data. The chapter describes how to set transaction properties, start a transaction, set constraint
deferability, create savepoints in a transaction, and terminate a transaction.

Chapter 17: Accessing SQL Data from Your Host Program
This chapter describes the four methods supported by the SQL standard for accessing an SQL
database. You’ll learn how to invoke SQL directly from a client application, embed SQL
statements in a program, create SQL client modules, and use an SQL call-level interface to
access data.

Chapter 18: Working with XML Data
This chapter describes how XML data can be incorporated into an SQL database. You’ll learn
the basics of XML, how to use the XML data type to store XML in table column values, how
to write SQL/XML functions that can be used to return data from the database formatted as
XML, and the SQL/XML mapping rules that describe how SQL values are translated to XML
values and vice versa.

Part IV: Appendices
The appendices include reference material for the information presented in the first three parts.

Appendix A: Answers to Self Test
This appendix provides the answers to the Self Test questions listed at the end of each chapter.

Appendix B: SQL: 2006 Keywords
This appendix lists the reserved and nonreserved keywords as they are used in SQL statements
as defined in the SQL:2006 standard.

 Introduction xv

www.it-ebooks.info

http://www.it-ebooks.info/

 xvi SQL: A Beginner’s Guide

Appendix C: SQL Code Used in Try This Exercises
This appendix lists all the SQL code used in the book’s Try This exercises, consolidated into one
place for easy reference. This code may also be downloaded from http://www.mhprofessional.com.

Chapter Content
As you can see in the outline, SQL: A Beginner’s Guide is organized into chapters. Each
chapter focuses on a set of related tasks. The chapter contains the background information
you need to understand the various concepts related to those tasks, explains how to create
the necessary SQL statements to perform the tasks, and provides examples of how those
statements are created. In addition, each chapter contains additional elements to help you
better understand the information covered in that chapter:

● Ask the Expert Each chapter contains one or two Ask the Expert sections that provide
information on questions that might arise regarding the information presented in the chapter.

● Self Test Each chapter ends with a Self Test, which is a set of questions that tests you
on the information and skills you learned in that chapter. The answers to the Self Test are
given in Appendix A.

SQL Syntax
The syntax of an SQL statement refers to the structure and rules used for that statement, as
outlined in SQL:2006. Most chapters will include the syntax for one or more statements so that
you have an understanding of the basic elements contained in those statements. For example,
the following syntax represents the information you need when you define a CREATE TABLE
statement:

<table definition> ::=
CREATE [{ GLOBAL | LOCAL } TEMPORARY] TABLE <table name>
(<table element> [{ , <table element> } . . .])
[ON COMMIT { PRESERVE | DELETE } ROWS]

NOTE
Do not be concerned about the meaning of the SQL code at this time. This example is
meant only to show you how SQL statements are represented in this book.

As you can see, a statement’s syntax can contain many elements. Notice that most of
the words used within the statement are shown in uppercase. The uppercase words are SQL
keywords that are used to formulate the SQL statement. (For a complete list of SQL:2006
keywords, see Appendix B.) Although SQL does not require that keywords be written in
uppercase, I use that convention in this book so that you can easily identify the keywords
within a statement. In addition to the keywords, the syntax for an SQL statement includes a
number of other elements that help define how a particular statement should be created:

● Square brackets The square brackets indicate that the syntax enclosed in those brackets is
optional. For example, the ON COMMIT clause in the CREATE TABLE statement is optional.

www.it-ebooks.info

http://www.mhprofessional.com
http://www.it-ebooks.info/

● Angle brackets The angle brackets enclose information that represents a placeholder.
When a statement is actually created, the placeholder is replaced by the appropriate SQL
elements or identifiers. For example, you should replace the <table name> placeholder
with a name for the table when you define a CREATE TABLE statement.

● Curly brackets The curly brackets are used to group elements together. The brackets tell
you that you should first decide how to handle the contents within the brackets and then
determine how they fit into the statement. For example, the PRESERVE | DELETE set of
keywords is enclosed by curly brackets. You must first choose PRESERVE or DELETE
and then deal with the entire line of code. As a result, your clause can read ON COMMIT
PRESERVE ROWS, or it can read ON COMMIT DELETE ROWS.

● Vertical bars The vertical bar can be read as “or,” which means that you should use
either the PRESERVE option or the DELETE option.

● Three periods The three periods indicate that you can repeat the clause as often as
necessary. For example, you can include as many table elements (represented by <table
element>) as necessary.

● Colons/equals sign The ::= symbol (two consecutive colons plus an equals sign)
indicates that the placeholder to the left of the symbol is defined by the syntax following
the symbol. In the syntax example, the <table definition> placeholder equals the syntax
that makes up a CREATE TABLE statement.

By referring to the syntax, you should be able to construct an SQL statement that creates
database objects or modifies SQL data as necessary. However, in order to better demonstrate
how the syntax is applied, each chapter also contains examples of actual SQL statements.

Examples of SQL Statements
Each chapter provides examples of how SQL statements are implemented when accessing an
SQL database. For example, you might see an SQL statement similar to the following:

CREATE TABLE ARTISTS

(ARTIST_ID INT,

 ARTIST_NAME VARCHAR(60),

 ARTIST_DOB DATE,

 POSTER_IN_STOCK BOOLEAN);

Notice that the statement is written in special type to show that it is SQL code. Also notice that
keywords and object names are all uppercase. (You don’t need to be concerned about any other
details at this point.)

The examples used in the book are pure SQL, meaning they’re based on the SQL:2006
standard. You’ll find, however, that in some cases your SQL implementation does not support
an SQL statement in exactly the same way as it is defined in the standard. For this reason,

 Introduction xvii

www.it-ebooks.info

http://www.it-ebooks.info/

 xviii SQL: A Beginner’s Guide

you might also need to refer to the documentation for a particular product to be sure that your
SQL statement conforms to that product’s implementation of SQL. Sometimes it might be
only a slight variation, but there might be times when the product statement is substantially
different from the standard SQL statement.

The examples in each chapter are based on a database related to an inventory of compact
discs. However, the examples are not necessarily consistent in terms of the names used for
database objects and how those objects are defined. For example, two different chapters might
contain examples that reference a table named CD_INVENTORY. However, you cannot
assume that the tables used in the different examples are made up of the same columns or
contain the same content. Because each example focuses on a unique aspect of SQL, the tables
used in examples are defined in a way specific to the needs of that example, as you’ll see as
you get into the chapters. This is not the case for Try This exercises, which use a consistent
database structure throughout the book.

Try This Exercises
Each chapter contains one or two Try This exercises that allow you to apply the information
that you learned in the chapter. Each exercise is broken down into steps that walk you through
the process of completing a particular task. Many of the projects include related files that you
can download from our web site at http://www.osborne.com. The files usually include the
SQL statements used within the Try This exercise. In addition, a consolidation of the SQL
statements is included in Appendix C.

The Try This exercises are based on the INVENTORY database. You’ll create the
database, create the tables and other objects in the database, add data to those tables, and then
manipulate that data. Because the projects build on one another, it is best that you complete
them in the order that they’re presented in the book. This is especially true for the chapters
in Part I, in which you create the database objects, and Chapter 7, in which you insert data
into the tables. However, if you do plan to skip around, you can refer to Appendix C, which
provides all the code necessary to create the database objects and populate the tables with data.

To complete most of the Try This exercises in this book, you’ll need to have access to an
RDBMS that allows you to enter and execute SQL statements interactively. If you’re accessing
an RDBMS over a network, check with the database administrator to make sure that you’re
logging in with the credentials necessary to create a database and schema. You might need
special permissions to create these objects. Also verify whether there are any parameters
you should include when creating the database (for example, log file size), restrictions on
the names you can use, or restrictions of any other kind. Be sure to check the product’s
documentation before working with any database product.

www.it-ebooks.info

http://www.osborne.com
http://www.it-ebooks.info/

Part I
Relational Databases
and SQL

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

3

Chapter 1
Introduction to
Relational Databases
and SQL

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 4 SQL: A Beginner’s Guide

Key Skills & Concepts

 Understand Relational Databases

● Learn About SQL

● Use a Relational Database Management System

In 2006, the International Organization for Standardization (ISO) and the American National
Standards Institute (ANSI) published revisions to their SQL standard, which I will call
SQL:2006. As you will see later, the standard is divided in parts, and each part is approved
and published on its own timeline, so different parts have different publication years; it is
common to use the latest year as the collective name for the set of all parts published up
through that year. The SQL:2006 standard, like its predecessors SQL:2003, SQL:1999 (also
known as SQL3), and SQL-92, is based on the relational data model, which defines how data
can be stored and manipulated within a relational database. Relational database management
systems (RDBMSs) such as Oracle, Sybase, DB2, MySQL, and Microsoft SQL Server (or just
SQL Server) use the SQL standard as a foundation for their technology, providing database
environments that support both SQL and the relational data model. There is more information
on the SQL standard later in this chapter.

Understand Relational Databases
Structured Query Language (SQL) supports the creation and maintenance of the relational
database and the management of data within that database. However, before I go into a
discussion about relational databases, I want to explain what I mean by the term database.
The term itself has been used to refer to anything from a collection of names and addresses to
a complex system of data retrieval and storage that relies on user interfaces and a network of
client computers and servers. There are as many definitions for the word database as there are
books about them. Moreover, different DBMS vendors have developed different architectures,
so not all databases are designed in the same way. Despite the lack of an absolute definition,
most sources agree that a database, at the very least, is a collection of data organized in a
structured format that is defined by metadata that describes that structure. You can think
of metadata as data about the data being stored; it defines how the data is stored within the
database.

Over the years, a number of database models have been implemented to store and manage
data. Several of the more common models include the following:

● Hierarchical This model has a parent–child structure that is similar to an inverted tree,
which is what forms the hierarchy. Data is organized in nodes, the logical equivalent of
tables in a relational database. A parent node can have many child nodes, but a child node

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 1: Introduction to Relational Databases and SQL 5

can have only one parent node. Although the model has been highly implemented, it is
often considered unsuitable for many applications because of its inflexible structure and
lack of support for complex relationships. Still, some implementations such as IMS from
IBM have introduced features that work around these limitations.

● Network This model addresses some of the limitations of the hierarchical model. Data
is organized in record types, the logical equivalent of tables in a relational database. Like
the hierarchical model, the network model uses an inverted tree structure, but record
types are organized into a set structure that relates pairs of record types into owners and
members. Any one record type can participate in any set with other record types in the
database, which supports more complex queries and relationships than are possible in the
hierarchical model. Still, the network model has its limitations, the most serious of which
is complexity. In accessing the database, users must be very familiar with the structure and
keep careful track of where they are and how they got there. It’s also difficult to change the
structure without affecting applications that interact with the database.

● Relational This model addresses many of the limitations of both the hierarchical and
network models. In a hierarchical or network database, the application relies on a defined
implementation of that database, which is then hard-coded into the application. If you add
a new attribute (data item) to the database, you must modify the application, even if it
doesn’t use the attribute. However, a relational database is independent of the application;
you can make nondestructive modifications to the structure without impacting the
application. In addition, the structure of the relational database is based on the relation, or
table, along with the ability to define complex relationships between these relations. Each
relation can be accessed directly, without the cumbersome limitations of a hierarchical
or owner/member model that requires navigation of a complex data structure. In the
following section, “The Relational Model,” I’ll discuss the model in more detail.

Although still used in many organizations, hierarchical and network databases are now
considered legacy solutions. The relational model is the most extensively implemented model
in modern business systems, and it is the relational model that provides the foundation for SQL.

The Relational Model
If you’ve ever had the opportunity to look at a book about relational databases, you have quite
possibly seen the name of E. F. (Ted) Codd referred to in the context of the relational model.
In 1970, Codd published his seminal paper, “A Relational Model of Data for Large Shared Data
Banks,” in the journal Communications of the ACM, Volume 13, Number 6 (June 1970). Codd
defines a relational data structure that protects data and allows that data to be manipulated in
a way that is predictable and resistant to error. The relational model, which is rooted primarily
in the mathematical principles of set theory and predicate logic, supports easy data retrieval,
enforces data integrity (data accuracy and consistency), and provides a database structure
independent of the applications accessing the stored data.

At the core of the relational model is the relation. A relation is a set of columns and
rows collected in a table-like structure that represents a single entity made up of related data.

www.it-ebooks.info

http://www.it-ebooks.info/

 6 SQL: A Beginner’s Guide

An entity is a person, place, thing, event, or concept about which data is collected, such as a
recording artist, a book, or a sales transaction. Each relation comprises one or more attributes
(columns). An attribute is a unit fact that describes or characterizes an entity in some way. For
example, in Figure 1-1, the entity is a compact disc (CD) with attributes of CD_NAME (the
title of the CD), ARTIST_NAME (the name of the recording artist), and COPYRIGHT_YEAR
(the year the recording was copyrighted).

As you can see in Figure 1-1, each attribute has an associated domain. A domain defines
the type of data that can be stored in a particular attribute; however, a domain is not the same
thing as a data type. A data type, which is discussed in more detail in Chapter 3, is a specific
kind of constraint (a control used to enforce data integrity) associated with a column, whereas
a domain, as it is used in the relational model, has a much broader meaning and describes
exactly what data can be included in an attribute associated with that domain. For example, the
COPYRIGHT_YEAR attribute is associated with the Year domain. As you see in this example,
it is common practice to include a class word that describes the domain in attribute names, but
this is not at all mandatory. The domain can be defined so that the attribute includes only data
whose values and format are limited to years, as opposed to days or months. The domain might
also limit the data to a specific range of years. A data type, on the other hand, restricts the
format of the data, such as allowing only numeric digits, but not the values, unless those values
somehow violate the format.

Data is stored in a relation in tuples (rows). A tuple is a set of data whose values make
up an instance of each attribute defined for that relation. Each tuple represents a record of
related data. (In fact, the set of data is sometimes referred to as a record.) For example, in
Figure 1-1, the second tuple from the top contains the value “Joni Mitchell” for the ARTIST_
NAME attribute, the value “Blue” for the CD_NAME attribute, and the value “1971” for the
COPYRIGHT_YEAR attribute. Together these three values form a tuple.

ARTIST_NAME:FullName

Jennifer Warnes

Joni Mitchell

William Ackerman

Kitaro

Bing Crosby

Patsy Cline Patsy Cline: 12 Greatest Hits

CD_NAME:Title

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

COPYRIGHT_YEAR:Year

1991

1971

1983

1990

1993

1988

Attribute Attribute name
(CD_NAME)

Domain name
(Year)

Tuple

Relation

Figure 1-1 Relation containing CD_NAME, ARTIST_NAME, and COPYRIGHT_YEAR
attributes

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 1: Introduction to Relational Databases and SQL 7

NOTE
The logical terms relation, attribute, and tuple are used primarily when referring to
the relational model. SQL uses the physical terms table, column, and row to describe
these items. Because the relational model is based on mathematical principles (a logical
model) and SQL is concerned more with the physical implementation of the model, the
meanings for the model’s terms and the SQL language’s terms are slightly different,
but the underlying principles are the same. The SQL terms are discussed in more detail
in Chapter 2.

The relational model is, of course, more complex than merely the attributes and tuples that
make up a relation. Two very important considerations in the design and implementation of
any relational database are the normalization of data and the associations of relations among
the various types of data.

Normalizing Data
Central to the principles of the relational model is the concept of normalization, a technique
for producing a set of relations that possesses a certain set of properties that minimizes
redundant data and preserves the integrity of the stored data as data is maintained (added,
updated, and deleted). The process was developed by E. F. Codd in 1972, and the name is a bit
of a political gag because President Nixon was “normalizing” relations with China at that time.
Codd figured if relations with a country could be normalized, then surely he could normalize
database relations. Normalization defines sets of rules, referred to as normal forms, which
provide specific guidelines on how data should be organized in order to avoid anomalies that
lead to inconsistencies in and loss of data as the data stored in the database is maintained.

When Codd first presented normalization, it included three normal forms. Although
additional normal forms have been added since then, the first three still cover most situations
you will find in both personal and business databases, and since my primary intent here is to
introduce you to the process of normalization, I’ll discuss only those three forms.

Choosing a Unique Identifier A unique identifier is an attribute or set of attributes that
uniquely identifies each row of data in a relation. The unique identifier will eventually become
the primary key of the table created in the physical database from the normalized relation, but
many use the terms unique identifier and primary key interchangeably. Each potential unique
identifier is called a candidate key, and when there are multiple candidates, the designer
will choose the best one, which is the one least likely to change values or the one that is the
simplest and/or shortest. In many cases, a single attribute can be found that uniquely identifies
the data in each tuple of the relation. However, when no single attribute can be found that
is unique, the designer looks for several attributes that can be concatenated (put together) in
order to form the unique identifier. In the few cases where no reasonable candidate keys can
be found, the designer must invent a unique identifier called a surrogate key, often with values
assigned sequentially or randomly as tuples are added to the relation.

While not absolutely required until second normal form, it is customary to select a unique
identifier as the first step in normalization. It’s just easier that way.

www.it-ebooks.info

http://www.it-ebooks.info/

 8 SQL: A Beginner’s Guide

First Normal Form First normal form, which provides the foundation for second and third
normal forms, includes the following guidelines:

● Each attribute of a tuple must contain only one value.

● Each tuple in a relation must contain the same number of attributes.

● Each tuple must be different, meaning that the combination of all attribute values for a
given tuple cannot be the same as any other tuple in the same relation.

As you can see in Figure 1-2, the second tuple and the last tuple violate first normal form.
In the second tuple, the CD_NAME attribute and the COPYRIGHT_YEAR attribute each
contain two values. In the last tuple, the ARTIST_NAME attribute contains three values. Also
be on the lookout for repeating values in the form of repeating columns. For example, splitting
the ARTIST_NAME attribute to three attributes called ARTIST_NAME_1, ARTIST_NAME_2,
and ARTIST_NAME_3 is not an adequate solution because you will eventually find a need
for a fourth name, then a fifth name, and so forth. Moreover, repeating columns make queries
more difficult because you must remember to search all the columns when looking for a
specific value.

To normalize the relation shown in Figure 1-2, you would create additional relations
that separate the data so that each attribute contains only one value, each tuple contains the
same number of attributes, and each tuple is different, as shown in Figure 1-3. The data now
conforms to first normal form.

Notice that there are duplicate values in the second relation; the ARTIST_ID value of 10002
is repeated and the CD_ID value of 99308 is also repeated. However, when the two attribute
values in each tuple are taken together, the tuple as a whole forms a unique combination, which
means that, despite the apparent duplications, each tuple in the relation is different.

Figure 1-2 Relation that violates first normal form

ARTIST_NAME CD_NAME COPYRIGHT_YEAR

Jennifer Warnes Famous Blue Raincoat 1991

Joni Mitchell Blue; Court and Spark 1971; 1974

William Ackerman Past Light 1983

Kitaro Kojiki 1990

Bing Crosby That Christmas Feeling

Patsy Cline Patsy Cline: 12 Greatest Hits 1988

Jose Carreras; Placido Domingo;
Luciano Pavarotti

Carreras Domingo Pavarotti in Concert 1990

1993

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 1: Introduction to Relational Databases and SQL 9

Did you notice that the ARTIST_ID and CD_ID attributes were added? This was done
because there were no other key candidates. ARTIST_NAME is not unique (two people with
the same name could both be recording artists), and neither is CD_NAME (two CDs could end
up the same name, although they would likely be from different record labels). ARTIST_ID is
the primary key of the first relation, and CD_ID is the primary key of the third. The primary
key of the second relation is the combination of ARTIST_ID and CD_ID.

Second Normal Form To understand second normal form, you must first understand the
concept of functional dependence. For this definition, we’ll use two arbitrary attributes,
cleverly named A and B. Attribute B is functionally dependent (dependent for short) on
attribute A if at any moment in time there is no more than one value of attribute B associated
with a given value of attribute A. Lest you wonder what planet I lived on before this one,
let’s try to make the definition more understandable. If we say that attribute B is functionally
dependent on attribute A, we are also saying that attribute A determines attribute B, or that
A is a determinant (unique identifier) of attribute B. In Figure 1-4, COPYRIGHT_YEAR is
dependent on CD_ID since there can be only one value of COPYRIGHT_YEAR for any given
CD. Said the other way, CD_ID is a determinant of COPYRIGHT_YEAR.

Second normal form states that a relation must be in first normal form and that all attributes
in the relation are dependent on the entire unique identifier. In Figure 1-4, if the combination of
ARTIST_ID and CD_ID is selected as the unique identifier, then COPYRIGHT_YEAR violates
second normal form because it is dependent only on CD_ID rather than the combination of
CD_ID and ARTIST_ID. Even though the relation conforms to first normal form, it violates
second normal form. Again, the solution is to separate the data into different relations, as you
saw in Figure 1-3.

Third Normal Form Third normal form, like second normal form, is dependent on the
relation’s unique identifier. To adhere to the guidelines of third normal form, a relation

Figure 1-3 Relations that conform to first normal form

CD_NAME COPYRIGHT_YEAR

Famous Blue Raincoat 1991

Blue 1971

Past Light 1983

Kojiki 1990

That Christmas Feeling

Patsy Cline: 12 Greatest Hits 1988

Carreras Domingo Pavarotti in Concert 1990

1993

CD_ID

99301

99302

99303

99304

99305

99306

99307

99308

1974Court and Spark

10001

10002

10002

10003

10004

10005

10006

10007

10008

10009

ARTIST_ID CD_ID

99301

99302

99303

99304

99305

99306

99307

99308

99308

99308

ARTIST_ID

Jennifer Warnes

Joni Mitchell

William Ackerman

Kitaro

Bing Crosby

Patsy Cline

Jose Carreras

Placido Domingo

Luciano Pavarotti

ARTIST_NAME

10001

10002

10003

10004

10005

10006

10007

10008

10009

www.it-ebooks.info

http://www.it-ebooks.info/

 10 SQL: A Beginner’s Guide

must be in second normal form and nonkey attributes (attributes that are not part of any
candidate key) must be independent of each other and dependent on the unique identifier. For
example, the unique identifier in the relation shown in Figure 1-5 is the ARTIST_ID attribute.

Figure 1-4 Relation with a concatenated unique identifier

ARTIST_ID CD_ID COPYRIGHT_YEAR

10001 99301 1991

10002 99302 1971

1974

10003 99304 1983

10004 99305 1990

10005 99306

10006 99307 1988

1993

10002 99303

Unique identifier

Figure 1-5 Relation with an attribute that violates third normal form

ARTIST_ID

Jennifer Warnes

Joni Mitchell

William Ackerman

Kitaro

Bing Crosby

Patsy Cline

Jose Carreras

Placido Domingo

Luciano Pavarotti

ARTIST_NAME

10001

10002

10003

10004

10005

10006

10007

10008

10009

AGENCY_ID AGENCY_STATE

2305

2306

2306

2345

2367

2049

2876

2305

2345

NY

CA

CA

NY

VT

TN

CA

NY

NY

Unique
identifier

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 1: Introduction to Relational Databases and SQL 11

The ARTIST_NAME and AGENCY_ID attributes are both dependent on the unique identifier
and are independent of each other. However, the AGENCY_STATE attribute is dependent on
the AGENCY_ID attribute, and therefore it violates the conditions of third normal form. This
attribute would be better suited in a relation that includes data about agencies.

NOTE
In the theoretical world of relational design, the goal is to store data according to the
rules of normalization. However, in the real world of database implementation, we
must occasionally denormalize data, which means to deliberately violate the rules
of normalization, particularly the second and third normal forms. Denormalization
is used primarily to improve performance or reduce complexity in cases where an
overnormalized structure complicates implementation. Still, the goal of normalization is
to ensure data integrity, so denormalization should be performed with great care and
as a last resort.

Relationships
So far, the focus in this chapter has been on the relation and how to normalize data. However,
an important component of any relational database is how those relations are associated with
each other. These associations, or relationships, link relations together in meaningful ways,
which helps to ensure the integrity of the data so that an action taken in one relation does not
negatively impact data in another relation.

There are three primary types of relationships:

● One-to-one A relationship between two relations in which a tuple in the first relation
is related to at most one tuple in the second relation, and a tuple in the second relation is
related to at most one tuple in the first relation.

● One-to-many A relationship between two relations in which a tuple in the first relation is
related to zero, one, or more tuples in the second relation, but a tuple in the second relation
is related to at most one tuple in the first relation.

● Many-to-many A relationship between two relations in which a tuple in the first relation
is related to zero, one, or more tuples in the second relation, and a tuple in the second
relation is related to zero, one, or more tuples in the first relation.

The best way to illustrate these relationships is to look at a data model of several relations
(shown in Figure 1-6). The relations are named to make referencing them easier. As you can
see, all three types of relationships are represented:

● A one-to-one relationship exists between the ARTIST_AGENCIES relation and the
ARTIST_NAMES relation. For each artist listed in the ARTIST_AGENCIES relation,
there can be only one matching tuple in the ARTIST_NAMES relation, and vice versa.
This implies a business rule that an artist may work with only one agency at a time.

www.it-ebooks.info

http://www.it-ebooks.info/

 12 SQL: A Beginner’s Guide

● A one-to-many relationship exists between the ARTIST_NAMES relation and the
ARTIST_CDS relation. For each artist in the ARTIST_NAMES relation, zero, one, or
more tuples for that artist can be listed in the ARTIST_CDS relation. In other words,
each artist could have made zero, one, or more CDs. However, for each artist listed in the
ARTIST_CDS relation, there can be only one related tuple for that artist in the ARTIST_
NAMES relation because each artist can have only tuple in the ARTIST_NAMES relation.

● A one-to-many relationship exists between the ARTIST_CDS relation and the COMPACT_
DISCS relation. For each CD, there can be one or more artists; however, each tuple in
ARTIST_CDS can match only one tuple in COMPACT_DISCS because each CD can
appear only once in the COMPACT_DISCS relation.

● A many-to-many relationship exists between the ARTIST_NAMES relation and the
COMPACT_DISCS relation. For every artist, there can be zero, one, or more CDs, and
for every CD, there can be one or more artists.

NOTE
Relational databases only support one-to-many relationships directly. A many-to-many
relationship is physically implemented by adding a third relation between the first and
second relation to create two one-to-many relationships. In Figure 1-6, the ARTIST_CDS
relation was added between the ARTIST_NAMES relation and the COMPACT_DISCS
relation. A one-to-one relationship is physically implemented just like a one-to-many
relationship, except that a constraint is added to prevent duplicate matching rows on the
“many” side of the relationship. In Figure 1-6, a unique constraint would be added on
the ARTIST_ID attribute to prevent an artist from appearing with more than one agency.

Figure 1-6 Types of relationships between relations

ARTIST_ID

10001

10002

10003

10004

10005

10006

AGENCY

2305

2306

2306

2345

2367

2049

ARTIST_ID

Jennifer Warnes

Joni Mitchell

William Ackerman

Kitaro

Bing Crosby

Patsy Cline

ARTIST_NAME

10001

10002

10003

10004

10005

10006

10001

10002

10002

10004

10005

10006

ARTIST_ID CD_ID

99301

99302

99303

99305

99306

99307

CD_NAME

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

99301

99302

99303

99304

99305

99306

99307

Court and Spark

CD_ID

One-to-one One-to-many One-to-many

Many-to-many

ARTIST_AGENCIES ARTIST_NAMES ARTIST_CDS COMPACT_DISCS

9930710006

9930410003

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 1: Introduction to Relational Databases and SQL 13

Relationships are also classified by minimum cardinality (the minimum number of tuples
that must participate in the relationship). If each tuple in one relation must have a matching
tuple in the other, the relationship is said to be mandatory in that direction. Similarly, if each
tuple in one relation does not require a matching tuple in the other, the relationship is said to
be optional in that direction. For example, the relationship between ARTIST_NAMES and
ARTIST_AGENCIES is mandatory-mandatory because each artist must have one agency and
each ARTIST_AGENCIES tuple must refer to one and only one artist. Business rules must be
understood before minimum cardinality can be determined with certainty. For instance, can we
have an artist in the database who at some point in time has no CDs in the database (that is, no
matching tuples in ARTIST_CDS)? If so, then the relationship between ARTIST_NAMES and
ARTIST_CDS is mandatory-optional; otherwise it is mandatory-mandatory.

Q: You mention that relationships between relations help to ensure data integrity.
How do relationships make that possible?

A: Suppose your data model includes a relation (named ARTIST_NAMES) that lists all the
artists who have recorded CDs in your inventory. Your model also includes a relation
(named ARTIST_CDS) that matches artist IDs with compact disc IDs. If a relationship
exists between the two relations, tuples in one relation will always correspond to tuples
in the other relation. As a result, you could prevent certain actions that could compromise
data. For example, you would not be able to add an artist ID to the ARTIST_CDS relation
if that ID wasn’t listed in the ARTIST_NAMES relation. Nor would you be able to
delete an artist from the ARTIST_NAMES relation if the artist ID was referenced in the
ARTIST_CDS relation.

Q: What do you mean by the term data model?

A: By data model, I’m referring to a design, often presented using diagrams, that represents
the structure of a database. The model identifies the relations, attributes, keys, domains,
and relationships within that database. Some database designers will create a logical model
and physical model. The logical model is based more on relational theory and applies the
appropriate principles of normalization to the data. The physical model, on the other hand,
is concerned with the actual implementation, as the data will be stored in an RDBMS.
Based on the logical design, the physical design brings the data structure down to the real
world of implementation.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 14 SQL: A Beginner’s Guide

Try This 1-1 Normalizing Data and Identifying
Relationships

As a beginning SQL programmer, it’s unlikely that you’ll be responsible for normalization
of the database. Still, it’s important that you understand these concepts, just as it’s important
that you understand the sorts of relationships that can exist between relations. Normalization
and relationships, like the relations themselves, help to provide the foundation on which SQL
is built. As a result, this Try This exercise focuses on the process of normalizing data and
identifying the relationships between relations. To complete the exercise, you need only a
paper and pencil on which to sketch the data model.

Step by Step
 1. Review the relation in the following illustration:

 2. Identify any elements that do not conform to the three normal forms. You will find that the
CATEGORY attribute contains more than one value for each tuple, which violates the first
normal form.

 3. Normalize the data according to the normal forms. Sketch out a data model that includes the
appropriate relations, attributes, and tuples. Your model will include three tables, one for the
list of CDs, one for the list of music categories (for example, Pop), and one that associates
the CDs with the appropriate categories of music. View the Try_This_01-1a.jpg file online
for an example of how your data model might look.

 4. On the illustration you drew, identify the relationships between the relations. Remember
that each CD can be associated with one or more categories, and each category can be
associated with zero, one, or more CDs. View the Try_This_01-1b.jpg file online to view
the relationships between relations.

CD_NAME

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

99301

99302

99304

99305

99306

99307

CD_ID CATEGORY

Folk, Pop

Folk, Pop

New Age

New Age, Classical

Christmas, Classics

Country, Pop, Classics

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 1: Introduction to Relational Databases and SQL 15

Try This Summary
Data models are usually more specific than the illustrations shown in this Try This exercise.
Relationships and keys are clearly marked with symbols that conform to a particular type
of data modeling system, and relationships show only the attributes, but not the tuples.
However, for the purposes of this chapter, it is enough that you have a basic understanding of
normalization and the relationships between relations. The exercise is meant only as a way for
you to better understand these concepts and how they apply to the relational model.

Learn About SQL
Now that you have a fundamental understanding of the relational model, it’s time to introduce
you to SQL and its basic characteristics. As you might recall from the “Understand Relational
Databases” section earlier in this chapter, SQL is based on the relational model, although it is
not an exact implementation. While the relational model provides the theoretical underpinnings
of the relational database, it is the SQL language that supports the physical implementation of
that database.

SQL, a nearly universally implemented relational language, is different from other
computer languages such as C, COBOL, and Java, which are procedural. A procedural
language defines how an application’s operations should be performed and the order in which
they are performed. A nonprocedural language, on the other hand, is concerned more with the
results of an operation; the underlying software environment determines how the operations
will be processed. This is not to say that SQL supports no procedural functionality. For
example, stored procedures, added to many RDBMS products a number of years ago, are part
of the SQL:2006 standard and provide procedural-like capabilities. (Stored procedures are
discussed in Chapter 13.) Many of the RDBMS vendors added extensions to SQL to provide
these procedural-like capabilities, such as Transact-SQL found in Sybase and Microsoft SQL
Server and PL/SQL found in Oracle.

SQL still lacks many of the basic programming capabilities of most other computer
languages. For this reason, SQL is often referred to as a data sublanguage because it is
most often used in association with application programming languages such as C and Java,
languages that are not designed for manipulating data stored in a database. As a result, SQL is
used in conjunction with the application language to provide an efficient means of accessing
that data, which is why SQL is considered a sublanguage.

The SQL Evolution
In the early 1970s, after E. F. Codd’s groundbreaking paper had been published, IBM
began to develop a language and a database system that could be used to implement that
model. When it was first defined, the language was referred to as Structured English Query
Language (SEQUEL). When it was discovered that SEQUEL was a trademark owned by
Hawker-Siddeley Aircraft Company of the UK, the name was changed to SQL. As word got
out that IBM was developing a relational database system based on SQL, other companies

www.it-ebooks.info

http://www.it-ebooks.info/

 16 SQL: A Beginner’s Guide

began to develop their own SQL-based products. In fact, Relational Software, Inc., now the
Oracle Corporation, released their database system before IBM got their product to market.
As more vendors released their products, SQL began to emerge as the standard relational
database language.

In 1986, the American National Standards Institute (ANSI) released the first published
standard for the language (SQL-86), which was adopted by the International Organization
for Standardization (ISO) in 1987. The standard was updated in 1989, 1992, 2003, 2006, and
work continues. It has grown over time—the original standard was well under 1,000 pages,
while the SQL:2006 version weighs in at more than 3,700 pages. The standard was written in
parts to permit more timely publication of revisions and to facilitate parallel work by different
committees. Table 1-1 provides an overview of the parts and the current status of each.

Table 1-1 Parts of the SQL standard

Part Topic Status

 1 SQL/Framework Completed in 1999, revised in 2003, corrections published in 2007

 2 SQL/Foundation Completed in 1986, revised in 1999 and 2003, corrections published in
2007

 3 SQL/CLI Completed in 1995, revised in 1999 and 2003, corrections published in
2005

 4 SQL/PSM Completed in 1996, revised in 1999 and 2003, corrections published in
2007

 5 SQL/Bindings Established as a separate part in 1999, but merged back into Part 2 in
2003; there is currently no Part 5

 6 SQL/Transaction Project canceled; there is currently no Part 6

 7 SQL/Temporal Withdrawn; there is no Part 7

 8 SQL/Objects and
Extended Objects

Merged into Part 2; there is no Part 8

 9 SQL/MED Started after 1999, completed in 2003, corrections published in 2005

10 SQL/OLB Completed as ANSI standard in 1998, ISO version completed in 1999,
revised in 2003, corrections published in 2007

11 SQL/Schemata Extracted to a separate part in 2003, corrections published in 2007

12 SQL/Replication Project started in 2000, but subsequently dropped; there currently is
no Part 12

13 SQL/JRT Completed as ANSI standard in 1999, revision completed in 2003,
corrections published in 2005

14 SQL/XML Completed in 2003, expanded in 2006, corrections published in 2007

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 1: Introduction to Relational Databases and SQL 17

RDBMS vendors had products on the market before there was a standard, and some of the
features in those products were implemented differently enough that the standard could not
accommodate them all when it was developed. We often call these vendor extensions. This
may explain why there is no standard for a database. And as each release of the SQL standard
comes out, RDBMS vendors have to work to incorporate the new standard into their products.
For example, stored procedures and triggers were new in the SQL:1999 standard, but had been
implemented in RDBMSs for many years. SQL:1999 merely standardized the language used to
implement functions that already existed.

NOTE
Although I discuss stored procedures in Chapter 13 and triggers in Chapter 14, I
thought I’d give you a quick definition of each. A stored procedure is a set of SQL
statements that are stored as an object in the database server but can be invoked by a
client simply by calling the procedure. A trigger is similar to a stored procedure in that
it is a set of SQL statements stored as an object in the database on the server. However,
rather than being invoked from a client, a trigger is invoked automatically when some
predefined event occurs, such as inserting or updating data.

Object Relational Model
The SQL language is based on the relational model, and up through SQL-92, so was the SQL
standard. However, beginning with SQL:1999, the SQL standard extended beyond the pure
relational model to include object-oriented constructs into the language. These constructs are
based on the concepts inherent in object-oriented programming, a programming methodology
that defines self-contained collections of data structures and routines (called objects). In
object-oriented languages such as Java and C++, the objects interact with one another in
ways that allow the language to address complex problems that were not easily resolved in
traditional languages.

With the advent of object-oriented programming—along with advances in hardware and
software technologies and the growing complexities of applications—it became increasingly
apparent that a purely relational language was inadequate to meet the demands of the real
world. Of specific concern was the fact that SQL could not support complex and user-defined
data types or the extensibility required for more complicated applications.

Fueled by the competitive nature of the industry, RDBMS vendors took it upon themselves
to augment their products and incorporate object-oriented functionality into their systems.
The SQL:2006 standard follows suit and extends the relational model with object-oriented
capabilities, such as methods, encapsulation, and complex user-defined data types, making
SQL an object-relational database language. As shown in Table 1-1, Part 14 (SQL/XML) was
significantly expanded and republished with SQL:2006, and all the other parts are carried over
from SQL:2003.

Conformance to SQL:2006
Once SQL was standardized, it followed that the standard would also define what it took for an
implementation of SQL (an RDBMS product) to be considered in conformance to that standard.

www.it-ebooks.info

http://www.it-ebooks.info/

 18 SQL: A Beginner’s Guide

For example, the SQL-92 standard provided three levels of conformance: entry, intermediate,
and full. Most popular RDBMSs reached only entry-level conformance. Because of this,
SQL:2006 takes a different approach to setting conformance standards. For a product to be in
conformance with SQL:2006, it must support the Core SQL level of conformance. Core SQL
in the SQL:2006 standard is defined as conformance to Part 2 (SQL/Foundation) and Part 11
(SQL/Schemata) of the standard.

In addition to the Core SQL level of conformance, vendors can claim conformance to any
other part by meeting the minimum conformance requirements for that part.

NOTE
You can view information about the SQL:2006 standard by purchasing a copy of the
appropriate standard document(s) published by ANSI and ISO. The standard is divided
into nine documents (one part per document). The first document (ANSI/ISO/IEC
9075-1:2003) includes an overview of all nine parts. The suffix of each document
name contains the year of publication, and different parts have different publication
years because parts are updated and published independently by different committees.
As you can see in Table 1-1, Part 1 was last published in 2003, and in fact, only Part
14 carries a 2006 publication date – all the other parts were last published in 2003.
You can purchase these documents online at the ANSI Electronic Standards Store
(http://webstore.ansi.org/), the NCITS Standards Store (http://www.techstreet.com/
ncitsgate.html), or the ISO Store (http://www.iso.org/iso/store.htm). On the ANSI site,
note that there are two variants of each document with essentially identical content,
named INCITS/ISO/IEC 9075 and ISO/IEC 9075. The ISO/IEC variants cost between
$139 and $289 per document, while the INCITS/ISO/IEC variants cost only $30 per
document. The ISO Store has the entire set of documents available on a convenient CD
for 356 Swiss francs (about $350). Obviously, prices are subject to change at any time.
Also available at no charge are corrections, called “Technical Corrigenda.” As shown
in Table 1-1, three parts had corrections published in 2005, and six other parts had
corrections published in 2007.

Types of SQL Statements
Although SQL is considered a sublanguage because of its nonprocedural nature, it is
nonetheless a complete language in that it allows you to create and maintain database objects,
secure those objects, and manipulate the data within the objects. One common method used to
categorize SQL statements is to divide them according to the functions they perform. Based on
this method, SQL can be separated into three types of statements:

● Data Definition Language (DDL) DDL statements are used to create, modify, or delete
database objects such as tables, views, schemas, domains, triggers, and stored procedures.
The SQL keywords most often associated with DDL statements are CREATE, ALTER,
and DROP. For example, you would use the CREATE TABLE statement to create a table,
the ALTER TABLE statement to modify the table’s properties, and the DROP TABLE
statement to delete the table definition from the database.

www.it-ebooks.info

http://www.techstreet.com/ncitsgate.html
http://www.techstreet.com/ncitsgate.html
http://www.iso.org/iso/store.htm
http://webstore.ansi.org/
http://www.it-ebooks.info/

 Chapter 1: Introduction to Relational Databases and SQL 19

● Data Control Language (DCL) DCL statements allow you to control who or what
(a database user can be a person or an application program) has access to specific objects
in your database. With DCL, you can grant or restrict access by using the GRANT or
REVOKE statements, the two primary DCL commands. The DCL statements also allow
you to control the type of access each user has to database objects. For example, you
can determine which users can view a specific set of data and which users can manipulate
that data.

● Data Manipulation Language (DML) DML statements are used to retrieve, add,
modify, or delete data stored in your database objects. The primary keywords associated
with DML statements are SELECT, INSERT, UPDATE, and DELETE, all of which
represent the types of statements you’ll probably be using the most. For example, you can
use a SELECT statement to retrieve data from a table and an INSERT statement to add
data to a table.

Most SQL statements that you’ll be using fall neatly into one of these categories, and I’ll
be discussing a number of these statements throughout the remainder of the book.

NOTE
There are a number of ways you can classify statements in addition to how they’re
classified in the preceding list. For example, you can classify them according to how
they’re executed or whether or not they can be embedded in a standard programming
language. The SQL:2006 standard provides ten broad categories based on function.
However, I use the preceding method because it is commonly used in SQL-related
documentation and because it is a simple way to provide a good overview of the
functionality inherent in SQL.

Types of Execution
In addition to defining how the language can be used, the SQL:2006 standard provides details
on how SQL statements can be executed. These methods of execution, known as binding
styles, not only affect the nature of the execution, but also determine which statements, at a
minimum, must be supported by a particular binding style. The standard defines four methods
of execution:

● Direct invocation By using this method, you can communicate directly from a front-end
application, such as iSQL*Plus in Oracle or Management Studio in Microsoft SQL Server,
to the database. (The front-end application and the database can be on the same computer,
but often are not.) You simply enter your query into the application window and execute
your SQL statement. The results of your query are returned to you as immediately as
processor power and database constraints permit. This is a quick way to check data, verify
connections, and view database objects. However, the SQL standard’s guidelines about
direct invocation are fairly minimal, so the methods used and SQL statements supported
can vary widely from product to product.

www.it-ebooks.info

http://www.it-ebooks.info/

 20 SQL: A Beginner’s Guide

● Embedded SQL In this method, SQL statements are encoded (embedded) directly in
the host programming language. For example, you can embed SQL statements within C
application code. Before the code is compiled, a preprocessor analyzes the SQL statements
and splits them out from the C code. The SQL code is converted to a form the RDBMS can
understand, and the remaining C code is compiled as it would be normally.

● Module binding This method allows you to create blocks of SQL statements (modules)
that are separate from the host programming language. Once the module is created, it
is combined into an application with a linker. A module contains, among other things,
procedures, and it is the procedures that contain the actual SQL statements.

● Call-level interface (CLI) A CLI allows you to invoke SQL statements through an
interface by passing SQL statements as argument values to subroutines. The statements
are not precompiled as they are in embedded SQL and module binding. Instead, they are
executed directly by the RDBMS.

Direct invocation, although not the most common method used, is the one I’ll be using
primarily for the examples and exercises in this book because it supports the submission of
ad hoc queries to the database and generates immediate results. However, embedded SQL is
currently the method most commonly used in business applications. I discuss this method, as
well as module binding and CLI, in greater detail in Chapter 17.

Q: You state that, for an RDBMS to be in conformance with the SQL:2006 standard,
it must comply with Core SQL. Are there any additional requirements to which a
product must adhere?

A: Yes. In addition to Core SQL, an RDBMS must support either embedded SQL or module
binding. Most products support only embedded SQL, with some supporting both. The
SQL standard does not require RDBMS products to support direct invocation or CLI,
although most do.

Q: What are the ten categories used by the SQL:2006 standard to classify SQL statements?

A: The SQL standard classifies statements into the following categories: schema, data, data
change, transaction, connection, control, session, diagnostics, dynamic, and embedded
exception declaration. Keep in mind that these classifications are merely a tool that you can
use to better understand the scope of the language and its underlying concepts. Ultimately, it
is the SQL statements themselves—and what they can do—that is important.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 1: Introduction to Relational Databases and SQL 21

SQL Standard versus Product Implementations
At the core of any SQL-based RDBMS is, of course, SQL itself. However, the language used
is not pure SQL. Each product extends the language in order to implement vendor-defined
features and enhanced SQL-based functionality. Moreover, a number of RDBMS products
made it to market before there was a standard. Consequently, every vendor supports a slightly
different variation of SQL, meaning that the language used in each product is implementation-
specific. For example, SQL Server uses Transact-SQL, which encompasses both SQL and
vendor extensions to provide the procedural statements necessary for triggers and stored
procedures. On the other hand, Oracle provides procedural statements in a separate product
component called PL/SQL. As a result, the SQL statements that I provide in the book might be
slightly different in the product implementation that you’re using.

Throughout the book, I will be using pure SQL in most of the examples and exercises.
However, I realize that, as a beginning SQL programmer, your primary interest is in
implementing SQL in the real world. For that reason, I will at times use SQL Server (with
Transact-SQL) or Oracle (with PL/SQL) to demonstrate or clarify a particular concept that
can’t be fully explained by pure SQL alone.

Use a Relational Database Management System
Throughout this chapter, when discussing the relational model and SQL, I’ve often
mentioned RDBMSs and how they use the SQL standard as the foundation for their
products. A relational database management system is a program or set of programs that
store, manage, retrieve, modify, and manipulate data in one or more relational databases.
Oracle, Microsoft SQL Server, IBM’s DB2, and the shareware product MySQL are all
examples of RDBMSs. These products, like other RDBMSs, allow you to interact with
the data stored in their systems. Although an RDBMS is not required to be based on SQL,
most products on the market are SQL-based and strive to conform to the SQL standard. At a
minimum, these products claim entry-level conformance with the SQL-92 standard and are
now working toward Core SQL conformance with SQL:2006.

In addition to complying with SQL standards, most RDBMSs support other features,
such as additional SQL statements, product-based administrative tools, and graphical user
interface (GUI) applications that allow you to query and manipulate data, manage database
objects, and administer the system and its structure. The types of functionality implemented
and the methods used to deliver that functionality can vary widely from product to product.
As databases grow larger, become more complicated, and are distributed over greater areas,
the RDBMS products used to manage those databases become more complex and robust,
meeting the demands of the market as well as implementing new, more sophisticated
technologies.

www.it-ebooks.info

http://www.it-ebooks.info/

 22 SQL: A Beginner’s Guide

One of the advantages to using a product like Oracle or SQL Server is that they both support
direct invocation through a front-end GUI application. SQL Server uses the Management Studio
interface, shown in Figure 1-7. The GUI interface makes it possible for you to create ad hoc SQL
queries, submit them to the DBMS for processing, and view the results, allowing you to apply
what you’re learning in the book to an actual SQL environment. Oracle has several solutions for a
front-end GUI, including the web-based iSQL*Plus interface, shown in Figure 1-8.

In addition to GUI interfaces, most products include a command-line interface that can
be used on older terminals that have no graphic capability. These interfaces are also useful
for executing scripts containing SQL statements and for dial-up connections where graphical
interfaces are too slow. Figure 1-9 shows the command-line interface for MySQL running on
Microsoft Windows.

My use of these products by no means implies that I’m endorsing any of them over any other
commercial products (such as Sybase or Informix) or shareware products (such as PostgreSQL),

Figure 1-7 Using SQL Server Management Studio

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 1: Introduction to Relational Databases and SQL 23

and indeed you’re encouraged to use whatever RDBMS you have available, assuming it supports
most of the functionality I’ll be discussing in this book. However, I’m choosing SQL Server and
Oracle for the majority of the examples in this book because I want to demonstrate how SQL
is implemented in the real world and how SQL might differ from an implementation-specific
version of the language, and these two products supply me with the vehicles to do so. Keep in
mind that, in order for you to gain a full understanding of SQL and be able to use it in various
RDBMS products, you will need to understand both standard SQL and the language as it is
implemented in the products you’ll be using.

Figure 1-8 Using Oracle’s iSQL*Plus

www.it-ebooks.info

http://www.it-ebooks.info/

 24 SQL: A Beginner’s Guide

Figure 1-9 Using the MySQL command-line interface

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 1: Introduction to Relational Databases and SQL 25

Try This 1-2 Connecting to a Database
Although this book focuses primarily on pure SQL, to try out the examples and do most of
the exercises, you’ll need access to an RDBMS in order to execute SQL statements. As a
result, one of the first things you should do is to make sure you’re able to access an SQL
environment. This exercise will help you do that; however, unlike most other exercises in the
book, this one will require more effort on your part to go to resources outside the book to set
yourself up with an RDBMS that allows you to invoke SQL statements directly. To that end,
this exercise tries to get you started, but you must use your own initiative to ensure that you
have an environment in which you’re comfortable working.

Step by Step
 1. Identify the RDBMS you plan to use for the exercises in this book. Perhaps there is a system

you’re already familiar with or one that’s available to you in your work environment. If you
don’t have anything available at work and you’re not ready to purchase a product, check online
to see what might be available. Most RDBMS vendors offer a free of charge, basic, restricted-
use version of their product, often called the “Express Edition”; others offer a trial version
that may be used free of charge for a limited time period. For example, you can download
Oracle Express Edition for Linux or Windows at http://www.oracle.com/technology/software/
products/database/, or you can download SQL Server Express at http://www.microsoft.com/sql/
editions/express/. (You will need a high-speed Internet connection to download large files.)

 If you prefer a freeware product, MySQL is a popular choice. In fact, Yahoo and Google
both use MySQL extensively in a configuration known as LAMP (Linux, Apache, MySQL,
and PHP). You can download the MySQL Community Server at no charge from http://dev
.mysql.com/downloads/mysql. MySQL Enterprise Server, on the other hand, is a fee-based
edition supported by the vendor.

 Before you decide on a particular product, do the necessary research to make sure it
supports direct invocation, preferably though a GUI application, and can run in your
computer environment. Also check to see how much of the SQL:2006 standard it supports
and review any licensing agreements to make sure you’re in compliance. If a system is
available through your work, be sure to talk to database and network administrators to
determine which server you should use, whether and how you should download a copy, and
how to make your connection to the SQL server. You’ll often need an account to connect to
the RDBMS, so if this is the case, find out what username and password you should use.

 2. Once you’ve established which RDBMS you’ll be using, install it on your computer. If
you’ll be connecting to a system over the network, you’ll need to install only the client tools
on your local computer.

 3. Open the client GUI that allows you to directly invoke SQL statements. When you open
the GUI, you might be prompted for a username and password. When and if you’re
prompted varies depending on the product you’re using, whether you’re connecting over
the network, whether the RDBMS is set up as a stand-alone system, and other variables
specific to the product. In addition, a product such as SQL Server offers security integrated
with the operating system, so you may be prompted for a server name only.

(continued)

www.it-ebooks.info

http://www.oracle.com/technology/software/products/database/
http://www.oracle.com/technology/software/products/database/
http://www.microsoft.com/sql/editions/express/
http://www.microsoft.com/sql/editions/express/
http://dev.mysql.com/downloads/mysql
http://dev.mysql.com/downloads/mysql
http://www.it-ebooks.info/

 26 SQL: A Beginner’s Guide

 4. Execute a SELECT statement in the application input window. I realize that we haven’t
covered SELECT statements yet, but the basic syntax is relatively easy:

SELECT * FROM <table>

 The <table> placeholder should be replaced with the name of a table in an existing database.

 The purpose of this exercise is simply to verify that you have connectivity with the data
stored in your RDBMS. Most products include sample data, and that is the data you’re
trying to connect to. Check product documentation or check with the database administrator
to verify whether a database exists that you can access. If not, you can download the SQL
for the INVENTORY database from the download site http://www.osborne.com or http://
www.mhprofessional.com/category/?cat=112, and use it to create your database objects.

 If you’re working in Oracle and the sample schemas were installed, you can execute the
following statement:

SELECT * FROM scott.emp;

 To execute the statement, type it in the input window of iSQL*Plus and then click execute.

 If you’re working in SQL Server with sample data installed, you can execute the following
statement:

USE pubs
SELECT * FROM employee

 To execute the statement, type it in the input window of SQL Server Management Studio
and then click execute.

 If you’re working in the MySQL command-line interface, simply type the SQL statement
and press enter.

 Once you execute the statement, the results of your query appear in the output window. At
this point, don’t concern yourself with the meaning of each word in the SQL statement or
with the query results. Your only concern is to make sure everything is working. If you can’t
execute the statement, check with your database administrator or the product documentation.

 5. Close the GUI application without saving your query.

Try This Summary
As I said at the beginning of the exercise, it is different from most of the other ones in the book
because you are basically on your own to establish connectivity with your RDBMS. Again,
this is because SQL is a language standard, independent of RDBMS implementations, and
vendor-specific issues are, for the most part, beyond the scope of this book. In addition, the
methods used to connect to a database, the tools available to make those connections, and the
way in which an RDBMS is set up vary from product to product, environment to environment,
and even operating system to operating system. However, the time you take now to research
which product you’ll use and to make sure you can connect to data in an existing database will
prove invaluable as you apply the information discussed in the rest of the book.

www.it-ebooks.info

http://www.osborne.com
http://www.mhprofessional.com/category/?cat=112
http://www.mhprofessional.com/category/?cat=112
http://www.it-ebooks.info/

 Chapter 1: Introduction to Relational Databases and SQL 27

 Chapter 1 Self Test
 1. What is a database?

 2. Which of the following objects make up a relation?

 A Data types

 B Tuples

 C Attributes

 D Forms

 3. A(n) ____________ is a set of data whose values make up an instance of each attribute
defined for that relation.

 4. What are the differences between the first normal form and the second normal form?

 5. A relation is in third normal form if it is in second normal form and if it complies with the
other guidelines of that form. What are those guidelines?

 6. What are the three primary types of relationships supported by a relational database?

 7. In your data model, you have two relations associated with each other by a many-to-many
relationship. How will this relationship be physically implemented in a relational database?

 8. How does SQL differ from programming languages such as C, COBOL, and Java?

 9. What factors have contributed to the SQL:2006 standard incorporating object-oriented
capabilities?

 10. Which level of conformance must an RDBMS support in order to comply with SQL:2006?

 A Entry

 B Core

 C Full

 D Intermediate

 11. What are the differences between a DDL statement and a DML statement?

 12. What method of executing SQL statements would you use if you want to communicate
directly with an SQL database from a front-end application?

 13. What four methods does the SQL:2006 standard support for the execution of SQL statements?

 14. What is a relational database management system?

 15. What is an example of an RDBMS?

✓

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

29

Chapter 2
Working with the
SQL Environment

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 30 SQL: A Beginner’s Guide

Key Skills & Concepts

● Understand the SQL Environment

● Understand SQL Catalogs

● Name Objects in an SQL Environment

● Create a Schema

● Create a Database

In Chapter 1, I discuss relational theory, SQL, and relational database management systems
(RDBMSs). In this chapter, I want to take this discussion one step further and introduce you
to the SQL environment, as it is defined in the SQL:2006 standard. The SQL environment
provides the structure in which SQL is implemented. Within this structure, you can use SQL
statements to define database objects and store data in those objects. However, before you
start writing SQL statements, you should have a basic understanding of the foundations on
which the SQL environment is built so you can apply this information throughout the rest
of the book. In fact, you might find it helpful to refer back to this chapter often to help gain
a conceptual understanding of the SQL environment and how it relates to the SQL elements
you’ll learn about in subsequent chapters.

Understand the SQL Environment
The SQL environment is, quite simply, the sum of all the parts that make up that environment.
Each distinct part, or component, works in conjunction with other components to support SQL
operations such as creating and modifying objects, storing and querying data, or modifying
and deleting that data. Taken together, these components form a model on which an RDBMS
can be based. This does not imply, however, that RDBMS vendors adhere strictly to this
model; which components they implement and how they implement them are left, for the most
part, to the discretion of those vendors. Even so, I want to provide you with an overview of the
way in which the SQL environment is defined, in terms of its distinct components, as they are
described in the SQL:2006 standard.

The SQL environment is made up of six types of components, as shown in Figure 2-1. The
SQL client and SQL servers are part of the SQL implementation and are therefore subtypes of
that component.

Notice that there is only one SQL agent and one SQL implementation, but there are
multiple components for other types, such as catalogs and sites. According to SQL:2006,
there must be exactly one SQL agent and SQL implementation and zero or more SQL client
modules, authorization identifiers, and catalogs. The standard does not specify how many sites
are supported, but implies multiple sites.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 2: Working with the SQL Environment 31

Each type of component performs a specific function within the SQL environment. Table 2-1
describes the eight types.

For the most part, you need to have only a basic understanding of the components that
make up an SQL environment (in terms of beginning SQL programming). However, one of
these components—the catalog—plays a more critical role than the others, with regard to what
you’ll be learning in this book. Therefore, I will cover this topic in more detail and explain
how it relates to the management of data and the objects that hold that data.

Figure 2-1 The components of the SQL environment

SQL agent

SQL implementation

SQL client SQL server

SQL server

SQL server

SQL client module SQL client module SQL client module

Authorization identifier Authorization identifier Authorization identifier

Catalog CatalogCatalog Catalog

Site SiteSiteSite

SQL environment

User mapping User mapping User mapping User mapping

Routine mapping Routine mapping Routine mapping

Component Type Description

SQL agent Any structure that causes SQL statements to be executed. The SQL agent is
bound to the SQL client within the SQL implementation.

SQL implementation A processor that executes SQL statements according to the requirements of
the SQL agent. The SQL implementation includes one SQL client and one
or more SQL servers. The SQL client establishes SQL connections with the
SQL servers and maintains data related to interactions with the SQL agent
and the SQL servers. An SQL server manages the SQL session that takes
place over the SQL connection and executes SQL statements received from
the SQL client.

Table 2-1 The Component Types Supported in an SQL Environment

www.it-ebooks.info

http://www.it-ebooks.info/

 32 SQL: A Beginner’s Guide

Understand SQL Catalogs
In the previous section, “Understand the SQL Environment,” I state that an SQL environment
is the sum of all parts that make up that environment. You can use the same logic to describe
a catalog, in that a catalog is a collection of schemas and these schemas, taken together, define
a namespace within the SQL environment.

Table 2-1 The Component Types Supported in an SQL Environment (continued)

Component Type Description

SQL client module A collection of SQL statements that are written separately from your
programming application language but that can be called from within that
language. An SQL client module contains zero or more externally invoked
procedures, with each procedure consisting of a single SQL statement.
SQL client modules reside within the SQL environment and are processed
by the SQL implementation, unlike embedded SQL, which is written within
the application programming language and precompiled before the
programming language is compiled. SQL client modules are discussed in
more detail in Chapter 17.

Authorization identifier An identifier that represents a user or role that is granted specific access
privileges to objects and data within the SQL environment. A user is
an individual security account that can represent an individual, an
application, or a system service. A role is a set of predefined privileges
that can be assigned to a user or to another role. I discuss authorization
identifiers, users, and roles in Chapter 6.

User mapping A user mapping pairs an authorization identifier with a foreign server
descriptor.

Routine mapping A routine mapping pairs an SQL-invoked routine with a foreign server
descriptor.

Catalog A group of schemas collected together in a defined namespace. Each
catalog contains the information schema, which includes descriptors of
a number of schema objects. The catalog itself provides a hierarchical
structure for organizing data within the schemas. (A schema is basically
a container for objects such as tables, views, and domains, all of which
I’ll be discussing in greater detail in the next section, “Understand SQL
Catalogs.”)

Site A group of base tables that contain SQL data, as described by the contents
of the schemas. This data may be thought of as “the database,” but keep
in mind that the SQL standard does not include a definition of the term
“database” because it has so many different meanings.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 2: Working with the SQL Environment 33

NOTE
A namespace is a naming structure that identifies related components in a specified
environment. A namespace is often depicted as an inverted tree configuration to
represent the hierarchical relationship of objects. For example, suppose your namespace
includes two objects: OBJECT_1 and OBJECT_2. If the namespace is called NAME_1,
the full object names will be NAME_1.OBJECT_1 and NAME_1.OBJECT_2 (or some
such naming configuration), thus indicating that they share the same namespace.

Another way to look at a catalog is as a hierarchical structure with the catalog as the parent
object and the schemas as the child objects, as shown in Figure 2-2. At the top of the hierarchy
is the SQL environment, which can contain zero or more catalogs (although an environment
with zero catalogs wouldn’t do you much good because the catalog is where you’ll find the
data definitions and SQL data). The schemas are located at the third tier, beneath the catalog,
and the schema objects are at the fourth tier.

Catalog 1

Catalog 3

Catalog 2

SQL environment

Information schema

Schema 1

Schema 2

Base tables

SQL data is
stored in

base tables.

Views

Domains

User-defined types

Constraints

SQL server modules

Triggers

SQL-invoked routines

Character sets

Collations

Transliterations

Schema objects

Schema objects are
owned by authorization

identifier.

Sequence generators

Figure 2-2 The components of a catalog

www.it-ebooks.info

http://www.it-ebooks.info/

 34 SQL: A Beginner’s Guide

You can compare the relationships between the objects in a catalog to the relationships
between files and directories in your computer’s operating system. The catalog is represented
by a directory off the root; the schemas, by subdirectories; and the schema objects, by files
within the subdirectories.

Like the hierarchical structure of a file system, the structure of a catalog is logical
in nature; that is, a file system is presented in a hierarchical form (like that of Windows
Explorer), but that doesn’t mean that the files are actually stored hierarchically on your hard
disk. In the same sense, the catalog hierarchy is merely a representation of the relationships
between objects in your SQL environment. It doesn’t imply any physical containment or
organization. How these objects are actually implemented, with regard to the catalog structure,
and which ones are implemented are left to the discretion of the RDBMS vendor. In fact, the
SQL:2006 standard doesn’t define language for the creation or deletion of catalogs; this too is
left up to the vendors, and few systems even support catalogs.

Schemas
Each catalog contains one or more schemas. A schema is a set of related objects that are
collected under a common namespace. The schema acts as a container for those objects, which
in turn store the SQL data or perform other data-related functions. Each schema, the objects
contained in the schema, and the SQL data within those objects are owned by the authorization
identifier associated with that schema.

Unlike catalogs, schemas are widely implemented in RDBMS products. However, as
with catalogs, SQL leaves most of the implementation details up to the vendor, although
the standard does provide language for the creation and deletion of schemas. For creating
a schema, the CREATE SCHEMA statement is used, and for deleting a schema, the DROP
SCHEMA statement is used. Creating and deleting schemas are discussed in more detail in the
“Create a Schema” section.

The treatment of schemas in an RDBMS can vary widely from the standard, and therefore,
it’s important that you read the product documentation carefully if you want to create a schema
in your SQL environment. For example, the Oracle database architecture combines the concept
of a schema and the owning authorization identifier—when you create a user in Oracle, you
are also implicitly creating a schema for that user. While Oracle 11g does contain a CREATE
SCHEMA statement for compatibility with the SQL standard, it merely allows you to execute
a batch of specific SQL statements to create tables and views and grant privileges within a
schema that already exists (that is, one that was already implicitly created using the CREATE
USER statement).

Information Schema
Each catalog contains a special schema named INFORMATION_SCHEMA. This schema
contains definitions for a number of schema objects, mostly views. A view is a virtual table that
allows you to view data collected from actual tables. By using these views, you can display
the definitions of objects in that catalog as though it were SQL data. You cannot change any
of the data—if you did you would be changing the object definitions themselves—but you can
display information simply by querying the appropriate view.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 2: Working with the SQL Environment 35

Table 2-2 The Types of Objects That Can Be Defined in Each Schema

As with most SQL features, the implementation of the information schema and what
functions are supported varies from product to product, although these implementations are
usually fairly straightforward. For example, SQL Server 2008 includes a view in the information
schema named INFORMATION_SCHEMA.COLUMNS. If you query this view, the results will
include a list that contains information about every column accessible to the current user within
the current database. The results include such information as the column name, the data type
assigned to that column, and the owner (authorization identifier) who owns that column.

Schema Objects
At the bottom tier of the catalog hierarchy sit the schema objects. The schema objects are a set
of related components that are contained within a schema. This is the level where the SQL data
is stored and, consequently, the level that concerns SQL programmers the most. By using SQL,
you’ll be able to define SQL objects, modify those definitions, and store and manipulate SQL
data within the objects. In fact, most of what you’ll be doing in this book from here on in has
a direct impact on or is directly connected with the schema objects.

The SQL:2006 standard defines 12 types of schema objects. These objects, described
in Table 2-2, provide the foundation for the SQL environment and the structure for the way
in which data is stored within that environment. I’ll be discussing most of these objects in
greater detail later in the book; as a result, I’ve included references, where appropriate, to the
applicable chapters.

Schema Object Description

Base table The basic unit of data management in the SQL environment. A table is made
up of columns and rows and is analogous to a relation (with its attributes
and tuples) in relational theory. Each column is associated with a data type
and holds values that are somehow related to each other. For example, a
table about customers would contain columns that contain data about those
customers, such as their names and addresses. (See Chapter 3.)

View A virtual table that is created when the view is invoked (by calling its name).
The table doesn’t actually exist—only the SQL statement that defines the
table is stored in the database. When that statement is invoked, the view
pulls data from base tables and displays the results as if you’re viewing the
results of a base table query. (See Chapter 5.)

Domain A user-defined object that can be specified in place of a data type when
defining a column (a process part of creating or altering a table definition).
A domain is based on an SQL data type but can include a default value and
a constraint, which further limits the values that can be stored in a particular
column. (See Chapter 4.)

www.it-ebooks.info

http://www.it-ebooks.info/

 36 SQL: A Beginner’s Guide

Schema Object Description

User-defined type (UDT) A user-defined object that can be specified in place of a data type when
defining a column. SQL supports two types of UDTs: distinct and structured.
Distinct types are based on SQL data types and their defined values.
Structured types are made up of attribute values, each of which is based on
an SQL data type. (See Chapter 3.)

Constraint A restriction defined on a table, column, or domain that limits the type of
data that can be inserted into the applicable object. For example, you can
create a constraint on a column that restricts the values that can be inserted
into that column to a specific range or list of numbers. (See Chapter 4.)

SQL server module A module that contains SQL-invoked routines. A module is an object that
contains SQL statements, routines, or procedures. An SQL-invoked routine
is a function or procedure that can be invoked from SQL. Both functions
and procedures are types of SQL statements that can handle parameters
(values passed to a statement when you invoke that statement). A function
can receive input parameters and return a value based on the expression
included in the function statement. A procedure can receive input and return
output parameters. (See Chapter 13.)

Trigger An object associated with a base table that defines an action to be taken
when an event occurs related to that table. The action that caused the trigger
to fire (execute) can be an insert into, delete from, or update of a base
table. For example, a row deleted from one table might cause a trigger to
fire that then deletes data from another table. (See Chapter 14.)

SQL-invoked routine A function or procedure that can be invoked from SQL. An SQL-invoked
routine can be a schema object or be embedded in a module, which is also
a schema object. (See Chapter 13.)

Character set A collection of character attributes that define how characters are
represented. A character set has three attributes: the repertoire, form-of-use,
and default collation. The repertoire determines which characters can be
expressed (for example, A, B, C, and so on). The form-of-use determines
how the characters are represented as strings to hardware and software
(for example, one byte per character, two bytes per character). The default
collation determines how those strings compare with one another.

Collation A set of rules that control how character strings compare with one another
within a particular repertoire. This information can then be used to order the
characters (for example, A comes before B, B comes before C). A default
collation is defined for each character set.

Transliteration An operation that maps characters from one character set to characters
in another set. Transliterations can include such operations as translating
characters from uppercase to lowercase or from one alphabet into another.

Sequence generator A mechanism for generating successive numeric data values (integers), one
at a time. Sequence generators retain a current base value, which is used as
the basis for generating the next sequential value.

Table 2-2 The Types of Objects That Can Be Defined in Each Schema (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 2: Working with the SQL Environment 37

As I said, I’ll be discussing most of the items in the table in greater detail later in the
book. However, the last three items, which are all related to character sets, are covered only
briefly. The character sets, collations, and translations supported by RDBMSs can vary from
product to product, and so can the implementation of these features. Throughout this book, the
examples and projects I’ll be giving you all rely on whatever the default character set is for the
product that you’re using. If you want to change that character set, either at the default level or
at the database or table level, you should first carefully review the product documentation to
find out what is supported and how those features are implemented.

Q: You describe a domain as a user-defined object that is based on a data type but can
include a default value and a constraint. How does this type of domain differ from
a domain as you describe it in the relational model?

A: In many ways the two are the same, and for all practical purposes, you can think of an
SQL domain as a counterpart to a domain in the relational model. There is one subtle
difference, however—a domain in the relational model is merely a description of the data
that can be included in an attribute (column) associated with that particular domain. An
SQL domain, on the other hand, restricts the data that can be inserted into the column. An
SQL domain does this through the use of constraints, which are validation rules that are
part of the system of data integrity. The main idea to keep in mind is that a domain in the
relational model is a logical concept, whereas an SQL domain is a physical one.

Q: When you talk about schema objects, you mention base tables. Does SQL support
any other types of tables?

A: The SQL:2006 standard supports four types of tables: base tables, transient tables, derived
tables, and viewed tables. The base table is a type of table whose data is actually stored
somewhere. In other words, SQL data is stored in a base table. A transient table is a named
table that is implicitly created during the evaluation of a query expression or the execution
of a trigger. A derived table is the returned table that contains the result of a query (the set
of data specific to the query). A viewed table is another name for a view, which is a virtual
table whose definition is stored but whose data is derived from base tables at the time the
view is called.

Ask the Expert

Then What Is a Database?
As you might have noticed, nowhere in the structure of the SQL environment or a catalog is
there mention of a database. The reason for this is that nowhere in the SQL:2006 standard is
the term “database” defined. In fact the only mention of a database, in terms of how it might fit
into the structure of the SQL environment, is that you can consider the sites to be the database,

www.it-ebooks.info

http://www.it-ebooks.info/

 38 SQL: A Beginner’s Guide

although this is offered more as a suggestion than an absolute definition. Although the standard
uses the word to refer to SQL as a database language, it never actually defines the term.

This approach might be fine for the standard, but in the real world, it can be difficult for an
RDBMS to create an SQL environment without creating some sort of component that users can
point to and say, “Yes, there is the database.” And indeed, most products allow you to create,
alter, and delete objects that are called databases. In SQL Server, for example, an instance of
the DBMS software can manage any number of databases, with each database being a logical
collection of database objects that the designer chooses to manage together. Sybase, MySQL,
and IBM’s DB2 have similar architecture. SQL Server provides a management console called
Microsoft SQL Server Management Studio to view and manipulate database objects. The
Object Explorer panel along the left margin provides a hierarchical directory-like structure
that includes a Database node, with each database shown under it, and objects such as tables
shown under each database. Figure 2-3 shows SQL Server Management Studio with the
INVENTORY database expanded down to the columns of the ARTIST_CDS table.

Figure 2-3 Microsoft SQL Server Management Studio with INVENTORY database expanded

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 2: Working with the SQL Environment 39

The Oracle DBMS has a different architecture. Each instance of the DBMS software
manages only one database. However, each database user gets a distinct schema for storage
of database objects owned by that user. So, in Oracle a schema is much like what SQL Server
calls a database. Oracle has a tool called SQL Developer that is functionally similar to the SQL
Server Management Studio. Figure 2-4 shows SQL Developer with the INVENTORY schema
expanded down to the columns in the ARTIST_CDS table. Oracle was the first commercially
available RDBMS, and since it was created long before there was an SQL standard, it should
be no surprise that it is architecturally different.

In Chapter 1, I stated that a database is a collection of data organized in a structured format
that is defined by the metadata that describes that structure. In both SQL Server and Oracle
you can see how this definition applies. Both systems (and any true RDBMS you’re working
with) collect the data in a structured format and define that data by the use of schemas,
which contain the metadata. This definition can also be applied to the SQL standard and its
construction of the SQL environment and catalogs. SQL data is stored in an organized format
within base tables. These base tables are contained within a schema, which defines those
tables, thereby defining the data. So even though the SQL:2006 standard doesn’t actually
define the term “database,” it nonetheless supports the concept of a database, as do the
RDBMS products that implement SQL.

Figure 2-4 Oracle SQL Developer with INVENTORY schema expanded

www.it-ebooks.info

http://www.it-ebooks.info/

 40 SQL: A Beginner’s Guide

Name Objects in an SQL Environment
Up to this point in the book, I have provided you with a lot of conceptual and background
information. The reason for this is that I want you have a basic foundation in SQL before you
actually start writing SQL statements. I believe that, with this information, you will be better
able to grasp the logic behind the SQL code that you create and the reason for creating it, and I
have no doubt that you’re more than ready to start writing those statements.

However, before I actually start getting into the meat of SQL, there’s one more topic that I
need to cover briefly—object identifiers. An identifier is a name given to an SQL object. The
name can be up to (but not including) 128 characters and must follow defined conventions.
An identifier can be assigned to any object that you can create with SQL statements, such as
domains, tables, columns, views, or schemas. The SQL:2006 standard defines two types of
identifiers: regular identifiers and delimited identifiers.

Regular identifiers are fairly restrictive and must follow specific conventions:

● The names are not case-sensitive. For example, Artist_Names is the same as ARTIST_
NAMES and artist_names.

● Only letters, digits, and underscores are allowed. For example, you can create identifiers
such as First_Name, 1stName, or FIRST_NAME. Notice that the underscore is the only
valid character that may be used as a separator between words. Spaces are not acceptable
nor are dashes (dashes are interpreted as subtraction operators).

● No SQL reserved keywords can be used.

NOTE
A keyword is a word that is part of the SQL lexicon. There are two types of SQL
keywords: reserved and nonreserved. As the name suggests, the reserved keywords
cannot be used for any purpose other than as they are intended to be used within an
SQL statement. The nonreserved words have no such restriction. For a complete list of
the SQL keywords, see Appendix B.

SQL is insensitive to case, with regard to regular identifiers. All names are changed to
uppercase by SQL when they are stored, which is why 1stName and 1STNAME are read
as identical values. As already mentioned, case insensitivity is the default behavior in most
RDBMSs and while the default can be changed in some products, I highly recommend
that you don’t change it because it’s not consistent with the SQL standard, and it leads to
compatibility problems should you use other products to access your data.

Delimited identifiers are not as restrictive as regular identifiers, but they still must follow
specific conventions:

● The identifier must be enclosed in a set of double quotation marks, such as the
“ArtistNames” identifier.

● The quotation marks are not stored in the database, but all other characters are stored as
they appear in the SQL statement.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 2: Working with the SQL Environment 41

● The names are case-sensitive. For example, “Artist_Names” is not the same as “artist_
names” or ARTIST_NAMES, but “ARTIST_NAMES” is the same as ARTIST_NAMES
and Artist_Names (because regular identifiers are converted to uppercase).

● Most characters are allowed, including spaces.

● SQL reserved keywords can be used.

When you’re deciding how to name your SQL objects, there are a number of systems
that you can follow. The first choice you’ll have to make is whether you want to use regular
or delimited identifiers. You’ll also want to decide on other issues, such as case and the use
of underscores, and whether your identifiers will be singular or plural. For example, you
could name a table CompactDiscTitles, compact_disc_titles, COMPACT_DISC_TITLES,
“Compact Disc Titles”, or some other form of that name. The important part to remember
is that you should choose a naming convention and stick with it throughout the coding for a
particular database. You’ll also want to take the RDBMS you are using into account. Earlier
versions of the SQL standard allowed only uppercase letters in object names (a consequence
of mainframe systems that used a character set called EBCDIC that in the early days
contained only capital letters). As a result, many of the older RDBMS products, including
Oracle and DB2, automatically fold lowercase names into uppercase. So, you may create
a table named CompactDiscTitles, but it will appear as COMPACTDISCTITLES in the
catalog, which is obviously not a very user-friendly name. By the way, MySQL follows the
case sensitivity of the operating system, so on Windows it is case insensitive, but on Linux
and Unix, it is case sensitive. And finally, take note of the maximum identifier length in
the RDBMS product you are using. While SQL Server allows 128-character names, Oracle
allows up to 30 characters (8 for database names), and many others have maximum lengths
that are shorter than 128.

NOTE
For the examples and projects in this book, I use regular identifiers with uppercase letters
and underscores used to separate words (for example, COMPACT_DISC_TITLES). I do
this because such identifiers are compatible with (and form user-friendly object names in)
all RDBMS products. However, I acknowledge that SQL Server users in particular like to
use mixed-case identifiers.

Qualified Names
All schema object identifiers are qualified by the logical way in which they fit into the
hierarchical structure of the SQL environment. A fully qualified name includes the name of
the catalog, the name of the schema, and the name of the schema object, each separated by
a period. For example, suppose you have a table named CD_ARTISTS. The table is in the
COMPACT_DISCS schema, which is in the MUSIC catalog. The fully qualified name for that
table would be MUSIC.COMPACT_DISCS.CD_ARTISTS.

The way in which these naming conventions play out in various RDBMS products depends
on how that product has implemented the structure of the SQL environment. For example,

www.it-ebooks.info

http://www.it-ebooks.info/

 42 SQL: A Beginner’s Guide

a fully qualified name in SQL Server is based on the server name, database name, owner name,
and object name. In this case, a table named ARTISTS might have a fully qualified name
of SERVER01.MUSIC_DB.DBO.ARTISTS, where SERVER01 is the name of the server,
MUSIC_DB is the name of the database, and DBO (which refers to database owner) is the
name of the object owner. To determine how fully qualified names are handled for a particular
RDBMS, check the product documentation.

Create a Schema
Now that you have a fundamental understanding of how to use identifiers to name SQL
objects, you’re ready to start writing SQL statements. I’ll begin with the CREATE SCHEMA
statement because schemas are at the top of the SQL hierarchy, in terms of which objects the
SQL:2006 standard allows you to create. (Remember, the SQL standard doesn’t provide any
sort of CREATE CATALOG or CREATE DATABASE statement. It’s left up to the RDBMS
vendors to determine how and whether to implement these objects.) And as already mentioned,
Oracle automatically creates a schema for each user, so while it has a CREATE SCHEMA
statement, it is only there for compatibility with the SQL standard. In the next section, “Create
a Database,” I will slip out of SQL mode and discuss database creation because most RDBMS
products support the creation of database objects, and you’ll probably find that you’ll want to
create a database in order to try out the examples and projects in this book.

The place to start with any type of SQL statement is the syntax that defines the statements.
The following syntax shows the basic components of the CREATE SCHEMA statement:

CREATE SCHEMA <name clause>
[<character set or path>]
[<schema elements>]

NOTE
The angle brackets contain information that serves as a placeholder for a value or
clause related to that information. For example, <name clause> is a placeholder for
keywords and values related to naming the schema. The square brackets, on the other
hand, mean that the clause is optional. You do not have to specify a character set, path,
or schema element.

Let’s look at the syntax for the CREATE SCHEMA statement piece by piece. The SQL
keywords CREATE SCHEMA alert the SQL implementation to the type of statement being
executed. This is followed by the <name clause> placeholder, which can include a name for
the schema, an authorization identifier (preceded by the AUTHORIZATION keyword), or
both. As a result, the name clause can take any one of the following forms:

● <schema name>

● AUTHORIZATION <authorization identifier>

● <schema name> AUTHORIZATION <authorization identifier>

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 2: Working with the SQL Environment 43

The <authorization identifier> value specifies who owns the schema and its objects.
If none is specified, the value defaults to the current user. If no <schema name> value is
specified, a name is created that’s based on the authorization identifier.

The next clause, <character set or path>, allows you to set a default character set, a default
path, or both. The name of the character set is preceded by the DEFAULT CHARACTER SET
keywords and specifies a default character set for the new schema. The path specifies an order
for searching for SQL-invoked routines (procedures and functions) that are created as part of
the CREATE SCHEMA statement. (SQL-invoked routines are discussed in Chapter 13.)

The <schema elements> clause is made up of various types of other SQL statements that
you can include in the CREATE SCHEMA statement. For the most part, this clause allows you
to create schema objects such as tables, views, domains, and triggers. The advantage of this is
that objects are added right to the schema when you create it, all in one step.

Now that you’ve seen the syntax for a CREATE SCHEMA statement, let’s look at an
example. The following code creates a schema named INVENTORY. The statement also
specifies an authorization identifier name MNGR and a character set named Latin1.

CREATE SCHEMA INVENTORY AUTHORIZATION MNGR
DEFAULT CHARACTER SET Latin1
CREATE TABLE ARTISTS
(ARTIST_ID INTEGER, ARTIST_NAME CHARACTER (20)) ;

Notice that the code sample includes a CREATE TABLE statement. This is one of the
elements that can be specified as part of the <schema elements> clause. You can include as
many statements as you want. This particular statement creates a table named ARTISTS that
contains the ARTIST_ID column and the ARTIST_NAME column. (I discuss the CREATE
TABLE statement in great detail in Chapter 3.)

In addition to defining a CREATE SCHEMA statement, SQL:2006 also defines a DROP
SCHEMA statement, as shown in the following syntax:

DROP SCHEMA <schema name>
CASCADE | RESTRICT

The first line is fairly straightforward: the named schema will be removed from the system.
The second line has two options: CASCADE and RESTRICT.

NOTE
The vertical bar (|) symbol can be read as “or,” which means that you should use
either the CASCADE option or the RESTRICT option, but not both.

If the CASCADE option is specified, all schema objects and SQL data within those objects
are deleted from the system. If the RESTRICT option is used, the schema is deleted only if no
schema objects exist. This method is used as a safeguard against deleting any objects that you
do not want deleted. It’s meant as a way to make you verify that the objects you’re deleting are
what you want to delete before you actually delete the schema.

www.it-ebooks.info

http://www.it-ebooks.info/

 44 SQL: A Beginner’s Guide

Now let’s look at an example of the DROP SCHEMA statement. The following code
removes the INVENTORY schema:

DROP SCHEMA INVENTORY CASCADE;

Notice that the CASCADE option is used, which means that all schema objects and SQL
data will be removed.

Create a Database
Despite the fact that the SQL standard does not define what a database is, let alone provide a
statement to create any sort of database object, there is a good possibility that you’ll be working
with an RDBMS that not only supports the creation of a database object, but also uses that object
as the foundation for its hierarchical structure in the management of data objects. Consequently,
you might find that, in order to work through the examples and projects in this book, you will
want to create a test database so you have an environment in which you can create, alter, or
delete data objects or data as necessary, without risking the loss of data definitions or data from
an actual database. (Ideally, you’ll be working with an RDBMS that is a clean installation,
without any existing databases, except preinstalled system and sample databases.)

If you’ve already worked with an RDBMS, you might be familiar with how database
objects are organized within that system. For example, if you take a look again at Figure 2-3,
you can see that SQL Server organizes the server’s databases into a logical structure beneath
the Databases node. Each database node (for example, INVENTORY) contains child nodes
that represent the different types of objects associated with that particular database. As you can
see, the INVENTORY database currently lists eight categories of objects: Database Diagrams,
Tables, Views, Synonyms, Programmability, Service Broker, Storage, and Security. And under
the ARTIST_CDS table, the categories are Columns, Keys, Constraints, Triggers, Indexes,
and Statistics. For a definition of how SQL Server defines each of these types of objects, you
should view the product documentation, which you should do for any RDBMS. Compare and
contrast that with Oracle’s categories of objects as shown in Figure 2-4.

Most products that support database objects also support language to create those objects.
For example, Oracle, MySQL, and SQL Server all include the CREATE DATABASE
statement in their SQL-based languages. However, which parameters can be defined when
building that statement, what permissions you need in order to execute that statement, and
how a system implements the database object vary from product to product. Fortunately, most
products use the same basic syntax to create a database object:

CREATE DATABASE <database name>
<additional parameters>

Before creating a database in any system, make sure to first read the product documentation,
and if appropriate, consult with a database administrator to be sure that it is safe for you to add a
database object to the SQL environment. Once you create the database, you can create schemas,
tables, views, and other objects within that database, and from there, populate the tables with
the necessary data.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 2: Working with the SQL Environment 45

Try This 2-1 Creating a Database and a Schema
In “Try This 1-2: Connecting to a Database,” you established access to an RDBMS. In that
project, you used a front-end application that allowed you to directly invoke SQL statements.
You will be using that application for this project (and the rest of the projects in the book)
to create a database and a schema, or whichever of these functions your system supports.
Once you create the database, you should work within the context of that database for future
examples and projects. If your system supports schema creation but not database creation, you
should work within the context of that schema for the other projects.

Step by Step
 1. Open the client application that allows you to directly invoke SQL statements. If applicable,

check with the database administrator to make sure that you’re logging in with the
credentials necessary to create a database and schema. You might need special permissions
to create these objects. Also verify whether there are any parameters you should include
when creating the database (for example, log file size), restrictions on the name you can
use, or restrictions of any other kind. Be sure to check the product documentation before
going any further.

 2. Create a database named INVENTORY (if your RDBMS supports this functionality—in
Oracle you’ll want to create a user named INVENTORY, which will implicitly create a
schema with the same name). Depending on the product you’re using, you’ll be executing
a statement that’s similar to the following:

CREATE DATABASE INVENTORY;

 If you’re required to include any additional parameters in the statement, they would
most likely be included in the lines following the CREATE DATABASE clause. Once
you execute the statement, you should receive some sort of message telling you that the
statement has been executed successfully.

 3. Connect to the new database. The method for doing that will vary from product to product.
In Oracle, you can connect to a database by entering the appropriate logon information in
any of several tools such as SQL*Plus, iSQL*Plus, and SQL Developer. In SQL Server, it’s
simply a matter of selecting the appropriate database from the Connect drop-down list of
databases in the SQL Server Management Studio toolbar, or you can execute the following
statement (MySQL uses this same syntax):

USE Inventory

 4. Create a schema named CD_INVENTORY (if your RDBMS supports this functionality).
Create the schema under your current authorization identifier. Do not include any schema
elements at this time. In most cases, you will be executing a statement that looks similar to
the following:

CREATE SCHEMA CD_INVENTORY;

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 46 SQL: A Beginner’s Guide

Try This Summary
Step-by-step exercises of this sort can be complicated because they’re so dependent on how
RDBMS products have implemented various features. As a result, you must rely heavily on
product documentation (which you should be using anyway) and, if applicable, database
administrators. However, now that you’ve gotten through this exercise and have created
the necessary database and/or schema environment, you should be ready to move on to the
examples and projects in the rest of the book. Because you’ve laid the necessary foundation,
you’re now ready to create, alter, and drop data objects, and insert, modify, and delete the data
stored in those objects.

 Chapter 2 Self Test
 1. What are the differences between an SQL agent and an SQL implementation?

 2. Which component of an SQL environment represents a user or role that is granted specific
access privileges to objects and data?

 A Catalog

 B Authorization identifier

 C SQL client module

 D SQL agent

 3. A(n) ____________ is a collection of schemas that form a namespace within the SQL
environment.

 4. What is a schema?

 5. Which statement do you use to add a schema to an SQL environment?

 A ADD SCHEMA

 B INSERT SCHEMA

 C CREATE SCHEMA

 6. What is the name of the schema that contains definitions for schema objects in a catalog?

 7. What are the 11 types of schema objects that can be contained in a schema?

 8. What is a view?

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 2: Working with the SQL Environment 47

 9. Which schema objects provide the basic unit of data management in the SQL environment?

 A Views

 B Domains

 C Base tables

 D Character sets

 10. How does the SQL:2006 standard define a database?

 11. A (n) ____________ is a name given to an SQL object.

 12. How is a regular identifier distinguished from a delimited identifier in an SQL statement?

 13. Which type of identifier permits spaces to be used as part of the name of an object?

 14. Your SQL environment includes a catalog named INVENTORY. In that catalog is a schema
named COMPACT_DISCS, and in that schema is a table named ARTISTS. What is the
qualified name of that table?

 15. What three forms can the <name clause> component of a CREATE SCHEMA statement
take?

 16. What are the differences between the CASCADE option and the RESTRICT option in
a DROP SCHEMA statement?

 17. Within the hierarchy of the SQL environment, how is a domain related to a catalog?

 18. Which type of identifier allows you to use a reserved keyword?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

49

Chapter 3
Creating and
Altering Tables

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 50 SQL: A Beginner’s Guide

Key Skills & Concepts

● Create SQL Tables

● Specify Column Data Types

● Create User-Defined Types

● Specify Column Default Values

● Alter SQL Tables

● Delete SQL Tables

In an SQL environment, tables are the basic unit of data management. Most SQL programming
you do is related either directly or indirectly to those tables. As a result, before you can insert
data into your database or modify that data, the appropriate tables must have been created or
you must create them. The SQL:2006 standard provides three statements that allow you to
define, change, and delete table definitions in an SQL environment. You can use the CREATE
TABLE statement to add a table, the ALTER TABLE statement to modify that definition, or
the DROP TABLE statement to delete the table and its data from your database. Of these three
statements, the CREATE TABLE statement has the most complex syntax. Not only is this
because of the various types of tables supported by SQL, but also because a table definition
can include many elements. However, despite these complexities, table creation is a fairly
straightforward process, once you understand the basic syntax.

Create SQL Tables
As you might recall from Chapter 2, SQL supports three types of tables: base tables, derived
tables, and viewed tables. Most base tables are schema objects that hold SQL data. Derived
tables are the results you see when you request (query) data from the database. Viewed tables
are another name for views, which I discuss in Chapter 5. You can think of a viewed table as
a type of named derived table, with a view definition stored in the schema.

In this chapter, you’ll be working with base tables. In fact, most of what you’ll be directly
working with throughout this book (as well as throughout your programming career) are base
tables; however, not all base tables are the same. Some are persistent (permanent) and some
are temporary. Some are schema objects and some are contained in modules. All module base
tables are also temporary tables. SQL supports four types of base tables:

● Persistent base tables A named schema object defined by a table definition in a CREATE
TABLE statement. Persistent base tables hold the SQL data that is stored in your database.
This is the most common type of base table and is often what is being referred to when
people mention base tables or tables. A persistent base table always exists as long as the
table definition exists, and can be called from within any SQL session.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 3: Creating and Altering Tables 51

● Global temporary tables A named schema object defined by a table definition in a
CREATE GLOBAL TEMPORARY TABLE statement. Although the table definition is a
part of the schema, the actual table exists only when referenced within the context of the
SQL session in which it was created. When the session ends, the table no longer exists.
A global temporary table created in one session cannot be accessed from another SQL
session. The contents are distinct within each SQL session.

● Created local temporary tables A named schema object defined by a table definition in
a CREATE LOCAL TEMPORARY TABLE statement. Like a global temporary table, the
created local temporary table can be referenced only within the context of the SQL session
in which it was created and cannot be accessed from another SQL session. However, a
global temporary table can be accessed from anywhere within the associated SQL session,
whereas a created local temporary table can be accessed only within the associated
module. The contents are distinct within that module.

● Declared local temporary tables A table declared as part of a procedure in a module.
The table definition is not contained in the schema and does not exist until that procedure
is executed. Like other temporary tables, the declared local temporary table can be
referenced only within the context of the SQL session in which it was created.

NOTE
An SQL session refers to the connection between a user and an SQL agent. During this
connection, a sequence of consecutive SQL statements is invoked by this user and then
executed. A module is an object that contains SQL statements, routines, or procedures.
Modules are discussed in Chapter 13 and Chapter 17.

As you can see, you can use a form of the CREATE TABLE statement to create all base
table types except declared local temporary tables. Throughout the rest of the chapter, I will
primarily be discussing persistent base tables, although I’ll be touching on the subject of
temporary tables in subsequent chapters. In the meantime, let’s take a look at the syntax in
a CREATE TABLE statement:

CREATE [{ GLOBAL | LOCAL } TEMPORARY] TABLE <table name>
(<table element> [{ , <table element> } . . .])
[ON COMMIT { PRESERVE | DELETE } ROWS]

NOTE
The curly brackets are used to group elements together. For example, in the first line
of syntax, the GLOBAL | LOCAL keywords are grouped together. The brackets tell you
that you should first decide how to handle the contents within the brackets and then
determine how they fit into the clause. In the first line, you should use either GLOBAL
or LOCAL along with TEMPORARY. However, the entire clause is optional. The three
periods (in the second line) tell you that you can repeat the clause as often as necessary.
In this case, you could add as many <table element> clauses as your definition requires.

www.it-ebooks.info

http://www.it-ebooks.info/

 52 SQL: A Beginner’s Guide

The syntax I’ve shown here provides only the basics of the CREATE TABLE statement,
which is actually far more complex. (The syntax and its explanations take up about 38 pages of
the SQL:2006 standard.) Even so, the syntax provided here is enough of a foundation for you
to create the majority of tables that you’re likely to be using.

In the first line of the syntax, you designate whether the table is temporary and you provide
a name for the table, so you have three options:

● CREATE TABLE <table name>

● CREATE GLOBAL TEMPORARY TABLE <table name>

● CREATE LOCAL TEMPORARY TABLE <table name>

Depending on the RDBMS in which you’re working, you might have to qualify the table
name by including a schema name, authorization identifier, or database name (for example,
INVENTORY.ARTISTS).

NOTE
There are a number of implementation-specific variations regarding temporary
tables that are worth mentioning here. Oracle (through 11g) has no LOCAL option
for creating a temporary table; data in a temporary table is private to the expressed
session. IBM DB2 UDB through 9.1 uses the command, DECLARE GLOBAL TEMPORARY
TABLE, to created the global temporary table; there appears to be no designation for
creating/declaring a local temporary table. In SQL Server (through 2008), temporary
tables are created with the typical CREATE TABLE command, but local temporary table
names are prefixed with a single number sign (#table_name), and global temporary
table names are prefixed with a double number sign (##table_name).

The second line of the syntax allows you to specify the parts that make up the table,
such as columns. (I’ll return to that in a moment.) The third line of the syntax applies only if
you’re creating a temporary table. The clause allows you to specify whether or not the table
should be emptied when a COMMIT statement is executed. A COMMIT statement is used in
a transaction to commit changes to the database. I discuss transactions in Chapter 16.

You can think of the <table element> clauses as the meat of a CREATE TABLE statement.
It is here that you define columns, constraints, and other elements specific to the table you’re
creating. You can define one or more <table element> clauses. If you define more than one,
you must separate them with commas. Of the elements that you can create, we’ll be focusing
primarily on columns (in this chapter) and constraints (in Chapter 4). Let’s take a closer look at
the syntax that is used to define a column:

<column name> { <data type> | <domain> }
[<default clause>] [<column constraint>] [COLLATE <collation name>]

In the first line of the syntax, you must provide a column name and declare a data type or
user-defined domain. I discuss data types in the “Specify Column Data Types” section later in
this chapter, and I discuss domains in Chapter 4.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 3: Creating and Altering Tables 53

In the second line of the syntax, you have the option to provide a default value (see the
“Specify Column Default Values” section), column constraints (see Chapter 4), or a collation
(see Chapter 2).

At its most basic, a CREATE TABLE statement might look something like the following
statement:

CREATE TABLE ARTISTS
(ARTIST_ID INTEGER,
 ARTIST_NAME CHARACTER(60));

In this statement, I’m creating a table named ARTISTS, a column named ARTIST_ID, and a
column named ARTIST_NAME. The ARTIST_ID column is associated with the INTEGER
data type, and the ARTIST_NAME column is associated with the CHARACTER data type.
Notice that the two column definitions are separated by a comma. Also notice that I have
placed the two column definitions on separate lines and aligned the data types by adding
extra spaces—all of this is to improve readability, but is otherwise unnecessary (when SQL
statements are processed, extra spaces and new lines are simply ignored). If you execute the
CREATE TABLE statement, your table will look similar to the table shown in Figure 3-1.

NOTE
The rows of data shown would not be in a table until you have actually added that
data. The rows are shown here merely to give you an idea of the type of table that this
statement would create.

Before we go any further with the discussion of creating a table, let’s take a closer look at
data types, which play an integral role in any column definition.

Figure 3-1 The ARTIST_ID and ARTIST_NAME columns of the ARTISTS table

ARTIST_NAME:
CHARACTER(60)

Jennifer Warnes

Joni Mitchell

William Ackerman

Kitaro

Bing Crosby

Patsy Cline

ARTIST_ID:
INTEGER

10001

10002

10003

10004

10005

10006

Jose Carreras10007

Placido Domingo10008

Luciano Pavarotti10009

www.it-ebooks.info

http://www.it-ebooks.info/

 54 SQL: A Beginner’s Guide

Q: When you discussed the various types of tables that SQL supports, you talked briefly
about temporary tables. What is the purpose of temporary tables?

A: Temporary tables provide you with a way to store temporary results within the context
of your session. You might find that you need a place to store data in order to take a
certain course of action. You can explicitly create a persistent base table, store data in
it, and then drop the table when you’re finished, but the temporary table allows you
to do the same without having to explicitly destroy the table each time you use it. In
other words, the temporary table is a useful tool when you need to store data for only a
specific period of time. For example, suppose you have an application that allows you
to generate a quarterly report based on your inventory at the end of the reporting period.
The application might need to gather the data into a meaningful collection to generate the
report; however, once the report is generated, the application no longer needs to store that
data, so the table can be deleted. One of the advantages of using a temporary table is that,
because it is unique to a session, the table cannot interact with other users or sessions. As
a result, the RDBMS doesn’t have to take special steps to lock the data to prevent other
users from applying conflicting updates to the temporary tables, and bypassing locking
can result in better performance.

Ask the Expert

Specify Column Data Types
Whenever you define a column in a CREATE TABLE statement, you must, at the very least,
provide a name for the column and an associated data type or domain. The data type or domain
(discussed in Chapter 4) restricts the values that can be entered into that column. For example,
some data types limit a column’s values to numbers, while other data types allow any character
to be entered. SQL supports three types of data types:

● Predefined Predefined data types are the most common. Each predefined data type is a
named element (using an SQL keyword) that limits values to the restrictions defined by
that database. SQL includes five types of predefined data types: string, numeric, datetime,
interval, and Boolean.

● Constructed Constructed data types are also a named element but tend to be more
complex than predefined data types because they can hold multiple values. Constructed
types allow you to construct more complicated structures than more traditional data types.
A thorough discussion of these types is beyond the scope of this book, but I wanted to
mention them so you know that they exist.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 3: Creating and Altering Tables 55

● User-Defined User-defined data types are based on predefined types or attribute
definitions and are added as schema objects to the SQL environment. SQL supports two
types of user-defined data types: distinct and structured. The distinct type is based on a
predefined data type, and the structured type is based on attribute definitions. I discuss
user-defined types in the “Create User-Defined Types” section later in this chapter.

Although all implementations of SQL support data types, which data types are supported
varies from product to product. However, as a beginning SQL programmer, you’ll find that
most implementations support the basic (more traditional) data types, which are the ones I will
be using in the examples and exercises throughout the book. These more traditional data types,
sometimes known as primitive types, are all part of the SQL predefined data types, which I
describe in the following sections. Don’t try to memorize each of these types, but start becoming
familiar with the differences between them. You’ll find that, as you start using specific data types,
you’ll become more comfortable with them. In the meantime, refer back to the following sections
as often as necessary whenever you’re working with table definitions or SQL data.

String Data Types
The string data types are made up of types that permit values based on character sets or on data
bits. The values permitted by string types can be fixed in length or varying, depending on the
specific type. SQL defines four types of string data types:

● Character strings Permitted values must be drawn from a specific character set,
either the default set or a set defined at the time the column is being defined. Character
string data types include CHARACTER, CHARACTER VARYING, and CHARACTER
LARGE OBJECT.

● National character strings Permitted values are similar to character strings except
that the character set associated with these data types is defined by the implementation.
As a result, when a national character string data type is specified, the values associated
with that data type must be based on the character set specified by the relational database
management system (RDBMS) for national character strings. These are useful for storing
character strings in various human languages in the same database. The national character
string data types include NATIONAL CHARACTER, NATIONAL CHARACTER
VARYING, and NATIONAL CHARACTER LARGE OBJECT.

● Bit strings Permitted values are based on data bits (binary digits), rather than character
sets or collations, which means that these data types allow only values of 0 or 1. SQL
supports two types of bit string data types: BIT and BIT VARYING.

● Binary strings Permitted values are similar to bit strings, except that they are based on
bytes (referred to as octets in SQL:2006), rather than on bits. As a result, no character sets
or collations are associated with them. (A byte is equal to 8 bits, which is why the SQL
standard uses the term octet.) SQL supports only one binary string data type: BINARY
LARGE OBJECT. This type is useful for storing pure binary data such as sound clips or
images in the database.

www.it-ebooks.info

http://www.it-ebooks.info/

 56 SQL: A Beginner’s Guide

Now that you have an overview of the types of string data types, let’s take a closer look at
each one. Table 3-1 describes each of these data types and provides an example of a column
definition that uses the specific type.

Data Type Description/Example

CHARACTER Specifies the exact number of characters (which must be from a
character set) that will be stored for each value. For example, if you
define the number of characters as 10, but the value contains only six
characters, the remaining four characters will be spaces. The data type
can be abbreviated as CHAR.
Example: ARTIST_NAME CHAR(60)

CHARACTER VARYING Specifies the greatest number of characters (which must be from
a character set) that can be included in a value. The number of
characters stored is exactly the same number as the value entered, so
no spaces are added to the value. The data type can be abbreviated
as CHAR VARYING or VARCHAR.
Example: ARTIST_NAME VARCHAR(60)

CHARACTER LARGE OBJECT Stores large groups of characters, up to the specified amount. The
number of characters stored is exactly the same number as the value
entered, so no spaces are added to the value. The data type can be
abbreviated as CLOB.
Example: ARTIST_BIO CLOB(200K)

NATIONAL CHARACTER Operates just like the CHARACTER data type, except that it’s based
on an implementation-defined character set. The data type can be
abbreviated as NATIONAL CHAR and NCHAR.
Example: ARTIST_NAME NCHAR(60)

NATIONAL CHARACTER
VARYING

Operates just like the CHARACTER VARYING data type, except that it’s
based on an implementation-defined character set. The data type can
be abbreviated as NATIONAL CHAR VARYING or NCHAR VARYING.
Example: ARTIST_NAME NCHAR VARYING (60)

NATIONAL CHARACTER
LARGE OBJECT

Operates just like the CHARACTER LARGE OBJECT data type, except
that it’s based on an implementation-defined character set. The data
type can be abbreviated as NCHAR LARGE OBJECT or NCLOB.
Example: ARTIST_BIO NCLOB(200K)

BIT Specifies the exact number of bits that can be stored for each
character. For example, if you define the number of bits as 2, but
the value contains only 1 bit, the remaining bit will be a space. If the
number of bits is not specified, 1 bit is stored.
Example: IN_STOCK BIT

BIT VARYING Specifies the greatest number of bits that can be included in a value.
The number of bits stored is exactly the same number as the value
entered, so no spaces are added to the value.
Example: IN_STOCK BIT VARYING (2)

Table 3-1 String Data Types with Example Column Definitions

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 3: Creating and Altering Tables 57

Numeric Data Types
As you probably guessed by the name, the values specified by the numeric data types are
numbers. All numeric data types have a precision and some have a scale. The precision
refers to the number of digits (within a specific numeric value) that can be stored. The scale
refers to the number of digits in the fractional part of that value (the digits to the right of
the decimal point). For example, the number 435.27 has a precision of 5 and a scale of 2. A
scale cannot be a negative number or be larger than the precision. A scale of 0 indicates that
the number is an integer and contains no fractional component. SQL defines two types of
numeric data types:

● Exact numerics Permitted values have a precision and scale, which, for some numeric
data types, are defined by the implementation. Exact numeric data types include
NUMERIC, DECIMAL, INTEGER, and SMALLINT.

● Approximate numerics Permitted values have a precision but no scale. As a result
the decimal point can float. A floating-point number is one that contains a decimal point,
but the decimal point can be located at any place within that number, which is why an
approximate numeric is said to have no scale. Approximate numeric data types include
REAL, DOUBLE PRECISION, and FLOAT.

Table 3-2 describes each of the numeric data types and provides an example of a column
definition that uses the specific type.

Data Type Description/Example

BINARY LARGE OBJECT Stores large groups of bytes, up to the specified amount. The number
of bytes stored is exactly the same number as the value entered, so no
spaces are added to the value. The data type can also be referred to
as BLOB.
Example: ARTIST_PIC BLOB(1M)

XML The Extensible Markup Language (XML) is a general-purpose markup
language used to describe documents in a format that is convenient
for display on web pages and for exchanging data between different
parties. The specifications for storing XML data in SQL databases
were added to the SQL standard in SQL:2003 and are covered in
Chapter 18.
Example: ARTIST_BIO
 XML(DOCUMENT(UNTYPED))

Table 3-1 String Data Types with Example Column Definitions (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 58 SQL: A Beginner’s Guide

Datetime Data Types
As the name implies, datetime data types are concerned with tracking dates and times. SQL
defines three datetime types—DATE, TIME, and TIMESTAMP—and variations on these types.
These variations are related to Coordinated Universal Time (UTC), which used to be called
Greenwich mean time (GMT), and the various time zones. Table 3-3 describes each of the
SQL:2006 standard datetime data types and provides an example of a column definition that
uses the specific type.

Data Type Description/Example

NUMERIC Specifies the precision and the scale of a numeric value. You can specify only
the precision and use the implementation-defined (default) scale, or you can
specify the precision and scale. If you specify neither the precision nor the
scale, the implementation will provide defaults for both values.
Example: ARTIST_RATE NUMERIC(5,2)

DECIMAL Specifies values similar to those of the NUMERIC data type. However, if the
implementation-defined precision is higher than the specified precision, values
with the higher precision will be accepted, but the scale will always be what
you specify.
Example: ARTIST_ROYALTY DECIMAL(5,2)

INTEGER Specifies a value with an implementation-defined precision and a 0 scale,
meaning that only integers are accepted and you do not specify any
parameters with this data type. The data type can also be abbreviated as INT.
Example: ARTIST_ID INT

SMALLINT Specifies a value similar to an INTEGER data type. However, the precision
defined by the implementation must be smaller than the INTEGER precision.
Example: ARTIST_ID SMALLINT

FLOAT Specifies the precision of a numeric value, but not the scale.
Example: ARTIST_ROYALTY FLOAT(6)

REAL Specifies a value with an implementation-defined precision, but without a
scale. The precision must be smaller than the precision defined for a DOUBLE
PRECISION data type.
Example: ARTIST_ROYALTY REAL

DOUBLE PRECISION Specifies a value with an implementation-defined precision, but without a
scale. The precision must be greater than the precision defined for the REAL
data type. The implication is that the value of the precision should be double
that of the REAL data type, but each implementation defines double differently.
Example: ARTIST_ROYALTY DOUBLE PRECISION

Table 3-2 Numeric Data Types with Example Column Definitions

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 3: Creating and Altering Tables 59

You will find considerable implementation variations for datetime data types because
early relational databases didn’t have them at all. That seems odd until you realize that they
were built by computer scientists who didn’t know how much business applications rely on
dates and times. As business users demanded date and time capabilities, commercial RDBMS
vendors of the day (long before there was an SQL standard) rushed to deliver the new features,
and thus implemented them in very different ways. For example, Oracle’s DATE data type
always includes a time component, and SQL Server uses the TIMESTAMP data type for a
completely different purpose, with a data type called DATETIME operating like the SQL:2006
TIMESTAMP data type. So, as always, consult your vendor documentation.

Table 3-3 Datetime Data Types with Example Column Definitions

Data Type Description/Example

DATE Specifies the year, month, and day value of a date. The year is four
digits and supports the values 0001 through 9999; the month is
two digits and supports the values 01 through 12; and the day is two
digits and supports the values 01 through 31.
Example: DATE_HIRED DATE

TIME Specifies the hour, minute, and second values of a time. The hour
is two digits and supports the values 00 through 23; the minute is
two digits and supports the values 00 through 59; and the second
is at least two digits and supports values 00 through 61.999 (to
accommodate leap seconds). The data type includes no fractional
digits unless you specify them. For example, TIME(3) would give you
three fractional digits. The data type can also be referred to as TIME
WITHOUT TIME ZONE.
Example: EVENT_TIME TIME(2)

TIME WITH TIME ZONE Specifies the same information as the TIME data type except that the
value also includes information specific to UTC and time zones. The
values added to the data type range from –11:59 to +12:00.
Example: EVENT_TIME TIME WITH TIME ZONE (2)

TIMESTAMP Combines the values of TIME and DATE. The only difference is that
with the TIME data type, the default number of fractional digits
is 0, but with the TIMESTAMP data type, the default number is 6.
You can specify a different number of fractional digits by including
a parameter, such as TIMESTAMP(4). The data type can also be
referred to as TIMESTAMP WITHOUT TIME ZONE.
Example: PURCHASE_DATE TIMESTAMP(3)

TIMESTAMP WITH TIME ZONE Specifies the same information as the TIMESTAMP data type except
that the value also includes information specific to UTC and time
zones. The values added to the data type range from –11:59 to
+12:00.
Example: PURCHASE_DATE TIMESTAMP WITH TIME ZONE (2)

www.it-ebooks.info

http://www.it-ebooks.info/

 60 SQL: A Beginner’s Guide

Interval Data Type
The interval data type is closely related to the datetime data types. The value of an interval data
type represents the difference between two datetime values. SQL supports two types of intervals:

● Year-month intervals The interval data type specifies intervals between years, months,
or both. You can use only the YEAR and MONTH fields in a year-month interval.

● Day-time intervals The interval data type specifies intervals between any of the
following values: days, hours, minutes, or seconds. You can use only the DAY, HOUR,
MINUTE, and SECOND fields in a day-time interval.

You cannot mix one type of interval with the other. For example, you cannot define an
interval data type that uses the YEAR field and the HOUR field.

The interval data type uses the keyword INTERVAL followed by an <interval qualifier>
clause. The clause is a complex series of rules that describe how the INTERVAL data type can
be defined to express intervals involving years, months, days, hours, minutes, or seconds. In
addition, the leading field (the first word) in the clause can be defined with a precision (p).
The precision is the number of digits that will be used in the leading field. If a precision isn’t
specified, the default is 2. For year-month intervals, you can specify one of the following
interval data types:

● INTERVAL YEAR

● INTERVAL YEAR(p)

● INTERVAL MONTH

● INTERVAL MONTH(p)

● INTERVAL YEAR TO MONTH

● INTERVAL YEAR(p) TO MONTH

There are many more options for day-time intervals because there are more fields from
which to choose. For example, you can specify any of the following interval types using the
DAY field as a leading field or stand-alone field:

● INTERVAL DAY

● INTERVAL DAY(p)

● INTERVAL DAY TO HOUR

● INTERVAL DAY(p) TO HOUR

● INTERVAL DAY TO MINUTE

● INTERVAL DAY(p) TO MINUTE

● INTERVAL DAY TO SECOND

● INTERVAL DAY(p) TO SECOND

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 3: Creating and Altering Tables 61

● INTERVAL DAY TO SECOND(x)

● INTERVAL DAY(p) TO SECOND(x)

When the trailing field (the last word) is SECOND, you can specify an additional precision
(x), which defines the number of digits after the decimal point. As you can see from these
examples, there are many more day-time interval data types that can be defined. Keep in mind,
however, that the leading field must always be a greater time unit than the trailing field. For
example, the YEAR field is greater than MONTH, and HOUR is greater than MINUTE.

If you were going to use an interval data type in a column definition, it might look
something like the following:

DATE_RANGE INTERVAL YEAR(4) TO MONTH

In this example, a value in this column will include four digits for the year, a hyphen, and then
two digits for the month, such as 1999-08. If a precision were not specified for the year, the
year range could include only two digits (00 through 99).

Boolean Data Type
The Boolean data type (unlike the interval data types) is very straightforward and easy to
apply. The data type supports a true/false construct that permits only three values: true, false,
or unknown. A null value evaluates to unknown. (In SQL, a null value is used to signify that a
value is undefined or not known. I discuss null values in Chapter 4.)

The values in the Boolean data type can be used in SQL queries and expressions for
comparison purposes. (I discuss comparisons in Chapter 9.) Boolean comparisons follow
specific logic:

● True is greater than false.

● A comparison involving an unknown (null) value will return an unknown result.

● A value of unknown can be assigned to a column only if it supports null values.

To use the Boolean data type, you must use the BOOLEAN keyword with no parameters,
as shown in the following example:

ARTIST_HAS_AGENT BOOLEAN

The ARTIST_HAS_AGENT column will accept only the values of true, false, and unknown.

NOTE
The Boolean data type is based on a specific type of computer logic known as Boolean
(named for 19th century mathematician George Boole), which evaluates conditions of
true or false in a given operation or expression. Many programming languages support
Boolean logic through the use of logical operators such as AND, OR, and NOT, for
example, “ITEM_A IS NOT FALSE” or “ITEM_A AND ITEM_B OR ITEM_C IS TRUE.” In
SQL, Boolean logic is implemented through the use of comparison operators to compare
values within various data types. I discuss these operators in Chapter 9.

www.it-ebooks.info

http://www.it-ebooks.info/

 62 SQL: A Beginner’s Guide

Q: How do the predefined data types in SQL compare to the data types you find in other
programming languages?

A: For the most part, it is unlikely that data types from two different languages will be the
same. A set of data types in one language can vary in structure and semantics from a set of
data types in another language. These differences, sometimes called impedance mismatch,
can lead to the loss of information when an application draws data from an SQL database.
In fact, it’s often a good idea to know which language will be used for applications as
the database is being designed. In some cases, the database design can affect which
application language you can most easily use to manipulate data in an SQL database.
However, SQL includes a data conversion expression named CAST. The CAST expression
allows you to convert data from one data type to another data type, allowing the host
language to access values that it wouldn’t have been able to handle in its original form.
The CAST expression is discussed in more detail in Chapter 10.

Q: Can SQL data types be assigned to objects other than columns?

A: Every SQL data value, or literal, belongs to a data type. For example, data types can
be assigned to the parameters of externally invoked procedures. Externally invoked
procedures are procedures that are contained within an SQL client module. A procedure is
an SQL statement (or series of statements) that can be called from another element in the
code, which in the case of externally invoked procedures is external code. A parameter,
which is the literal that belongs to a data type, is a value that is passed to the procedure
and used as the procedure is processed. The parameter acts as a placeholder for that value.
SQL client modules are discussed in Chapter 17.

Ask the Expert

Using SQL Data Types
Now that you’ve taken a look at the various predefined data types, let’s look at a CREATE
TABLE statement that defines a table with columns that use different data types. In the
following example, the statement is creating a table named ARTISTS that includes four
columns:

CREATE TABLE ARTISTS
(ARTIST_ID INT,
 ARTIST_NAME VARCHAR(60),
 ARTIST_DOB DATE,
 POSTER_IN_STOCK BOOLEAN);

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 3: Creating and Altering Tables 63

As you can see, the ARTIST_ID column is a numeric data type, the ARTIST_NAME
column a string data type, the ARTIST_DOB column is a datetime data type, and the
POSTER_IN_STOCK is a Boolean data type. Figure 3-2 illustrates how this table might look.

Create User-Defined Types
In Chapter 1, I mentioned that the SQL:2006 standard has incorporated some of the principles
of object-oriented programming (OOP) into its language. One example of this is the user-
defined type, sometimes referred to as the user-defined data type. The user-defined type is a
type of data type (stored as a schema object) that is in part defined by the programmer and in
part based on one or more data types. SQL supports two types of user-defined types:

● Structured types These types are made up of one or more attributes that are each
based on another data type, including predefined types, constructed types, and other
structured types. In addition to being associated with a data type, each attribute can
include a default clause and can specify a collation. A structured type can include
methods in its definition. A method is a type of function that’s associated with a user-
defined type. A function is a named operation that performs predefined tasks that you
can’t normally perform by using SQL statements alone. It is a type of routine that takes
input parameters (which are sometimes optional) and returns a single value based on
those parameters.

● Distinct types These types are simply based on predefined data types and whatever
parameters are defined for that data type, if parameters are required or desired.

Figure 3-2 The ARTISTS table defined with different data types

ARTIST_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

ARTIST_ID:
INT

10001

10002

10005

10006

Placido Domingo10008

Luciano Pavarotti10009

ARTIST_DOB:

1947-03-03

1943-11-07

1904-05-02

1932-09-08

1941-01-21

1935-10-12

POSTER_IN_STOCK:
BOOLEAN

False

Unknown

True

True

False

Unknown

DATE

www.it-ebooks.info

http://www.it-ebooks.info/

 64 SQL: A Beginner’s Guide

SQL provides a CREATE TYPE statement for defining user-defined types. However, the
language used for creating a user-defined type can vary from product to product. The features
that are supported in a user-defined type also vary widely. For example, SQL Server 2000 does
not support a CREATE TYPE statement, but SQL Server 2005 does.

Despite the differences with and limitations of product implementations, I want to at
least provide an example of how the CREATE TYPE statement is used to create a distinct
type. In the following statement, I create a user-defined type that is based on the NUMERIC
data type:

CREATE TYPE SALARY AS NUMERIC(8,2)
FINAL;

This simple example is straightforward enough, creating a type named SALARY with a
data type of NUMERIC(8,2). However, the keyword FINAL is probably new to you. When
FINAL is specified, it tells SQL that no subtypes will be defined for this type. The alternative
is to specify NOT FINAL, which means that subtypes may be defined for the type. Once
you’ve created the type, you can use it in a column definition as you would a predefined data
type:

CREATE TABLE EMPLOYEES
(EMPLOYEE_ID INTEGER,
 EMPLOYEE_SALARY SALARY);

Any values you add to the EMPLOYEE_SALARY column would have to conform to the
specifications of the NUMERIC data type with a precision of 8 and a scale of 2. As a result, a
value could be anything from –999999.99 to 999999.99. The nice part is that you can then use
the SALARY user-defined type in any other tables that require similar values.

NOTE
As you see, numeric types allow negative numbers as well as zero and positive
numbers. If negative numbers are not desired (which would obviously be the case for
someone’s salary), the data type alone won’t do the job, but you can use a CHECK
constraint for this purpose. I discuss CHECK constraints in Chapter 4.

Specify Column Default Values
Another valuable feature that SQL supports is the ability to specify a default value for a
column when you’re using the CREATE TABLE statement to create a table. The syntax for
a simple column definition with a default value looks like this:

<column name> <data type> DEFAULT <default value>

The <column name> and <data type> placeholders, which should now be familiar, are
followed by the DEFAULT keyword. After the DEFAULT keyword, you must specify a
value for the <default value> placeholder. This value can be a literal, which is an SQL data

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 3: Creating and Altering Tables 65

value (such as the string ‘To be determined’ or the number 0); a datetime value function,
which is a function that allows you to perform operations related to dates and times (discussed
in Chapter 10); or a session-related user function, which is a function that returns user-related
information (discussed in Chapter 10).

Whichever type of value you use for the <default value> placeholder, it must conform to
the data requirements of the data type specified in the column definition. For example, if you
define a column with an INT data type or a CHAR(4) data type, you cannot specify a default
value of ‘Unknown’. In the first case, INT requires a numeric value, and in the second case,
CHAR(4) requires that the value contain no more than four characters.

In the following example, I use the CREATE TABLE statement to define a table named
ARTISTS, which contains three columns:

CREATE TABLE ARTISTS
(ARTIST_ID INT,
 ARTIST_NAME VARCHAR(60),
 PLACE_OF_BIRTH VARCHAR(60) DEFAULT 'Unknown');

Notice that the PLACE_OF_BIRTH column includes the default value ‘Unknown’. The
value is acceptable because it conforms to the data requirements of the VARCHAR(60) data
type. Also notice that the default value is enclosed in single quotes. You must use single quotes
for character string values. Figure 3-3 illustrates what this table might look like if it were
populated with rows of data.

If you were to insert any new rows into this table and you didn’t know the artist’s place of
birth, the system would automatically insert a value of ‘Unknown’.

Figure 3-3 A default value of ‘Unknown’ for the PLACE_OF_BIRTH column

ARTIST_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

ARTIST_ID:
INT

10001

10002

10005

10006

Placido Domingo10008

Luciano Pavarotti10009

PLACE_OF_BIRTH:

Unknown

Fort MacLeod, Alberta, Canada

Tacoma, Washington, United States

Winchester, Virginia, United States

Madrid, Spain

Unknown

VARCHAR(60)

www.it-ebooks.info

http://www.it-ebooks.info/

 66 SQL: A Beginner’s Guide

Try This 3-1 Creating SQL Tables
You’ve probably noticed that I’ve been using CD-related data for the examples I’ve shown
you so far. We will be carrying this theme throughout the book as we begin to build a
database that tracks the CD inventory of a small business. In this exercise, you will create
three tables that are related to the INVENTORY database, which you created in Chapter 2,
Try This 2-1. Before you begin, take a look at a simple data model (Figure 3-4) that shows
the three tables you’ll be creating. Each table is represented by a rectangle, with the name of
the table above the rectangle and the name of the columns, along with their data types, listed
within the rectangle.

We will be using the data model throughout the book—as it evolves into a more complex
structure—to define the objects in our database. You can also download the Try_This_03.txt
file, which contains the SQL statements used in this Try This exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

You will be creating all objects within that database. (If your RDBMS doesn’t support the
creation of a database and instead you created the CD_INVENTORY schema, you should
create all your objects within that schema.)

 2. The first table that you will create is the COMPACT_DISCS table. Notice that it includes
three columns, two of which have an INT data type and one that has a VARCHAR(60) data
type. This table will hold data about the compact discs in your inventory. The COMPACT_
DISC_ID column will contain numbers that uniquely identify each CD. The CD_TITLE
column will contain the actual names of the CDs. The LABEL_ID column will contain
numbers that identify the companies that published the CDs. Enter the following SQL
statement into your client application’s input window:

CREATE TABLE COMPACT_DISCS
(COMPACT_DISC_ID INT,
 CD_TITLE VARCHAR(60),
 LABEL_ID INT);

 3. Verify that you have entered the correct information and execute the statement. You should
receive a message confirming that the statement has been successfully executed.

Figure 3-4 Simple data model of the INVENTORY database

COMPACT_DISC_ID: INT
CD_TITLE: VARCHAR(60)
LABEL_ID: INT

COMPACT_DISCS

LABEL_ID: INT
COMPANY_NAME: VARCHAR(60)

CD_LABELS

TYPE_ID: INT
TYPE_NAME: VARCHAR(20)

MUSIC_TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 3: Creating and Altering Tables 67

 4. The next table that you will create is the CD_LABELS table. The table includes the
LABEL_ID column, which uniquely identifies each company that publishes the CDs, and
the COMPANY_NAME column, which lists the actual names of the companies. Enter and
execute the following code:

CREATE TABLE CD_LABELS
(LABEL_ID INT,
 COMPANY_NAME VARCHAR(60));

 5. The final table that you will create is the MUSIC_TYPES table. The table includes the
TYPE_ID column, which uniquely identifies each category of music, and the TYPE_
NAME column, which lists the actual names of the categories of music (for example, Blues
or Jazz). Enter and execute the following code:

CREATE TABLE MUSIC_TYPES
(TYPE_ID INT,
 TYPE_NAME VARCHAR(20));

 6. Close the client application.

Try This Summary
Your database should now contain three new tables. These tables will serve as a foundation for
other Try This exercises in the book. As you progress through these exercises, you will modify
these tables, create additional tables, insert data into the tables, and then query and manipulate
that data. By the time you’ve completed all the exercises, you’ll have created and populated a
small database that stores data about an inventory of compact discs.

Alter SQL Tables
Taking what you’ve learned about creating tables, you can use the ALTER TABLE statement
to modify the definitions of base tables stored in your database (as schema objects). At its
most basic, the syntax for the ALTER TABLE statement looks like this:

ALTER TABLE <table name>
 ADD [COLUMN] <column definition>
| ALTER [COLUMN] <column name>
 { SET DEFAULT <default value> | DROP DEFAULT }
| DROP [COLUMN] <column name> { CASCADE | RESTRICT }

The statement allows you to take three different actions: adding columns, altering
columns, or dropping columns.

www.it-ebooks.info

http://www.it-ebooks.info/

 68 SQL: A Beginner’s Guide

NOTE
The ALTER TABLE statement also allows you to add or drop table constraints. A table
constraint is a rule that restricts what data can be entered into the table. The table
constraint is part of the table definition, but is not part of any specific column
definitions. Constraints are discussed in detail in Chapter 4.

The <column definition> placeholder in the ADD [COLUMN] clause is similar to the
column definition section of the CREATE TABLE statement. You provide a column name
and a data type or domain. You also have the option of adding a default clause, a column
constraint, or a collation. For example, you can use the following statement to alter the
ARTISTS table so that it includes an ARTIST_DOB column:

ALTER TABLE ARTISTS
 ADD COLUMN ARTIST_DOB DATE;

Unlike the ADD [COLUMN] clause, the ALTER [COLUMN] clause is limited to two
actions: setting a default or deleting the default (although there are product implementations
that permit changes to other properties such as data type or precision and scale). For example,
suppose your ARTISTS table includes a PLACE_OF_BIRTH column, but no default has been
defined for that column. You can add a default by using the following statement:

ALTER TABLE ARTISTS
 ALTER COLUMN PLACE_OF_BIRTH SET DEFAULT 'Unknown';

You can also drop the default by using the following statement:

ALTER TABLE ARTISTS
 ALTER COLUMN PLACE_OF_BIRTH DROP DEFAULT;

The final clause in the syntax—DROP [COLUMN]—provides two options for deleting a
column and its data from a table: the CASCADE keyword and the RESTRICT keyword. You
might remember these keywords from the discussion about the DROP SCHEMA statement in
Chapter 2. If the CASCADE option is specified, the column and the data within the column
are deleted regardless of whether other objects reference the column. Any views, constraints,
routines, or triggers that reference the column are also dropped. If the RESTRICT option is
used, the column is deleted only if no views, constraints, routines, or triggers reference the
column. For example, the following statement deletes the PLACE_OF_BIRTH column and the
data stored in the column, regardless of dependencies:

ALTER TABLE ARTISTS
 DROP COLUMN PLACE_OF_BIRTH CASCADE;

In general, the ALTER TABLE statement is a handy one to know because invariably,
table definitions are going to change, and so too are the types of data stored in those tables.
However, this statement, like most SQL statements, can vary widely from implementation to
implementation in terms of how the specifics of the statement are applied. For example, SQL
Server does not support the CASCADE and RESTRICT keywords. In Oracle, CASCADE
must be written as CASCADE CONSTRAINTS, and RESTRICT (which is the default
behavior) is not explicitly supported. As always, be sure to check your product documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 3: Creating and Altering Tables 69

Delete SQL Tables
As you might imagine, the process of deleting a table and its stored data is very
straightforward. The following syntax shows you how easy this process is:

DROP TABLE <table name>{ CASCADE | RESTRICT }

The only real decision you need to make when deleting the table is whether to choose the
CASCADE option or the RESTRICT option. As in previous syntax examples, the two options
determine whether you should delete the table and its data if the table is being referenced by
other objects. If CASCADE is used, the table and its data are deleted, along with any views,
constraints, routines, or triggers that reference the table. If RESTRICT is used, the table
is deleted only if no such dependencies exist. (As with the DROP COLUMN clause, SQL
Server does not support CASCADE or RESTRICT, and Oracle permits only CASCADE
CONTRAINTS.) For example, the following statement deletes the ARTISTS table and the data
stored in the column, regardless of dependencies:

DROP TABLE ARTISTS CASCADE;

Q: What if you want to delete the data in a table, but not the table definition itself?

A: Rather than using the DROP TABLE statement, you would use the DELETE statement.
The DELETE statement deletes all rows from a table or deletes only specific rows, as
defined within the statement. This is not the same as the DROP TABLE statement, which
removes the table definition and the data. I discuss the DELETE statement in more detail
in Chapter 8. Many product implementations also provide a TRUNCATE statement
that provides a quick and efficient way to clear all the data out of a table. However, the
TRUNCATE statement is not included in the SQL:2006 standard.

Q: You state that when a default value is defined for a column, the value is automatically
inserted into the column when you add a row to the table but don’t specify a value
for that particular column. What happens if your column definition doesn’t include
a default and you try to insert that row?

A: The action taken depends on whether null values are permitted within the column. A null
value means that the value is not known. This is not the same as a zero, blank, or default.
If a null value is present, then the data is not available. By default, all columns permit null
values, although you can override the default (discussed in Chapter 4). If you try to insert
a row without specifying a specific value, a null value will be inserted into that column if
the column permits null values. If the column does not permit null values, you will not be
able to insert a row without defining a specific value for that column.

(continued)

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 70 SQL: A Beginner’s Guide

Try This 3-2

Q: I’ve often heard the term “indexes” discussed in relation to creating SQL tables.
How do you create indexes?

A: Oddly enough, the SQL:2006 standard does not support the creation and maintenance
of indexes, nor does it provide a definition or mention them in any other way. For
those of you not familiar with them, an index is a set of search values and pointers (in a
subsidiary table) that correspond to rows in a table. Indexes speed up queries and improve
performance, making data access much more efficient, much like using the index of a
book helps you find things more quickly than sequentially searching the pages. As a result,
nearly every RDBMS supports some form of indexing, and indeed they are an important
part of that product. However, the method used to implement indexing varies greatly, so
each product provides its own system to set up and maintain their indexes. For example,
the CREATE INDEX statement is available in most products; however, the syntax for the
statement can vary considerably. As always, be sure to review the product documentation.

 Altering and Deleting SQL Tables
Throughout the life cycle of nearly any database, the likelihood that business requirements
will change and the database will have to be altered is almost a foregone conclusion. As a
result, you will no doubt run into situations in which table definitions have to be modified or
deleted. In this Try This exercise, you will create a table, drop it, recreate it, and then change
it by deleting a column. By the time you are finished, you will have added one more table to
the INVENTORY database and will be making use of that table in later exercises. You can
download the Try_This_03.txt file, which contains the SQL statements used in this exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database

(or CD_INVENTORY schema).

 2. You will create a table named COMPACT_DISC_TYPES. The table will include the
COMPACT_DISC_ID column and the TYPE_ID column. Both columns will be assigned
an INT data type. Enter and execute the following code:

CREATE TABLE COMPACT_DISC_TYPES
(COMPACT_DISC_ID INT,
 TYPE_ID INT);

 3. You will now delete the table from the database. Enter and execute the following code:

DROP TABLE COMPACT_DISC_TYPES CASCADE;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 3: Creating and Altering Tables 71

 4. You will now recreate the table you created in step 2, only this time you’ll include a third
column named CD_TITLE with a data type of VARCHAR(60). Enter and execute the
following code:

CREATE TABLE COMPACT_DISC_TYPES
(COMPACT_DISC_ID INT,
 CD_TITLE VARCHAR(60),
 TYPE_ID INT);

 5. Your next step will be to delete the CD_TITLE column. Enter and execute the following
code:

ALTER TABLE COMPACT_DISC_TYPES
 DROP COLUMN CD_TITLE CASCADE ;

 6. The COMPACT_DISC_TYPES table should now contain only the COMPACT_DISC_ID
column and the TYPE_ID column. Close the client application.

Try This Summary
The INVENTORY database should now contain four tables: COMPACT_DISCS, CD_
LABELS, MUSIC_TYPES, and COMPACT_DISC_TYPES. The COMPACT_DISC_TYPES
table, which you just created, contains two columns, COMPACT_DISC_ID and TYPE_ID,
both of which are defined with the INT data type. In subsequent Try This exercises, you will
continue to build on this database by adding new tables and modifying existing ones.

 Chapter 3 Self Test
 1. Which kinds of base tables can you create by using a CREATE TABLE statement?

 A Persistent base tables

 B Global temporary base tables

 C Created local temporary tables

 D Declared local temporary tables

 2. What is the primary difference between a global temporary table and a created local
temporary table?

 3. You’re creating a table named AGENTS. The table includes the AGENT_ID column, which
has an INT data type, and the AGENT_NAME column, which has a CHAR(60) data type.
What SQL statement should you use?

 4. What are the three types of data types that SQL supports?

 5. What are the four types of string data types?

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 72 SQL: A Beginner’s Guide

 6. A(n) ____________ data type permits values that are based on data bits, rather than
character sets or collations. This type of data type allows only values of 0 and 1.

 7. What are the precision and the scale of the number 5293.472?

 8. What are the differences between exact numeric data types and approximate numeric
data types?

 9. Which data types are exact numeric data types?

 A DOUBLE PRECISION

 B DECIMAL

 C REAL

 D SMALLINT

 10. A(n) ____________ data type specifies the year, month, and day values of a date.

 11. What are the two types of interval data types that SQL supports?

 12. Which data type should you use to support a true/false construct that can be used for
comparing values?

 13. You are creating a distinct user-defined type named CITY. The user type is based on the
CHAR(40) data type. Which SQL statement should you use?

 14. You’re creating a table named CUSTOMERS. The table includes the CUSTOMER_NAME
column and the CUSTOMER_CITY column. Both columns have a VARCHAR(60) data
type. The CUSTOMER_CITY column also has a default value of Seattle. Which SQL
statement should you use?

 15. Which SQL statement should you use to delete a column from an existing table?

 16. Which SQL statement should you use to delete a table definition and all its SQL data from
a database?

 17. Your database includes a table named OPERA_SINGERS. You want to add a column
named NATIONALITY to the table. The column should have a VARCHAR(40) data type.
What SQL statement should you use?

 18. You want to delete the table definition for the OPERA_SINGERS table from your database.
You also want to delete all the data and any dependencies on the table. What SQL statement
should you use?

www.it-ebooks.info

http://www.it-ebooks.info/

73

Chapter 4
Enforcing Data Integrity

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 74 SQL: A Beginner’s Guide

Key Skills & Concepts

● Understand Integrity Constraints

● Use NOT NULL Constraints

● Add UNIQUE Constraints

● Add PRIMARY KEY Constraints

● Add FOREIGN KEY Constraints

● Define CHECK Constraints

A SQL database must do more than just store data. It must ensure that the data it stores
is correct. If the integrity of the data is compromised, the data might be inaccurate or

inconsistent, bringing into question the reliability of the database itself. In order to ensure the
integrity of the data, SQL provides a number of integrity constraints, rules that are applied
to base tables to constrain the values that can be placed into those tables. You can apply
constraints to individual columns, to individual tables, or to multiple tables. In this chapter,
I discuss each type of constraint and explain how you can apply them to your SQL database.

Understand Integrity Constraints
SQL integrity constraints, which are usually referred to simply as constraints, can be divided
into three categories:

● Table-related constraints A type of constraint that is defined within a table definition.
The constraint can be defined as part of the column definition or as an element in the table
definition. Constraints defined at the table level can apply to one or more columns.

● Assertions A type of constraint that is defined within an assertion definition (separate from
the table definition). An assertion can be related to one or more tables.

● Domain constraints A type of constraint that is defined within a domain definition
(separate from the table definition). A domain constraint is associated with any column
that is defined within the specific domain.

Of these three categories of constraints, table-related constraints are the most common
and include the greatest number of constraint options. Table-related constraints can be divided
into two subcategories: table constraints and column constraints. The constraints in both these
subcategories are defined in the table definition. A column constraint is included with the column
definition, and a table constraint is included as a table element, similar to the way columns
are defined as table elements. (Chapter 3 discusses table elements and column definitions.)

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 75

Both column constraints and table constraints support a number of different types of constraints.
This is not the case for assertions and domain constraints, which are limited to only one type of
constraint. Figure 4-1 provides an overview of the types of constraints that can be created.

At the top of the illustration, you can see the three categories of constraints. Beneath the
Table-Related Constraints category are the Column Constraints subcategory and the Table
Constraints subcategory, each of which contains specific types of constraints. For example,
table constraints can include unique (UNIQUE constraints and PRIMARY KEY constraints),
referential (FOREIGN KEY constraints), and CHECK constraints, while column constraints
can include the NOT NULL constraint as well as unique, referential, and CHECK constraints.
However, domains and assertions support only CHECK constraints.

NOTE
In some places, the SQL:2006 standard uses the term “table constraint” to refer to both
types of table-related constraints. I use the term “table-related” to avoid confusion.

As Figure 4-1 shows, there are five different types of constraints: NOT NULL, UNIQUE,
PRIMARY KEY, FOREIGN KEY, and CHECK. In SQL, UNIQUE constraints and PRIMARY
KEY constraints are both considered unique constraints, and FOREIGN KEY constraints are
considered referential constraints. The rest of the chapter is devoted to explaining what each of
these constraints means and how to apply them.

Figure 4-1 Types of SQL integrity constraints

Unique
UNIQUE

PRIMARY KEY

CHECK

Integrity Constraints

Referential
FOREIGN KEY

CHECKNOT NULL

Table-Related Constraints
(within table definitions)

Assertions
(within assertion definitions)

Domain Constraints
(within domain definitions)

CHECK

Unique
UNIQUE

PRIMARY KEY

Referential
FOREIGN KEY

CHECK

Column Constraints Table Constraints

www.it-ebooks.info

http://www.it-ebooks.info/

 76 SQL: A Beginner’s Guide

Use NOT NULL Constraints
In Chapter 3, I told you that null signifies that a value is undefined or not known. This is not
the same as a zero, a blank, an empty string, or a default value. Instead, it indicates that a data
value is absent. You can think of a null value as being a flag. (A flag is a character, number,
or bit that indicates a certain fact about a column. The flag serves as a marker that designates
a particular condition or existence of something.) In the case of null, if no value is provided
for a column, the flag is set, indicating that the value is unknown, or null. Every column
has a nullability characteristic that indicates whether the column will accept null values. By
default, all columns accept null values. However, you can override the default nullability
characteristic by using a NOT NULL constraint, which indicates that the column will not
accept null values.

NOTE
Some RDBMSs allow you to change the default nullability of any new column you
create. In addition, some systems support a NULL constraint, which you can use to
designate that a column will accept null values.

The NOT NULL constraint can only be used as a column constraint. It is not supported
for table constraints, assertions, or domain constraints. Implementing a NOT NULL constraint
is a very straightforward process. Simply use the following syntax when creating a column
definition:

<column name> { <data type> | <domain> } NOT NULL

For example, suppose you want to create a table named COMPACT_DISC_ARTISTS
that requires three columns: ARTIST_ID, ARTIST_NAME, and PLACE_OF_BIRTH. You
want to make sure that any new rows that are added to the table include a value for the
ARTIST_ID column and a value for the ARTIST_NAME column. To do this, you add a NOT
NULL constraint to both column definitions, as shown in the following SQL statement:

CREATE TABLE COMPACT_DISC_ARTISTS
(ARTIST_ID INT NOT NULL,
 ARTIST_NAME VARCHAR(60) NOT NULL,
 PLACE_OF_BIRTH VARCHAR(60));

Notice that the PLACE_OF_BIRTH column does not include a NOT NULL constraint. As
a result, if a value isn’t supplied for this column (when a row is inserted), a null value will be
inserted. (The null flag will be set.) Figure 4-2 shows how the table might look if rows were
inserted that contained no value for the PLACE_OF_BIRTH column.

As you can see, the ARTIST_ID and ARTIST_NAME columns do not—, and cannot,
—contain null values. The PLACE_OF_BIRTH column, on the other hand, contains two
null values.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 77

Add UNIQUE Constraints
If you refer back to Figure 4-1, you’ll see that both column constraints and table constraints
support unique constraints. You’ll also see that that there are two types of unique constraints:
UNIQUE and PRIMARY KEY. In this section, I focus on the UNIQUE constraint. The
PRIMARY KEY constraint is discussed in the “Add PRIMARY KEY Constraints” section
later in this chapter.

The UNIQUE constraint allows you to require that a column or set of columns contains
unique values, meaning values that are different from all other rows in the same table. For
example, take a look at Figure 4-3, which shows the CD_INVENTORY table. The table
contains three columns: ARTIST_NAME, CD_NAME, and COPYRIGHT.

Figure 4-2 Null values appearing in the PLACE_OF_BIRTH column in the COMPACT_DISC_
ARTISTS table

ARTIST_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

ARTIST_ID:
INT

10001

10002

10005

10006

Placido Domingo10008

Luciano Pavarotti10009

PLACE_OF_BIRTH:

Fort MacLeod, Alberta, Canada

Tacoma, Washington, United States

Winchester, Virginia, United States

Madrid, Spain

NULL

NULL

VARCHAR(60)

Figure 4-3 The CD_INVENTORY table with the ARTIST_NAME, CD-NAME, and COPYRIGHT_
YEAR columns

ARTIST_NAME:
VARCHAR(40)

Jennifer Warnes

Joni Mitchell

William Ackerman

Kitaro

Bing Crosby

Patsy Cline

CD_NAME:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

COPYRIGHT_YEAR:
INT

1991

1971

1983

1990

1993

1988

www.it-ebooks.info

http://www.it-ebooks.info/

 78 SQL: A Beginner’s Guide

You might decide that you want the values in the CD_NAME column to be unique so
that no two CD names can be alike. If you applied a UNIQUE constraint to the column, you
would not be able to insert a row that contained a CD_NAME value that already existed in
the table. Now suppose that you realize that making the CD_NAME values unique is not a
good idea because it is possible for more than one CD to share the same name. You decide to
take another approach and use a UNIQUE constraint on the ARTIST_NAME and CD_NAME
columns. That way, no ARTIST_NAME/CD_NAME pair can be repeated. You can repeat
an ARTIST_NAME value or a CD_NAME value, but you cannot repeat the exact same
combination of the two. For example, the table already contains a row with an ARTIST_
NAME value of Joni Mitchell and a CD_NAME value of Blue. If a UNIQUE constraint had
been applied to these two columns, you could not add another row that contained both of
these values.

NOTE
I should point out that the tables used for illustration of concepts in this chapter are not
necessarily good designs. For example, names of people and things are seldom good
choices to uniquely identify rows of data because they are rather long (compared to
numbers), tend to change, and are prone to problems with duplicate values. However,
these tables were chosen because they illustrate the concepts well.

Now that you have a basic understanding of how UNIQUE constraints are applied, let’s
take a look at the syntax that you use to create them. Remember, I said that you can create a
UNIQUE constraint that is either a column constraint or a table constraint. To create a column
constraint, add it as part of the column definition, as shown in the following syntax:

<column name> { <data type> | <domain> } UNIQUE

If you want to add a unique constraint as a table constraint, you must add it as a table
element in the table definition, as shown in the following syntax:

[CONSTRAINT <constraint name>]
UNIQUE (<column name> [{, <column name> } . . .])

As you can see, applying a UNIQUE constraint as a column constraint is a little simpler than
applying it as a table constraint. However, if you apply the constraint at the column level,
you can apply it to only one column. Regardless of whether you use column constraints or
table constraints, you can define as many UNIQUE constraints as necessary in a single table
definition.

Now let’s return to the table in Figure 4-3 and use it to create code examples for applying
UNIQUE constraints. In the first example, I apply a UNIQUE constraint to the CD_NAME
column:

CREATE TABLE CD_INVENTORY
(ARTIST_NAME VARCHAR(40),
 CD_NAME VARCHAR(60) UNIQUE,
 COPYRIGHT INT);

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 79

I can also apply UNIQUE constraints to other columns, but that would not have the same
effect as combining two columns into one table constraint, as shown in the following example:

CREATE TABLE CD_INVENTORY
(ARTIST_NAME VARCHAR(40),
 CD_NAME VARCHAR(60),
 COPYRIGHT INT,
 CONSTRAINT UN_ARTIST_CD UNIQUE (ARTIST_NAME, CD_NAME));

The ARTIST_NAME column and CD_NAME column must now contain unique combinations
of values in order for a row to be added to the CD_INVENTORY table.

Until now, I have told you that a UNIQUE constraint prevents duplicate values from being
entered into a column or columns defined with that constraint. However, there is one exception
to this—the null value. A UNIQUE constraint permits multiple null values in a column. As
with other columns, null values are permitted by default. You can, however, override the
default by using the NOT NULL constraint in conjunction with the UNIQUE constraint. For
example, you can add NOT NULL to the CD_NAME column definition:

CREATE TABLE CD_INVENTORY
(ARTIST_NAME VARCHAR(40),
 CD_NAME VARCHAR(60) NOT NULL UNIQUE,
 COPYRIGHT INT);

You can also add NOT NULL to a column definition that’s referenced by a table
constraint:

CREATE TABLE CD_INVENTORY
(ARTIST_NAME VARCHAR(40),
 CD_NAME VARCHAR(60) NOT NULL,
 COPYRIGHT INT,
 CONSTRAINT UN_ARTIST_CD UNIQUE (CD_NAME));

In each case, both the NOT NULL constraint and the UNIQUE constraint are applied to the
CD_NAME column, which means the CD_NAME values must be unique and without null values.

Add PRIMARY KEY Constraints
As I mentioned in the “Add UNIQUE Constraints” section, a PRIMARY KEY constraint,
like the UNIQUE constraint, is a type of SQL unique constraint. Both types of constraints
permit only unique values in the specified columns, both types can be applied to one or more
columns, and both types can be defined as either column constraints or table constraints.
However, PRIMARY KEY constraints have two restrictions that apply only to them:

● A column that is defined with a PRIMARY KEY constraint cannot contain null values.
It doesn’t matter whether or not the column definition specifies NOT NULL—the column
cannot contain null values because of the PRIMARY KEY constraint.

● Only one PRIMARY KEY constraint can be defined for each table.

www.it-ebooks.info

http://www.it-ebooks.info/

 80 SQL: A Beginner’s Guide

The reason for these restrictions is the role that a primary key (unique identifier) plays
in a table. As you might recall from Chapter 1, each row in a table must be unique. This is
important because SQL cannot differentiate between two rows that are completely identical,
so you cannot update or delete one duplicate row without doing the same to the other. The
primary key for a table is chosen by the database designer from available candidate keys. A
candidate key is a set of one or more columns that uniquely identify each row. For example,
in Figure 4-4, the only reasonable candidate key in the CD_ARTISTS table is the ARTIST_ID
column. Each value in the column will be unique. That way, even if the ARTIST_NAME
values and AGENCY values are duplicated, the row is still unique because the ARTIST_ID
value is always unique.

The uniqueness of a candidate key can be enforced with either a UNIQUE constraint
or a PRIMARY KEY constraint. However, each table should include a primary key even if
no UNIQUE constraints are defined. This is considered an industry best practice because a
primary key cannot accept null values, which makes it the definitive measure by which a row’s
uniqueness can be ensured. Primary keys are also useful when one table references another
through the use of foreign keys. (See the “Add FOREIGN KEY Constraints” section later in
this chapter.) Furthermore, some RDBMSs require the definition of primary keys under certain
circumstances, such as when a table column is included in a full text index.

To define the primary key, you must use the PRIMARY KEY constraint to specify which
column or columns will serve as the table’s primary key. The process of defining a PRIMARY

Figure 4-4 The candidate key in the CD_ARTISTS table

ARTIST_NAME:
VARCHAR (60)

Jennifer Warnes

Joni Mitchell

William Ackerman

Kitaro

Bing Crosby

Patsy Cline

ARTIST_ID:
INT

10001

10002

10003

10004

10005

10006

Jose Carreras10007

Placido Domingo10008

Luciano Pavarotti10009

AGENCY_ID:
INT

2305

2306

2345

2367

2049

2876

2305

2345

2306

Candidate
Key

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 81

KEY constraint is very similar to that of defining a UNIQUE constraint. If you want to add a
PRIMARY KEY constraint to a column definition, use the following syntax:

<column name> { <data type> | <domain> } PRIMARY KEY

If you want to add a PRIMARY KEY constraint as a table constraint, you must add it as a table
element in the table definition, as shown in the following syntax:

 [CONSTRAINT <constraint name>]
PRIMARY KEY (<column name> [{, <column name> } . . .])

As with the UNIQUE constraint, you can use a column constraint to define a primary key
if you’re including only one column in the definition. For example, if you were to define a
PRIMARY KEY constraint for the table shown in Figure 4-4, you would use the following
SQL statement:

CREATE TABLE CD_ARTISTS
(ARTIST_ID INT PRIMARY KEY,
 ARTIST_NAME VARCHAR(60),
 AGENCY_ID INT);

If you want to apply the constraint to multiple columns—or you simply want to keep it as
a separate definition—then you must use a table constraint:

CREATE TABLE CD_ARTISTS
(ARTIST_ID INT,
 ARTIST_NAME VARCHAR(60),
 AGENCY_ID INT,
 CONSTRAINT PK_ARTIST_ID PRIMARY KEY (ARTIST_ID, ARTIST_NAME));

This method creates a primary key on the ARTIST_ID and ARTIST_NAME columns, so that
the combined values of both columns must be unique, although duplicates can exist within the
individual column. An experienced database designer will quickly point out to you that this
is a superkey, which means that it has more columns in it than the minimum needed to form a
primary key. And that is true—ARTIST_ID by itself is unique and we really don’t need to add
ARTIST_NAME to it in order to form a primary key, and we want to be sure that duplicate
values of ARTIST_ID are not entered into the table, which means we should have a primary
key with only ARTIST_ID in it. It was only done here to illustrate that a primary key can
contain multiple columns and to define one that way, a table constraint must be used.

You might find that you want to define both PRIMARY KEY and UNIQUE constraints in
a table. To do so, you simply define the constraints as you normally would. For example, the
following SQL statement defines a PRIMARY KEY constraint on the ARTIST_ID column and
a UNIQUE constraint on the ARTIST_NAME column:

CREATE TABLE CD_ARTISTS
(ARTIST_ID INT PRIMARY KEY,
 ARTIST_NAME VARCHAR(60),
 AGENCY_ID INT,
 CONSTRAINT UN_ARTIST_NAME UNIQUE (ARTIST_NAME));

www.it-ebooks.info

http://www.it-ebooks.info/

 82 SQL: A Beginner’s Guide

You would achieve the same results with the following code:

CREATE TABLE CD_ARTISTS
(ARTIST_ID INT,
 ARTIST_NAME VARCHAR(60) UNIQUE,
 AGENCY_ID INT,
 CONSTRAINT PK_ARTIST_ID PRIMARY KEY (ARTIST_ID));

NOTE
I used a UNIQUE constraint in these SQL statements only as a way to demonstrate
how the constraint can be used in a table with a primary key. Most likely, you would
not want to use a UNIQUE constraint for the ARTIST_NAME column because it is
possible for two artists to share the same name. (For example, two different blues
artists, both of whom lived in the earlier part of the last century, went by the name
of Sonny Boy Williamson.)

Q: Can the columns in a table belong to both a UNIQUE constraint and a PRIMARY
KEY constraint?

A: Yes, as long as they’re not the exact same columns. For example, suppose you have a table
that includes three columns: ARTIST_ID, ARTIST_NAME, and PLACE_OF_BIRTH.
You can define a PRIMARY KEY constraint that includes the ARTIST_ID and ARTIST_
NAME columns, which would ensure unique value pairs in those two columns, but values
within the individual columns could still be duplicated. However, you can then define a
UNIQUE constraint that includes only the ARTIST_NAME column to ensure that those
values are unique as well. (This certainly isn’t the best design, but it illustrates my point.)
You can also create a UNIQUE constraint that includes the ARTIST_NAME and PLACE_
OF_BIRTH columns to ensure unique value pairs in those two columns. The only thing
you can’t do is create a UNIQUE constraint that includes the exact same columns as an
existing PRIMARY KEY constraint and vice versa.

Q: You state that a column that is included in a PRIMARY KEY constraint will not
accept null values. What happens if that column is configured with a NOT NULL
constraint as well?

A: Nothing different happens. The table is still created in the same way. A column definition
that includes PRIMARY KEY is saying the same thing as a column definition that
includes NOT NULL PRIMARY KEY. In fact, prior to SQL-92, the NOT NULL
keywords were required on all columns included in a PRIMARY KEY constraint.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 83

The same was true for UNIQUE constraints. It wasn’t until SQL-92 that null values were
permitted in columns included in a UNIQUE constraint, which clearly set them apart from
PRIMARY KEY constraints. Also, be wary of variations across vendor implementations.
For example, Oracle will automatically add NOT NULL constraints to columns included
in a PRIMARY KEY constraint, while SQL Server (or at least some versions of it) will
display an error if you attempt to create a PRIMARY KEY constraint using columns that
have not been specified with a NOT NULL constraint.

Add FOREIGN KEY Constraints
Up to this point, the types of constraints that I’ve discussed have had to do primarily with
ensuring the integrity of data within a table. The NOT NULL constraint prevents the use of null
values within a column, and the UNIQUE and PRIMARY KEY constraints ensure the uniqueness
of values within a column or set of columns. However, the FOREIGN KEY constraint is different
in that it is concerned with how data in one table relates to data in another table, which is why it
is known as a referential constraint—it references another table. (Actually, there is an exception
called a recursive relationship where the foreign key refers to another row in the same table, but
I’m going to ignore this special case for now in order to focus on the basics.)

You might recall from Chapter 1 that tables in a relational database are linked together
in a meaningful way in order to ensure the integrity of the data. This association between
tables forms a relationship that provides referential integrity between tables. Referential
integrity prevents the manipulation of data in one table from adversely affecting data in
another table. Let’s take a look at an example that illustrates this point. Figure 4-5 shows
two tables (CD_TITLES and CD_PUBLISHERS) that are each defined with a primary key.

Figure 4-5 The relationship between the CD_TITLES and CD_PUBLISHERS tables

CD_TITLE_ID:
INT

11001

11002

11003

11004

11005

11006

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

PUBLISHER_ID:
INT

5422

5402

5412

5409

5403

5403

PUBLISHER_ID:
INT

5422

5402

5412

5409

5403

COMPANY_NAME:
VARCHAR(60)

MCA Records

Reprise Records

Geffen

Windham Hill Records

Private Music

CD_TITLES CD_PUBLISHERS

www.it-ebooks.info

http://www.it-ebooks.info/

 84 SQL: A Beginner’s Guide

The CD_TITLE_ID column in the CD_TITLES table is configured with a PRIMARY KEY
constraint, as is the PUBLISHER_ID column in the CD_PUBLISHERS table. Both these
columns are shaded in the illustration.

Notice that the CD_TITLES table contains a column named PUBLISHER_ID. This
column includes values from the PUBLISHER_ID column of the CD_PUBLISHERS table.
In fact, the PUBLISHER_ID values in the CD_TITLES table should include only values
that come from the PUBLISHER_ID column in the CD_PUBLISHERS table. You should
not be able to insert a row into CD_TITLES if the PUBLISHER_ID value is not listed in
the CD_PUBLISHERS table. At the same time, if you alter or delete a PUBLISHER_ID
value in the CD_PUBLISHERS table, you should be able to predict the outcome of your
action if those same values exist in the CD_TITLES table. Under no circumstances would
you want to delete a publisher and leave PUBLISHER_ID values in the CD_TITLES table
that reference a publisher that no longer exists. These results can be achieved by using
a FOREIGN KEY constraint. A FOREIGN KEY constraint enforces referential integrity
between two tables by ensuring that no action is taken on either table that adversely affects
the data protected by the constraint.

In the tables shown in Figure 4-5, the FOREIGN KEY constraint must be configured on the
PUBLISHER_ID column of the CD_TITLES table. The FOREIGN KEY constraint restricts the
values in that column to the values of a candidate key (usually the primary key) in the related
table. Only valid data values are permitted in the FOREIGN KEY column or columns.

NOTE
The table that contains the foreign key is the referencing table. The table that is being
referenced by the foreign key is the referenced table. Likewise, the column or columns
that make up the foreign key in the referencing table are referred to as the referencing
columns. The columns being referenced by the foreign key are the referenced columns.

When creating a FOREIGN KEY constraint, you must follow several guidelines:

● The referenced columns must be defined with either a UNIQUE or PRIMARY KEY
constraint on them. As you might guess, the primary key is most commonly used for the
referenced columns.

● A FOREIGN KEY constraint can be created as a table constraint or column constraint. If
you create the foreign key as a column constraint, you can include only one column. If you
create the foreign key as a table constraint, you can include one or more columns.

● The foreign key in the referencing table must include the same number of columns that are
being referenced, and the referencing columns must each be configured with the same data
types as their referenced counterparts. However, the referencing columns do not have to
have the same names as the referenced columns.

● If you don’t specify the referenced columns when you define a FOREIGN KEY constraint,
then the columns defined in the primary key of the referenced table are used as the
referenced columns.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 85

These guidelines will become clearer as I explain how to implement a foreign key.
First, let’s take a look at the basic syntax used to create that constraint. If you want to add a
FOREIGN KEY constraint as a column constraint, you must add the constraint to a column
definition, as shown in the following syntax:

<column name> { <data type> | <domain> } [NOT NULL]
REFERENCES <referenced table> [(<referenced columns>)]
[MATCH { FULL | PARTIAL | SIMPLE }]
[<referential triggered action>]

If you want to add a FOREIGN KEY constraint as a table constraint, you must add it as a table
element in the table definition, as shown in the following syntax:

[CONSTRAINT <constraint name>]
FOREIGN KEY (<referencing column > [{, <referencing column> } . . .])
REFERENCES <referenced table> [(<referenced columns>)]
[MATCH { FULL | PARTIAL | SIMPLE }]
[<referential triggered action>]

As you can see, a FOREIGN KEY constraint is a bit more complicated than the constraint
syntax you’ve looked at so far. However, creating a basic FOREIGN KEY constraint is a
relatively straightforward process. Let’s take a look at one first, and then we’ll go on to the
more complex language elements.

In the following example, I use a CREATE TABLE statement to create the CD_TITLES
table (shown in Figure 4-5) and define a column constraint:

CREATE TABLE CD_TITLES
(CD_TITLE_ID INT,
 CD_TITLE VARCHAR(60),
 PUBLISHER_ID INT REFERENCES CD_PUBLISHERS);

This statement defines a FOREIGN KEY constraint on the PUBLISHER_ID column.
Notice that, in order to add a column constraint, all you have to do is add the REFERENCES
keyword and the name of the referenced table. Also notice that the foreign key contains the
same number of columns as the primary key in the referenced table, and the referenced and
referencing columns are the same data type. Remember, if you’re not referencing the primary
key in the referenced table, you must also include the name of the column or columns—for
example, REFERENCES CD_PUBLISHERS (PUBLISHER_ID).

NOTE
Before you can create a foreign key on a table, the referenced table must already exist
and a UNIQUE or PRIMARY KEY constraint must be defined for that table.

www.it-ebooks.info

http://www.it-ebooks.info/

 86 SQL: A Beginner’s Guide

In the next example, I create a foreign key that is a table constraint. Unlike the previous
example, I include the name of the referenced column in this constraint definition, even though
it isn’t necessary:

CREATE TABLE CD_TITLES
(CD_TITLE_ID INT,
 CD_TITLE VARCHAR(60),
 PUBLISHER_ID INT,
 CONSTRAINT FK_PUBLISHER_ID FOREIGN KEY (PUBLISHER_ID)
 REFERENCES CD_PUBLISHERS (PUBLISHER_ID));

The last two lines of code are the constraint definition. The name of the constraint,
FK_PUBLISHER_ID, follows the CONSTRAINT keyword. Constraint names aren’t
necessary because the DBMS will assign a system-generated name if one is not supplied.
However, it’s a good practice to supply your own because constraint names often appear in
error messages when SQL statements attempt to violate constraints, and names you supply
will be easier to recognize than ones the DBMS supplied for you. Following the constraint
name, the FOREIGN KEY keywords indicate the type of constraint, which is followed by
the referencing column name, PUBLISHER_ID. This is the name of the column on which
the constraint is being placed. If there were multiple column names, they would be separated
by commas. The name of the referencing column is then followed by the REFERENCES
keyword, which is followed by the name of the referenced table, CD_PUBLISHERS. The
name of the referenced column follows the name of the referenced table.

That’s all there is to it. Once the constraint is defined, you would not be able to place
values in the PUBLISHER_ID column of the CD_TITLES table unless those values already
existed in the primary key of the CD_PUBLISHERS table. You should note, however, that the
values in the foreign key do not have to be unique, as they must be in the CD_PUBLISHERS
primary key. Values in the foreign key can be repeated any number of times, unless the column
is limited by a unique constraint.

Before I move on to discussing the other elements of the FOREIGN KEY syntax, let’s
take a quick look at a foreign key that includes multiple columns. In Figure 4-6, there are two
tables: PERFORMING_ARTISTS and ARTISTS_MUSIC_TYPES.

The primary key on the PERFORMING_ARTISTS table is defined on the ARTIST_
NAME and ARTIST_DOB columns. The following SQL statement creates the ARTISTS_
MUSIC_TYPES table, which includes a foreign key made up of the ARTIST_NAME and
DOB columns:

CREATE TABLE ARTISTS_MUSIC_TYPES
(ARTIST_NAME VARCHAR(60),
 DOB DATE,
 TYPE_ID INT,
 CONSTRAINT FK_CD_ARTISTS FOREIGN KEY (ARTIST_NAME, DOB)
 REFERENCES PERFORMING_ARTISTS (ARTIST_NAME, ARTIST_DOB));

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 87

In this statement, there are two referencing columns (ARTIST_NAME and DOB) and
two referenced columns (ARTIST_NAME, ARTIST_DOB). The ARTIST_NAME columns
in the two tables have the same data type, and the DOB column has the same data type as the
ARTIST_DOB column. As you can see, one of the referencing columns (DOB) has a different
name than its referenced counterpart (ARTIST_DOB).

Figure 4-6 A foreign key made up of multiple columns

ARTIST_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

Placido Domingo

Luciano Pavarotti

ARTIST_DOB:
DATE

1947-03-03

1943-11-07

1904-05-02

1932-09-08

1941-01-21

1935-10-12

PSTR_IN_STK:
BOOLEAN

False

Unknown

True

True

False

Unknown

PLACE_OF_BIRTH:
VARCHAR(60)

Unknown

Fort MacLeod, Alberta, Canada

Tacoma, Washington, U.S.A.

Winchester, VIrginia, U.S.A.

Madrid, Spain

Unknown

ARTIST_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

Placido Domingo

Luciano Pavarotti

DOB:
DATE

1947-03-03

1943-11-07

1904-05-02

1932-09-08

1941-01-21

1935-10-12

TYPE_ID:
INT

10

Jennifer Warnes 1947-03-03 06

10

Joni Mitchell 1943-11-07 05

Joni Mitchell 1943-11-07 12

05

Bing Crosby 1904-05-02 13

02

Patsy Cline 1932-09-08 10

19

19

PERFORMING_ARTISTS ARTISTS_MUSIC_TYPES

Q: In Figure 4-6 and in the preceding examples, you created a FOREIGN KEY
constraint on the ARTIST_NAME and DOB columns in the ARTISTS_MUSIC_
TYPES table. What would the primary key be for this table?

A: Remember that a primary key must uniquely identify each row in a table. However, because
pairs of values in the ARTIST_NAME and DOB columns can be repeated (which means
that they can be repeated in the individual columns as well), those two columns cannot
be used by themselves as a primary key for this table. On the other hand, the TYPE_ID
column can have repeating values as well, so that column cannot be used by itself.

Ask the Expert

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 88 SQL: A Beginner’s Guide

In addition, you probably wouldn’t want to combine the TYPE_ID column with one of
the other two columns because it is conceivable that you would have repeating rows (for
example, two artists with the same name performing the same types of music, such as the
two blues musicians named Sonny Boy Williamson, or two artists with the same date of
birth performing the same type of music). As a result, your best solution (aside from adding
another column to the table) is to roll all three columns into the primary key. Together, the
three columns would uniquely identify each row because it is highly unlikely that anyone
would share the same name, date of birth, and type of music (although anything is possible,
which is why, ultimately, adding another column that is guaranteed to be unique is the very
best way to go).

The MATCH Clause
Now that you have an understanding of how to define a basic FOREIGN KEY constraint, let’s
look at another line of the FOREIGN KEY syntax:

[MATCH { FULL | PARTIAL | SIMPLE }]

You can tell from the brackets that this is an optional clause. And in fact, very few vendor
products currently support this clause (it’s not supported by SQL Server 2005, Oracle 11g,
or MySQL 5.0, for example), so you won’t see it used much at all. However, it is described
in the SQL Standard, which means we can expect more vendor product support in the future.
Its purpose is to allow you to decide how to treat null values in the foreign key columns, with
regard to permitting values to be inserted into the referencing columns. If the columns do not
permit null values, then the MATCH clause does not apply. You have three options that you
can use in the MATCH clause:

● If MATCH FULL is specified, all referencing columns must have a null value or none of
these columns can have a null value.

● If MATCH PARTIAL is specified, one or more referencing columns can have null values
as long as the remaining referencing columns have values that equal their corresponding
referenced columns.

● If MATCH SIMPLE is specified and one or more referencing columns have null values,
then the remaining referencing columns can have values that are not contained in the
corresponding referenced columns. The SIMPLE option is implied if the MATCH clause
is not included in the FOREIGN KEY constraint definition.

The best way to illustrate each of these MATCH options is through examples of valid and
invalid data that can be inserted in the referencing columns. Going back to our example shown
in Figure 4-6, you can see that the foreign key in the ARTISTS_MUSIC_TYPES table is made
up of two referencing columns: ARTIST_NAME and DOB. Table 4-1 provides examples for
data that can and cannot be inserted into the foreign key columns. The examples are based on
data in the primary key columns of the PERFORMING_ARTISTS table.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 89

NOTE
You probably wouldn’t want to permit null values in your referencing columns in the
ARTISTS_MUSIC_TYPES table, particularly for the ARTIST_NAME column. And if either
of these columns were used in the primary key, you would not be able to permit null
values. However, in order to demonstrate how the MATCH options work, let’s assume
that null values are permitted.

If you decide to use the MATCH clause, you simply add it to the end of your FOREIGN
KEY constraint definition, as shown in the following SQL statement (assuming your
implementation of SQL supports it):

CREATE TABLE ARTISTS_MUSIC_TYPES
(ARTIST_NAME VARCHAR(60),
 DOB DATE,
 TYPE_ID INT,
 CONSTRAINT FK_CD_ARTISTS FOREIGN KEY (ARTIST_NAME, DOB)
 REFERENCES PERFORMING_ARTISTS MATCH FULL);

To insert data into the referencing columns (ARTIST_NAME and DOB), both values have to
be null or they must be valid data values from the referenced columns in the PERFORMING_
ARTISTS table.

The <referential triggered action> Clause
The final clause in the FOREIGN KEY constraint syntax is the optional <referential triggered
action> clause. The clause allows you to define what types of actions should be taken when
attempting to update or delete data from the referenced columns—if that attempt would cause
a violation of the data in the referencing columns. For example, suppose you try to delete data
from a table’s primary key. If that primary key is referenced by a foreign key and if the data to

Table 4-1 Valid and Invalid Examples of the MATCH Clause Options

MATCH Option Valid Data Examples Invalid Data Examples

FULL Joni Mitchell, 1943-11-07
NULL, NULL

NULL, 1943-11-07
Joni Mitchell, NULL
Joni Mitchell, 1802-08-03

PARTIAL Patsy Cline, 1932-09-08
NULL, 1932-09-08
Patsy Cline, NULL
NULL, NULL

NULL, 1802-08-03
Henryk Górecki, NULL
Patsy Cline, 1947-03-03

SIMPLE Bing Crosby, 1904-05-02
NULL, 1904-05-02
Bing Crosby, NULL
NULL, 1802-08-03
Henryk Górecki, NULL
NULL, NULL

Bing Crosby, 1802-08-03
Bing Crosby, 1947-03-03
Henryk Górecki, 1947-03-03

www.it-ebooks.info

http://www.it-ebooks.info/

 90 SQL: A Beginner’s Guide

be deleted is stored in the foreign key, then deleting the data from the primary key would cause
a violation of the FOREIGN KEY constraint. Data in referencing columns must always be
included in the referenced columns.

The point to remember about the <referential triggered action> clause is that you are
including in the definition of the referencing table (through the foreign key) an action that
should be taken as a result of something being done to the referenced table. This can be
clarified by taking a look at the syntax for the <referential triggered action> clause:

ON UPDATE <referential action> [ON DELETE <referential action>]
| ON DELETE <referential action> [ON UPDATE <referential action>]
<referential action> ::=
CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION

NOTE
The ::= symbol (two consecutive colons plus an equals sign) is used in the SQL:2006
standard to separate a placeholder in the angle brackets from its definition. In the
preceding syntax, the <referential action> placeholder is defined. The placeholder is
used in the code preceding the definition. You would then take the definition (the five
keywords) and use them in place of the <referential action> placeholder as it is used in
the ON UPDATE and ON DELETE clauses.

As you can see from the syntax, you can define an ON UPDATE clause, an ON DELETE
clause, or both, and you can define them in any order. For each of these clauses you can
choose one of five referential actions:

● If CASCADE is used and data is updated or deleted in the referenced columns, the data in
the referencing columns is updated or deleted.

● If SET NULL is used and data is updated or deleted in the referenced columns, the values
in the corresponding referencing columns are set to null. Null values have to be supported
in the referencing columns for this option to work.

● If SET DEFAULT is used and data is updated or deleted in the referenced columns, the
values in the corresponding referencing columns are set to their default values. Default
values must be assigned to the referencing columns for this option to work.

● If RESTRICT is used and you try to update or delete data in your referenced columns that
would cause a foreign key violation, you are prevented from performing that action. Data
in the referencing columns can never violate the FOREIGN KEY constraint, not even
temporarily.

● If NO ACTION is used and you try to update or delete data in your referenced columns
that would cause a foreign key violation, you are prevented from performing that action.
However, data violations can occur temporarily under certain conditions during the
execution of an SQL statement, but the data in the foreign key is never violated in its final
state (at the end of that execution). The NO ACTION option is the default used for both
updates and deletes, if no referential triggered action is specified.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 91

Try This 4-1

If you decide to use the <referential triggered action> clause, you simply add it to the end
of your FOREIGN KEY constraint definition, as shown in the following SQL statement:

CREATE TABLE ARTISTS_MUSIC_TYPES
(ARTIST_NAME VARCHAR(60),
 DOB DATE,
 TYPE_ID INT,
 CONSTRAINT FK_CD_ARTISTS FOREIGN KEY (ARTIST_NAME, DOB)
 REFERENCES PERFORMING_ARTISTS ON UPDATE CASCADE ON DELETE CASCADE);

If you update data in or delete data from the referenced columns in PERFORMING_
ARTISTS, those changes will be made to the referencing columns in the ARTISTS_MUSIC_
TYPES table.

 Adding NOT NULL, Unique,
and Referential Constraints

In Chapter 3, Try This 3-1 and Try This 3-2, you created several tables that you added to the
INVENTORY database (or the CD_INVENTORY schema). In this Try This exercise, you
will add a number of constraints to the tables and create new tables that are also defined with
constraints. However, rather than use the ALTER TABLE statement to modify the tables that you
already created, you will be recreating those tables. The advantage to this is that you’ll be able to
see the complete table definition as it relates to the updated data model, shown in Figure 4-7.

The data model incorporates a few more elements than you have seen before. It identifies
tables, columns within those tables, data types for those columns, constraints, and relationships
between tables. You should already be familiar with how tables, columns, and data types are
represented, so let’s take a look at constraints and relationships:

● The columns included in the primary key are in the top section of the table, and the other
columns lie in the bottom section. For example, in the COMPACT_DISCS table, the
COMPACT_DISC_ID column is the primary key. In some cases, as in the COMPACT_
DISC_TYPES table, all columns are included in the primary key.

● Each foreign key is represented by an [FK].

● Defaults, UNIQUE constraints, and NOT NULL constraints are identified with each
applicable column.

● Relationships, as defined by foreign keys, are represented by lines that connect the foreign
key in one table to the candidate key (usually the primary key) in another table.

You’ll find this data model useful not only for this exercise, but for other Try This exercises
in the book, all of which will continue to build upon or use the INVENTORY database. You
can also download the Try_This_04.txt#file, which contains the SQL statements used in this
exercise.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 92 SQL: A Beginner’s Guide

NOTE
Data models come in many varieties. The model I use here is specific to the needs of the
book. You’ll find in the real world that the models will differ from what you see here.
For example, relationships between tables might be represented differently, and column
definition information might not be quite as extensive.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. You first need to drop the four tables (COMPACT_DISCS, COMPACT_DISC_TYPES,
MUSIC_TYPES, and CD_LABELS) that you already created. Enter and execute the
following SQL statements:

DROP TABLE COMPACT_DISCS CASCADE;
DROP TABLE COMPACT_DISC_TYPES CASCADE;
DROP TABLE MUSIC_TYPES CASCADE;
DROP TABLE CD_LABELS CASCADE;

Figure 4-7 Data model for the INVENTORY database

TYPE_ID INT

MUSIC_TYPES

TYPE_NAME VARCHAR(20)
NOT NULL UNIQUE

COMPACT_DISC_ID INT

LABEL_ID INT

COMPACT_DISCS

CD_LABELS

CD_TITLE VARCHAR(60) NOT NULL
LABEL_ID INT NOT NULL [FK]

COMPANY_NAME VARCHAR(60)
DEFAULT ‘Independent'

ARTIST_ID INT [FK]
COMPACT_DISC_ID INT [FK]

ARTIST_CDS

ARTIST_ID INT

ARTISTS

ARTIST_NAME VARCHAR(60) NOT NULL
PLACE_OF_BIRTH VARCHAR(60)

DEFAULT 'Unknown' NOT NULL

COMPACT_DISC_ID INT [FK]
MUSIC_TYPE_ID INT [FK]

COMPACT_DISC_TYPES

NOT NULL

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 93

NOTE
If you created either the ARTISTS table or the ARTIST_CDS table when trying out
examples or experimenting with CREATE TABLE statements, be sure to drop those
as well.

NOTE
The CASCADE option is not supported by SQL Server, and in Oracle must be written
as CASCADE CONSTRAINTS.

 Now you can begin to recreate these tables and create new ones. You should create the
tables in the order outlined in this exercise because the tables referenced in foreign keys
will have to exist—with primary keys created—before you can create the foreign keys.
Be sure to refer to the data model in Figure 4-7 for details about each table that you create.

 3. The first table that you’re going to create is the MUSIC_TYPES table. It contains two
columns: TYPE_ID and TYPE_NAME. You’ll configure the TYPE_ID column as the
primary key, and you’ll configure a UNIQUE constraint and NOT NULL constraint on the
TYPE_NAME column. Enter and execute the following SQL statement:

CREATE TABLE MUSIC_TYPES
(TYPE_ID INT,
 TYPE_NAME VARCHAR(20) NOT NULL,
 CONSTRAINT UN_TYPE_NAME UNIQUE (TYPE_NAME),
 CONSTRAINT PK_MUSIC_TYPES PRIMARY KEY (TYPE_ID));

 4. The next table that you’ll create is the CD_LABELS table. The table includes the LABEL_
ID column, which will be defined as the primary key, and the COMPANY_NAME column,
which will be defined with a default and the NOT NULL constraint. Enter and execute the
following SQL statement:

CREATE TABLE CD_LABELS
(LABEL_ID INT,
 COMPANY_NAME VARCHAR(60) DEFAULT 'Independent' NOT NULL,
 CONSTRAINT PK_CD_LABELS PRIMARY KEY (LABEL_ID));

 5. Now that you’ve created the CD_LABELS table, you can create the COMPACT_
DISCS table. The COMPACT_DISCS table contains a foreign key that references the
CD_LABELS table. This is why you created CD_LABELS first. Enter and execute the
following SQL statement:

CREATE TABLE COMPACT_DISCS
(COMPACT_DISC_ID INT,
 CD_TITLE VARCHAR(60) NOT NULL,
 LABEL_ID INT NOT NULL,
 CONSTRAINT PK_COMPACT_DISCS PRIMARY KEY (COMPACT_DISC_ID),
 CONSTRAINT FK_LABEL_ID FOREIGN KEY (LABEL_ID) REFERENCES CD_LABELS);

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 94 SQL: A Beginner’s Guide

 6. The next table, COMPACT_DISC_TYPES, includes two foreign keys, along with its primary
key. The foreign keys reference the COMPACT_DISCS table and the MUSIC_TYPES table,
both of which you’ve already created. Enter and execute the following SQL statement:

CREATE TABLE COMPACT_DISC_TYPES
(COMPACT_DISC_ID INT,
 MUSIC_TYPE_ID INT,
 CONSTRAINT PK_COMPACT_DISC_TYPES
 PRIMARY KEY (COMPACT_DISC_ID, MUSIC_TYPE_ID),
 CONSTRAINT FK_COMPACT_DISC_ID_01
 FOREIGN KEY (COMPACT_DISC_ID) REFERENCES COMPACT_DISCS,
 CONSTRAINT FK_MUSIC_TYPE_ID
 FOREIGN KEY (MUSIC_TYPE_ID) REFERENCES MUSIC_TYPES);

 7. Now you can create the ARTISTS table. Enter and execute the following SQL statement:

CREATE TABLE ARTISTS
(ARTIST_ID INT,
 ARTIST_NAME VARCHAR(60) NOT NULL,
 PLACE_OF_BIRTH VARCHAR(60) DEFAULT 'Unknown' NOT NULL,
 CONSTRAINT PK_ARTISTS PRIMARY KEY (ARTIST_ID)) ;

 8. The last table you’ll create (at least for now) is the ARTIST_CDS table. Enter and execute
the following SQL statement:

CREATE TABLE ARTIST_CDS
(ARTIST_ID INT,
 COMPACT_DISC_ID INT,
 CONSTRAINT PK_ARTIST_CDS PRIMARY KEY (ARTIST_ID, COMPACT_DISC_ID),
 CONSTRAINT FK_ARTIST_ID FOREIGN KEY (ARTIST_ID) REFERENCES ARTISTS,
 CONSTRAINT FK_COMPACT_DISC_ID_02 FOREIGN KEY (COMPACT_DISC_ID)
 REFERENCES COMPACT_DISCS) ;

 9. Close the client application.

Try This Summary
Your database now has six tables, each one configured with the necessary defaults and
constraints. In this Try This exercise, we followed a specific order for creating the tables in
order to more easily implement the foreign keys. However, you could have created the tables
in any order, without their foreign keys—unless the referenced table was already created—and
then added in the foreign keys later, but this would have added extra steps. In fact, had you
wanted to, you could have altered the tables that had existed prior to this exercise (rather than
dropping them and then recreating them), as long as you created primary keys (or UNIQUE
constraints) on the referenced tables before creating foreign keys on the referencing tables.
Regardless of the approach you take, the end result should be that your database now has the
necessary tables to begin moving on to other components of SQL.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 95

Define CHECK Constraints
Earlier in the chapter, in the “Understand Integrity Constraints” section, I discussed the various
constraint categories and the types of constraints they support. (Refer back to Figure 4-1 for
an overview of these categories.) One type of constraint—, the CHECK constraint, —can be
defined as table constraints, column constraints, domain constraints, or within assertions.
A CHECK constraint allows you to specify what values can be included in a column. You can
define a range of values (for example, between 10 and 100), a list of values (for example, blues,
jazz, pop, country), or a number of other conditions that restrict exactly what values are permitted
in a column.

CHECK constraints are the most flexible of all the constraints and are often the most
complicated. Despite this, the basic syntax used for a CHECK constraint is relatively simple.
To create a column CHECK constraint, use the following syntax in a column definition:

<column name> { <data type> | <domain> } CHECK (<search condition>)

To create a table CHECK constraint, use the following syntax in a table definition:

[CONSTRAINT <constraint name>] CHECK (<search condition>)

I’ll be discussing domain constraints and assertions later in this section.
As you can see by the syntax, a CHECK constraint is relatively straightforward. However,

the values used for the <search condition> clause can be very extensive and, consequently,
quite complex. The main concept is that the <search condition> is tested (one could say
“checked”) for any SQL statement that attempts to modify the data in a column covered
by the CHECK constraint, and if it evaluates to TRUE, the SQL statement is allowed
to complete; if it evaluates to FALSE, the SQL statement fails and an error message is
displayed. The best way for you to learn about the clause is by looking at examples. However,
most <search condition> components are based on the use of predicates in order to create
the search condition. A predicate is an expression that operates on values. For example, a
predicate can be used to compare values (for instance, COLUMN_1 > 10). The greater- than
symbol (>) is a comparison predicate, sometimes referred to as a comparison operator. In this
case, the predicate verifies that any value inserted into COLUMN_1 is greater than 10.

Many <search condition> components also rely on the use of subqueries. A subquery is
an expression that is used as a component within another expression. Subqueries are used
when an expression must access or calculate multiple layers of data, such as having to search
a second table to provide data for the first table.

Both predicates and subqueries are complicated enough subjects to be beyond the scope of
a discussion about CHECK constraints, and indeed each subject is treated separately in its own
chapter. (See Chapter 9 for information about predicates and Chapter 12 for information about
subqueries.) Despite the fact that both topics are discussed later in the book, I want to provide
you with at least a few examples of CHECK constraints to give you a feel for how they’re
implemented in an SQL environment.

The first example we’ll look at is a CHECK constraint that defines the minimum and
maximum values that can be inserted into a column. The following table definition in this

www.it-ebooks.info

http://www.it-ebooks.info/

 96 SQL: A Beginner’s Guide

example creates three columns and one CHECK constraint (as a table constraint) that restricts
the values of one of the columns to a range of numbers between 0 and 30:

CREATE TABLE CD_TITLES
(COMPACT_DISC_ID INT,
 CD_TITLE VARCHAR(60) NOT NULL,
 IN_STOCK INT NOT NULL,
 CONSTRAINT CK_IN_STOCK CHECK (IN_STOCK > 0 AND IN_STOCK < 30));

If you were to try to enter a value into the IN_STOCK column other than 1 through 29, you
would receive an error. You can achieve the same results by defining a column constraint:

CREATE TABLE CD_TITLES
(COMPACT_DISC_ID INT,
 CD_TITLE VARCHAR(60) NOT NULL,
 IN_STOCK INT NOT NULL
 CHECK (IN_STOCK > 0 AND IN_STOCK < 30));

Let’s take a closer look at the <search condition> clause in these statements, which in
this case is (IN_STOCK > 0 AND IN_STOCK < 30). The clause first tells us that any value
entered into the IN_STOCK column must be greater than 0 (IN_STOCK > 0). The AND
keyword tells us that the conditions defined on either side of AND must be applied. Finally,
the clause tells us that the value must be less than 30 (IN_STOCK < 30). Because the AND
keyword is used, the value must be greater than 0 and less than 30.

Another way that a CHECK constraint can be used is to explicitly list the values that can
be entered into the column. This is a handy option if you have a limited number of values and
they’re not likely to change (or will change infrequently). The following SQL statement creates
a table that includes a CHECK constraint that defines in which decade the music belongs:

CREATE TABLE CD_TITLES
(COMPACT_DISC_ID INT,
 CD_TITLE VARCHAR(60) NOT NULL,
 ERA CHAR(5),
 CONSTRAINT CK_ERA CHECK (ERA IN ('1940s', '1950s',
 '1960s', '1970s', '1980s', '1990s', '2000s')));

The value entered into the ERA column must be one of the seven decades represented
by the search condition. If you tried to enter a value other than a null value or one of these
seven, you would receive an error. Notice that the IN operator is used to designate that the
ERA column values must be one of the set of values enclosed by parentheses following
the keyword IN.

If the number of parentheses starts to confuse you, you can separate your code into lines
that follow the embedding of those parentheses. For example, the preceding statement can be
written as follows:

CREATE TABLE CD_TITLES
(
 COMPACT_DISC_ID INT,
 CD_TITLE VARCHAR(60) NOT NULL,

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 97

 ERA CHAR(5),
 CONSTRAINT CK_ERA CHECK
 (
 ERA IN
 (
 '1940s', '1950s', '1960s', '1970s', '1980s', '1990s', '2000s'
)
)
);

Each set of parentheses and its content is indented to a level that corresponds to the level
of embedding for that particular clause, just like an outline. Using this method tells you exactly
which clauses are enclosed in which set of parentheses, and the statement is executed just the
same as if you hadn’t separated out the lines. The downside is that it takes up a lot of room
(which is why I don’t use this method in this book), although it might be a helpful tool for you
for those statements that are a little more complicated.

Now let’s look at one other example of a CHECK constraint. This example is similar to the
first one we looked at, only this one is concerned with values between certain numbers:

CREATE TABLE CD_TITLES
(COMPACT_DISC_ID INT,
 CD_TITLE VARCHAR(60) NOT NULL,
 IN_STOCK INT NOT NULL,
 CONSTRAINT CK_IN_STOCK CHECK
 ((IN_STOCK BETWEEN 0 AND 30) OR
 (IN_STOCK BETWEEN 49 AND 60))) ;

In this statement, you use the BETWEEN operator to specify a range which includes the
endpoints. Because you are creating two different ranges, you enclose each range specification in
parentheses: (IN_STOCK BETWEEN 0 AND 30) and (IN_STOCK BETWEEN 49 AND 60).
These two range specifications are then connected by an OR keyword, which indicates that either
one or the other condition must be met. As a result, any value entered into the IN_STOCK column
must be from 0 through 30 or from 49 through 60.

As I said earlier, you will learn more about search conditions in Chapter 9. At that time,
you’ll see just how flexible the CHECK constraint is. And when used with subqueries
(see Chapter 12), they provide a powerful tool for explicitly defining what values are permitted
in a particular column.

Defining Assertions
An assertion is merely a type of CHECK constraint that can be applied to multiple tables. For
this reason, an assertion must be created separately from a table definition. Unfortunately, most
vendor products, including Oracle 11g, SQL Server 2005, and MySQL 5.0, don’t yet support
assertions. To create an assertion, use the following syntax:

CREATE ASSERTION <constraint name> CHECK <search conditions>

www.it-ebooks.info

http://www.it-ebooks.info/

 98 SQL: A Beginner’s Guide

Creating an assertion is very similar to creating a table CHECK constraint. After the
CHECK keyword, you must provide the necessary search condition(s). Now let’s take a look
at an example. Suppose the CD_TITLES table includes a column for the number of compact
discs in stock. You want the total for that table to always be less than the maximum inventory
you want to carry. In the following example, I create an assertion that totals the values in the
IN_STOCK column and verifies that the total is less than 5000:

CREATE ASSERTION LIMIT_IN_STOCK CHECK
 ((SELECT SUM (IN_STOCK) FROM CD_TITLES) < 5000);

In this statement, I am using a subquery, (SELECT SUM (IN_STOCK) FROM CD_
TITLES), and comparing it to 5000. The subquery begins with the SELECT keyword, which
is used to query data from a table. The SUM function adds the values in the IN_STOCK
column, and the FROM keyword specifies which table the column is in. The results of this
subquery are then compared (using the less than comparison operator) to 5000. If you try to
add a value to the IN_STOCK column that would cause the total to exceed 5000, you will
receive an error.

Creating Domains and Domain Constraints
The last type of CHECK constraint is the kind that you insert into a domain definition. For the
most part, the constraint definition is similar to what you’ve seen before, except that you do
not tie the constraint to a specific column or table. In fact, domain constraints use the VALUE
keyword when referring to the value within a column defined with that particular domain.
Let’s look at the syntax for creating a domain:

CREATE DOMAIN <domain name> [AS] <data type>
[DEFAULT <default value>]
[CONSTRAINT <constraint name>] CHECK (<search condition>)

You should already be familiar with most of the elements in this syntax. I discuss data
types and default clauses in Chapter 3, and the constraint definition is similar to what you’ve
seen so far in this chapter.

In the following example, I create a domain that’s based on the INT data type and that
requires all values to be between 0 and 30:

CREATE DOMAIN STOCK_AMOUNT AS INT
 CONSTRAINT CK_STOCK_AMOUNT CHECK (VALUE BETWEEN 0 AND 30);

The only really new item here (other than the CREATE DOMAIN clause) is the keyword
VALUE, which, as I said, refers to the value of the column defined with the STOCK_
AMOUNT domain. As a result, if you try to insert a value (into one of those columns) that is
not between 0 and 30, you will receive an error.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 99

Try This 4-2 Adding a CHECK Constraint
In this Try This exercise, which is relatively short, you will be using the ALTER TABLE
statement to modify the COMPACT_DISCS table. You will be adding a column to the table and
then defining a CHECK constraint that restricts the values that can be entered into the column.
The additional column and constraint will have no impact on other tables in the INVENTORY
database or on the relationship between tables. You can download the Try_This_04.txtfile,
which contains the SQL statements used in this exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. You’re going to modify the COMPACT_DISCS table by adding the IN_STOCK column.
Enter and execute the following SQL statement:

ALTER TABLE COMPACT_DISCS
 ADD COLUMN IN_STOCK INT NOT NULL;

NOTE
For Oracle and SQL Server, omit the keyword COLUMN

 3. Now that the column exists, you can add a CHECK constraint to the table definition. You
could have entered the constraint as a column constraint, but adding it separately as a table
constraint allows you to do each step separately so you can see the results of your actions.
The CHECK constraint limits the values that can be entered into the IN_STOCK column.
Each value must be greater than 0, but less than 50. Enter and execute the following
SQL statement:

ALTER TABLE COMPACT_DISCS
 ADD CONSTRAINT CK_IN_STOCK CHECK (IN_STOCK > 0 AND IN_STOCK < 50);

 4. Close the client application.

Try This Summary
The new column, IN_STOCK, tracks the number of each compact disc listed in the
COMPACT_DISCS table. The CK_IN_STOCK constraint restricts the number per row to
an amount between 0 and 50. Now that the table has been updated, you cannot add any values
that would violate the constraint.

www.it-ebooks.info

http://www.it-ebooks.info/

 100 SQL: A Beginner’s Guide

 Chapter 4 Self Test
 1. What are the three categories of integrity constraints?

 2. What are the differences between a column constraint and a table constraint?

 3. What types of constraints can you include in a column definition?

 4. What is the difference between a table constraint and an assertion?

 5. What does a null value signify?

 6. Which of the following types of constraints support NOT NULL constraints?

 A Table constraints

 B Column constraints

 C Domain constraints

 D Assertions

 7. You are creating a table that includes a column that allows null values but whose non-null
values should be unique. Which type of constraint should you use?

 8. You’re creating a table that includes the TYPE_NAME column. The column is defined
with the CHAR(10) data type and requires a UNIQUE constraint, which you’ll define as
a column constraint. What SQL code should you use for the column definition?

 9. What two restrictions apply to PRIMARY KEY constraints but not to UNIQUE constraints?

 10. You’re creating a PRIMARY KEY constraint named PK_ARTIST_MUSIC_TYPES on
the ARTIST_MUSIC_TYPES table. The primary key includes the ARTIST_NAME and
ARTIST_DOB columns. What SQL code should you use for a table constraint?

 11. How does a referential constraint differ from a unique constraint?

 12. A(n) ____________ constraint enforces referential integrity between two tables by ensuring
that no action is taken to either table that affects the data protected by the constraint.

 13. You’re creating a table that includes a column named BUSINESS_TYPE_ID, with a data
type of INT. The column will be defined with a FOREIGN KEY constraint that references
the primary key in a table named BUSINESS_TYPES. The foreign key will be added as
a column constraint. What SQL code should you use for the column definition?

 14. What three options can you use in the MATCH clause of a FOREIGN KEY constraint?

 15. What are the two types of referential triggered actions that can be defined in a FOREIGN
KEY constraint?

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 4: Enforcing Data Integrity 101

 16. You’re creating a FOREIGN KEY constraint and want the values in the referencing column
to be updated if values in the referenced column are updated. Which <referential triggered
action> clause should you use?

 A ON UPDATE RESTRICT

 B ON UPDATE NO ACTION

 C ON UPDATE CASCADE

 D ON UPDATE SET DEFAULT

 17. What syntax should you use for a CHECK constraint that you’re defining as a table
constraint?

 18. What types of constraints can you define within an assertion?

 19. You’re creating a CHECK constraint on the NUMBER_IN_STOCK column. You want to
limit the values that can be entered into the column to the range of 11 through 29. What
should you use for the <search condition> clause of the constraint?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

103

Chapter 5
Creating SQL Views

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 104 SQL: A Beginner’s Guide

Key Skills & Concepts

● Add Views to the Database

● Create Updateable Views

● Drop Views from the Database

A s you learned in Chapter 3, persistent base tables store the SQL data in your database.
However, these tables are not always in a useful form if you only want to look at specific

data from one table or data from multiple tables. For this reason, the SQL:2006 standard
supports the use of viewed tables, or views. A view is a virtual table whose definition exists
as a schema object. Unlike persistent base tables, there is no data stored in the view. In fact,
the viewed table does not actually exist—only the definition that defines it exists. It is this
definition that allows you to select specific information from one or more tables, based on the
query statements in that definition. Once you create a view, you simply invoke it by calling
its name in a query as you would a base table. The data is then presented as though you were
looking at a base table.

Add Views to the Database
Before I go too deeply into the specifics of views, I want to quickly review some of what
I discussed in Chapters 2 and 3. A view, as you might recall, is one of three types of tables
supported by SQL, along with base tables and derived tables. Most base tables are schema
objects and come in four types: persistent base tables, global temporary tables, created local
temporary tables, and declared local temporary tables. Of these four types, it is the persistent
base tables that hold the actual SQL data. Derived tables, on the other hand, are merely the
results you see when you query data from the database. For example, if you request data from
the COMPACT_DISCS table, the results of your request are displayed in a table-like format,
which is known as the derived table.

In some ways, a view is a cross between a persistent base table and a derived table. It
is like a persistent base table in that the view definition is stored as a schema object using a
unique name (within the schema) that can be accessed as you would a base table. However,
a view is like a derived table in that no data is stored in association with the view. Both derived
tables and views are types of virtual tables. The data is selected from one or more base tables
when you invoke the view. In fact, you can think of a view as merely a named derived table,
with the view definition stored in the schema. The data results that you see when you call a
view are not stored anywhere but are derived from existing base tables.

Views can be useful tools when accessing different types of data. One of the main
advantages of using views is that you can define complex queries and store them within the
view definition. Instead of recreating those queries every time you need them, you can simply

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 5: Creating SQL Views 105

invoke the view. Moreover, views can be a handy way to present information to users without
providing them with more information than they need or information they should not see.
For example, you might want users in your organization to have access to certain employee
records, but you might not want information such as Social Security numbers or pay rates
available to those users, so you can create a view that provides only the information that they
should see. Views can also be used to synthesize complex structures and present information in
a way that is easier for some users to understand, which in effect hides the underlying structure
and complexity of the database from the users.

Now that you have an overview of what views are, let’s take a look at a few examples that
illustrate how data is extracted from base tables into the type of derived table that is presented
by a view definition. The first example we’ll look at, shown in Figure 5-1, is based on the
COMPACT_DISC_INVENTORY table, which includes six columns. Suppose you want to
view only the CD_TITLE, COPYRIGHT, and IN_STOCK columns. You can create a view
that extracts these three columns from the table and organizes them as if the data existed in
its own table, as shown in Figure 5-1. The COMPACT_DISCS_IN_STOCK view contains a
query that defines exactly what data should be returned by the view.

You might have noticed that the column names in the view are different from the column
names of the COMPACT_DISC_INVENTORY table, even though the data within the columns
is the same. This is because you can assign names to view columns that are different from
the originating table if you wish. If you don’t assign any names, the view columns inherit the
names from the originating table. The same is true of data types. The view columns inherit
their data types from their respective table columns. For example, the COMPACT_DISC
column in the COMPACT_DISCS_IN_STOCK view inherits the VARCHAR(60) data type
from the CD_TITLE column of the COMPACT_DISC_INVENTORY table. You don’t specify
the VARCHAR(60) data type anywhere within the view definition.

As you can see, a view allows you to define which columns are returned when you invoke
the view. The definition for the COMPACT_DISCS_IN_STOCK view specifies three columns;
however, it could have specified any of the columns from the COMPACT_DISC_INVENTORY
table. In addition to columns, a view definition can specify which rows are returned. For
example, Figure 5-2 shows the CDS_IN_STOCK_1990S view. Notice that it contains the same
columns as the COMPACT_DISCS_IN_STOCK view (shown in Figure 5-1), but there are
fewer rows. In this case, the view definition not only specifies the same three columns from the
COMPACT_DISC_INVENTORY table, but also specifies that only rows with values between
1990 and 1999 (inclusive) in the COPYRIGHT column fall are to be returned.

In the previous two examples, we looked at views that derive data from only one table;
however, you can create views based on multiple tables. This is particularly useful if you want
to display related information that spans more than one table. Let’s take a look at Figure 5-3,
which includes the CD_INVENTORY table and the LABELS table. The CD_INVENTORY
table contains a list of CDs in your inventory, and the LABELS table contains a list of
companies that publish CDs. I am briefly introducing multiple table access here because it is
a great way to demonstrate how well views can hide query complexity. The topic is covered in
detail in Chapter 11.

www.it-ebooks.info

http://www.it-ebooks.info/

 106 SQL: A Beginner’s Guide

Suppose you have users who want to be able to see the names of the CD and the
publisher, but who are not interested in the COMPACT_DISC_ID or LABEL_ID values.
And they certainly aren’t interested in having to look in two different locations to compare
LABEL_ID values in order to match up CDs with company names. One solution is to create
a view that matches up this information for them, while at the same time displaying only the

Figure 5-1 The COMPACT_DISCS_IN_STOCK view, based on the COMPACT_DISC_
INVENTORY table

COMPACT_DISCS_IN_STOCK

COMPACT_DISC_INVENTORY

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

COPYRIGHT:

1991

1991

1971

1971

1983

1983

1993

1993

1988

1988

1974

1974

COMPACT_DISC_ID:
INT

99301

99302

99303

99304

99306

99307

IN_STOCK:
INT

6

6

26

26

2

2

18

18

COMPACT_DISC

DISC_ID:
INTINT
LABEL_ID:

INT

5422

5402

5270

5412

5409

5403

5403

5312

5270

1299

1232

1287

1292

1255

1216

1210

1276

1266 8

8

22

22

Kojiki 1990

1990

99305 5

5

3

3

25

25

99308

99310

Carreras Domingo in Concert

Henryk Gorecki: Symphony No. 3

1990

1990

1992

1992

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

Carreras Domingo Pavarotti in Concert

Henryk Gorecki: Symphony No. 3

COPYRIGHT IN_STOCK

Pavarotti

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 5: Creating SQL Views 107

Figure 5-2 The CDS_IN_STOCK_1990S view, based on the COMPACT_DISC_INVENTORY
table

CDS_IN_STOCK_1990S

COMPACT_DISC

Famous Blue Raincoat

Kojiki

That Christmas Feeling

Carreras Domingo Pavarotti in Concert

Henryk Górecki: Symphony No. 3

COPYRIGHT

1991

1990

1993

1990

1992

IN_STOCK

6

5

3

22

8

Figure 5-3 The COMPACT_DISC_PUBLISHERS view, based on the LABELS and CD_INVENTORY
tables

COMPACT_DISC_PUBLISHERS

COMPACT_DISK_ID:
INT

11001

11002

11003

11004

11005

11006

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

LABEL_ID:
INT

5422

5402

5412

5409

5403

5403

LABEL_ID:
INT

5422

5402

5412

5409

5403

COMPANY_NAME:
VARCHAR(60)

MCA Records

Reprise Records

Geffen

Windham Hill Records

Private Music

CD_INVENTORY LABELS

COMPACT_DISC

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

PUBLISHER

MCA Records

Reprise Records

Geffen

Windham Hill Records

Private Music

MCA Records

www.it-ebooks.info

http://www.it-ebooks.info/

 108 SQL: A Beginner’s Guide

information that is useful to them. In the case of the CD_INVENTORY and LABELS table,
you can create a view (named COMPACT_DISC_PUBLISHERS in Figure 5-3) that bridges
(joins) this data for the users, while hiding the underlying structure and extraneous data.

A view of this sort is possible by taking advantage of the relationships between tables.
In the case of the CD_INVENTORY and LABELS tables, a foreign key has been defined
on the LABEL_ID column of the CD_INVENTORY table that references the LABEL_ID
column of the LABELS table. The query contained in the COMPACT_DISC_PUBLISHERS
view definition matches the values in the LABEL_ID column of the CD_INVENTORY table
to the values in the LABEL_ID column of the LABELS table. For every match that is found,
a row is returned. For example, the Famous Blue Raincoat row includes a LABEL_ID value
of 5422. In the LABELS table, you can see that this value matches the Private Music row.
As a result, the view contains a row with the Famous Blue Raincoat value and the Private
Music value.

NOTE
You don’t necessarily have to use a foreign key relationship to join tables. Any two
columns from different tables that store the same information can be used. This might
mean using all the columns in a foreign key (if the foreign key includes multiple
columns), using only one of the columns, or not using a foreign key at all. I discuss
joining multiple tables in Chapter 11.

In addition to joining information from different tables, you can also use views to modify
the data that is pulled from a table column and presented in the view column. This allows you
to take such actions as performing calculations, finding averages, determining minimum and
maximum values, and completing countless other operations. You can then take the results of
these operations and include them in a column within the view. In Figure 5-4, for example, the
CD_DISCOUNTS view deducts a 10 percent discount from the retail price and presents the
result in the DISCOUNT_PRICE column.

The CD_DISCOUNTS view includes three columns. The COMPACT_DISC column
pulls data directly from the CD_TITLE column. The RETAIL_PRICE and DISCOUNT_
PRICE columns in the view both pull their data from the RETAIL_PRICE column in the
INVENTORY table. The RETAIL_PRICE column in the view copies the values just as they
are. However, for the DISCOUNT_PRICE column, the values pulled from the RETAIL_
PRICE column in the INVENTORY table are multiplied by 0.9.

As you can see, you can specify many types of operations in a view and then simply
invoke the view when you need the information. Most of what can be included in a regular
query can be included in a view. In fact, it is the query, or query expression, that forms the
nucleus of the view. However, before we look at query expressions, I want to first discuss the
syntax used for creating views.

Defining SQL Views
The simplest type of view to create is one that references only one table and retrieves data
from columns within the table without modifying that data. The more complicated the view,

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 5: Creating SQL Views 109

the more complicated the query expression underlying the view. At its most basic, the syntax
for a view is as follows:

CREATE VIEW <view name> [(<view column names>)]
AS <query expression>
[WITH CHECK OPTION]

For now, we’ll focus only on the first two lines of the syntax and leave the WITH
CHECK OPTION for later, in the “Create Updateable Views” section. As shown in the first

Figure 5-4 The CD_DISCOUNTS view, based on the INVENTORY table

CD_DISCOUNTS

INVENTORY

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

COPYRIGHT:
INT

1991

1971

1983

1990

1993

1988

1974

COMPACT_DISC_ID:
INT

99301

99302

99303

99304

99305

99306

99307

RETAIL_PRICE:
NUMERIC(5,2)

16.99

14.99

15.99

15.99

10.99

16.99

14.99

IN_STOCK:
INT

6

26

2

5

3

25

18

COMPACT_DISC

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

RETAIL_PRICE

16.99

14.99

15.99

15.99

10.99

16.99

14.99

DISCOUNT_PRICE

15.29

13.49

14.39

14.39

9.89

15.29

13.49

www.it-ebooks.info

http://www.it-ebooks.info/

 110 SQL: A Beginner’s Guide

line of the syntax, you must provide a name for the view. In addition, you must provide
names for the columns in the following circumstances:

● If any column values are based on some sort of operation that calculates the value to
be inserted in the column, rather than the value being copied directly from the table.
(See Figure 5-4.)

● If table column names are duplicated, which can happen when joining tables together.

Even if you aren’t required to provide column names, you still can if you wish. For
example, you might find that you want to rename them so the names are more logical for your
particular users. If, however, you do provide column names using the <view column names>
syntax, you must provide names for all columns.

NOTE
There is also a way to provide alternate column names using the AS keyword within the
query expression itself, which I discuss in Chapter 7.

The second line of the syntax includes the AS keyword, which is required, and the
<query expression> placeholder. The <query expression> placeholder, although it appears
straightforward, can imply a complex structure of query statements that can perform a number
of operations, including retrieving data from multiple tables, calculating data, limiting the type
of data returned, and performing virtually any other type of operation supported by a query
expression. Because of the complexity of query expressions, I spend the majority of Part II of
this book discussing various ways to query data. What this implies, then, is that it would be
very difficult to condense a thorough discussion of query expressions into the topic of views.
Still, I want to provide you with a number of examples that illustrate how you can create views
that perform various functions. With each example, I’ll include a cursory explanation of the
query expression used in the view definition. Know, however, that I will be going into the
details of query expressions in greater depth later in the book, beginning with Chapter 7. Also
note that the base tables used in these examples have not been created in previous Try This
exercises, so if you want to try the examples, you will have to create the base tables first. The
figures show the information you need to do that.

The first example we’ll look at is based on the view shown in Figure 5-1. The COMPACT_
DISCS_IN_STOCK view derives data from the COMPACT_DISC_INVENTORY table and
includes three columns from that table. To create the view, use the following CREATE VIEW
statement:

CREATE VIEW COMPACT_DISCS_IN_STOCK
 (COMPACT_DISC, COPYRIGHT, IN_STOCK) AS
 SELECT CD_TITLE, COPYRIGHT, IN_STOCK
 FROM COMPACT_DISC_INVENTORY;

This view is the simplest of all types of views to create. It is based on one table and pulls
three of the six columns from that table. Keep in mind that while SQL usually requires clauses

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 5: Creating SQL Views 111

to be in a particular order, there are no restrictions as to spaces and line breaks. For example,
when creating views, I prefer to put the column name list (when present) on a new line and to
place the AS keyword at the end of the line that precedes the query expression. Others prefer
the AS keyword on a line by itself, and still others prefer to place it at the beginning of the
first line of the query expression. Your RDBMS is not going to care which way you do it, but
adopting a style and sticking to it will make your SQL easier to read, understand, and maintain.

Dissecting the statement a bit, the first line provides a name for the view, COMPACT_
DISCS_IN_STOCK. The second line provides a name for each of the three columns:
COMPACT_DISC, COPYRIGHT, and IN_STOCK, and ends with the AS keyword. If the
column names were omitted, the view columns would inherit their names from the table
columns. The third and fourth lines of the CREATE VIEW statement contain the query
expression, which in this case is the following SELECT statement:

SELECT CD_TITLE, COPYRIGHT, IN_STOCK
 FROM COMPACT_DISC_INVENTORY

The SELECT statement is one of the most common statements (if not the most common
statement) you’ll be using as an SQL programmer. It also one of the most extensive and
flexible statements you’ll be using, allowing you to form intricate queries that can return
exactly the type of data you want to retrieve from your database.

The SELECT statement used in the COMPACT_DISCS_IN_STOCK view definition
is a SELECT statement at its most basic. The statement is divided into two clauses: the
SELECT clause and the FROM clause. The SELECT clause identifies which columns to
return (CD_TITLE, COPYRIGHT, and IN_STOCK), and the FROM clause identifies the
table from which to pull the data (COMPACT_DISC_INVENTORY). When you invoke the
COMPACT_DISCS_IN_STOCK view, you are essentially invoking the SELECT statement
that is embedded in the view definition, which in turn pulls data from the applicable base
table(s).

In the next example, which is based on the view in Figure 5-2, the CREATE VIEW
statement is nearly the same as the previous example, except that an additional clause has been
added to the statement:

CREATE VIEW CDS_IN_STOCK_1990S
 (COMPACT_DISC, COPYRIGHT, IN_STOCK) AS
 SELECT CD_TITLE, COPYRIGHT, IN_STOCK
 FROM COMPACT_DISC_INVENTORY
 WHERE COPYRIGHT > 1989 AND COPYRIGHT < 2000;

The WHERE clause defines a condition that must be met in order for data to be returned.
As in the previous example, you’re still pulling data from the CD_TITLE, COPYRIGHT, and
IN_STOCK columns of the COMPACT_DISC_INVENTORY table, only this time you’re
limiting the data to those rows whose COPYRIGHT values are greater than 1989 but less
than 2000 (COPYRIGHT > 1989 AND COPYRIGHT < 2000). You might recognize the
comparison operators greater than (>) and less than (<) from Chapter 4 in the discussion about
CHECK constraints. They’re used to limit which values will be included in the view.

www.it-ebooks.info

http://www.it-ebooks.info/

 112 SQL: A Beginner’s Guide

NOTE
The operators used in the WHERE clause (or any condition defined in the clause) have
no effect on the data stored in the base tables. They affect only the data returned when
the view is invoked. I discuss these types of operators in greater detail in Chapter 9.

You can use the WHERE clause in a SELECT statement to define a wide variety of
conditions. For example, the WHERE clause can be used to help join tables together, as shown
in the following CREATE VIEW statement:

CREATE VIEW COMPACT_DISC_PUBLISHERS
 (COMPACT_DISC, PUBLISHER) AS
 SELECT CD_INVENTORY.CD_TITLE, LABELS.COMPANY_NAME
 FROM CD_INVENTORY, LABELS
 WHERE CD_INVENTORY.LABEL_ID = LABELS.LABEL_ID;

This statement creates the view that you see in Figure 5-3. The name of the view is
COMPACT_DISC_PUBLISHERS and it includes the COMPACT_DISC column and the
PUBLISHER column. The view pulls information from two sources: the CD_TITLE column
in the CD_INVENTORY table and the COMPANY_NAME column in the LABELS table.

Let’s first take a look at the SELECT clause. Notice that the name of each column is
qualified by the name of its respective table (for example, CD_INVENTORY.CD_TITLE).
When joining two or more tables, you must qualify the column names if there’s any possibility
that the column names could be confused, which would be the case if you included columns
with the same name. If, however, there is no possibility the column names could be confused,
then you can omit the table names. For example, the SELECT clause could read as follows:

SELECT CD_TITLE, COMPANY_NAME

Despite the fact that the qualified names are not always necessary, many programmers prefer
to use them in all cases because it’s easier to know what table is being referenced if you ever
need to modify the database structure or the view definition at a later time.

The next clause in the SELECT statement is the FROM clause. When joining tables together,
you must include the names of all the participating tables, separated by commas. Other than the
issue of multiple names, the FROM clause is similar to what you’ve seen in other examples.

The WHERE clause, which is the final clause in the SELECT statement, is what matches
rows together. The WHERE clause is necessary because, without it, there would be no way of
knowing how to match up the values from the different tables. The WHERE clause specifies
how this is to be done. In the COMPACT_DISC_PUBLISHERS view definition, the value in
the LABEL_ID column of the CD_INVENTORY table must equal the value in the LABEL_ID
column of the LABELS table for a row to be returned. For example, if you refer again to
Figure 5-3, you can see that the Past Light row in the CD_INVENTORY table has a value of
5412 in the LABEL_ID column, which is matched up with the Windham Hill Records row in
the LABELS table. Notice that, once again, the column names are qualified by the table names,
which is essential in this case because the columns share the same name. Without the table
names, SQL would not know whether it was comparing values with itself or with the other table.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 5: Creating SQL Views 113

You can also expand the WHERE clause to further qualify your query. In the following
example, the WHERE clause limits the rows returned to only those that contain a value of
5403 in the LABEL_ID column of the CD_INVENTORY table:

CREATE VIEW COMPACT_DISC_PUBLISHERS
 (COMPACT_DISC, PUBLISHER) AS
 SELECT CD_INVENTORY.CD_TITLE, LABELS.COMPANY_NAME
 FROM CD_INVENTORY, LABELS
 WHERE CD_INVENTORY.LABEL_ID = LABELS.LABEL_ID
 AND CD_INVENTORY.LABEL_ID = 5403;

If you were then to invoke the COMPACT_DISC_PUBLISHERS view, you would see only
the CDs that are produced by MCA Records.

Now let’s look at another example, which is based on the view in Figure 5-4. Like the first
two examples we looked at, this view derives data from only one table. However, this view
actually performs calculations that return data that has been modified. The CREATE VIEW
statement looks like this:

CREATE VIEW CD_DISCOUNTS
 (COMPACT_DISC, RETAIL_PRICE, DISCOUNT_PRICE) AS
 SELECT CD_TITLE, RETAIL_PRICE, RETAIL_PRICE * 0.9
 FROM INVENTORY;

The CD_DISCOUNTS view includes three columns: COMPACT_DISC, RETAIL_
PRICE, and DISCOUNT_PRICE. The DISCOUNT_PRICE column contains the calculated
values. The SELECT clause identifies the table columns that contain the source data. The first
two columns are defined in the same manner as you’ve seen in previous examples. Data is
copied from the CD_TITLE and RETAIL_PRICE columns in the INVENTORY table to the
COMPACT_DISC and RETAIL_PRICE columns of the CD_DISCOUNTS view. However,
the third column definition (RETAIL_PRICE * 0.9) is a little different. Values are again taken
from the RETAIL_PRICE column, only this time the values are multiplied by 0.9 (90 percent)
to arrive at the discounted prices that appear in the DISCOUNT_PRICE column of the view.

You can also add a WHERE clause to the SELECT statement used in the CD_DISCOUNTS
view definition:

CREATE VIEW CD_DISCOUNTS
 (COMPACT_DISC, RETAIL_PRICE, DISCOUNT_PRICE) AS
 SELECT CD_TITLE, RETAIL_PRICE, RETAIL_PRICE * 0.9
 FROM INVENTORY
 WHERE IN_STOCK > 10;

The WHERE clause restricts the query to only those rows whose IN_STOCK value is greater
than 10. Notice that you can use a comparison operator on a table column (IN_STOCK) whose
values are not even returned by the view.

As you can see from all these examples of view definitions, there are a great many things that
you can do with views as a result of the flexibility and extensibility of the SELECT statement.

www.it-ebooks.info

http://www.it-ebooks.info/

 114 SQL: A Beginner’s Guide

Later in the book, when you become more familiar with the various types of SELECT statements
you can create and the operations you can perform, you will be able to create views that are far
more complex than anything we’ve looked at so far.

Create Updateable Views
In SQL, some types of views are updateable. In other words, you can use the view to modify
the data (change existing data and/or insert new rows) in the underlying table. Whether a view
is updateable depends on the SELECT statement that is defined within the view definition.
Typically, the more complex the statement, the less likely the view will be updateable. There
is no syntax within the CREATE VIEW statement that explicitly designates a view as being
updateable. Instead, it is determined strictly by the nature of the SELECT statement, which
must adhere to specific standards in order for the view to be updateable.

Up to this point in the chapter, I have implied that the <query expression> placeholder in
the CREATE VIEW syntax is made up of a SELECT statement. To be more precise, a query
expression can be one of several types of expressions. The most common of these, and the
one you’ll be concerned with in this book, is the query specification. A query specification is
an SQL expression that begins with the SELECT keyword and includes a number of elements
that form that expression, as you have seen in the view examples we’ve looked at. A query
specification is updateable if it meets the numerous guidelines outlined in the SQL:2006
standard. For the sake of simplicity, I refer to the query specification as the SELECT
statement, which is often how it’s referred to in various types of SQL-related and product-
related documentation.

The issue of query specifications and the complexity of the SQL standards aside, the
point I’m trying to make is that the syntax rules that determine the updatability of a view are
not simple, clear-cut guidelines, particularly in light of the fact that I have yet to cover the
SELECT statement in depth (which I do beginning in Chapter 7). However, there are some
logical underpinnings that can be gleaned from these guidelines:

● Data within the view cannot be summarized, grouped together, or automatically eliminated.

● At least one column in the source table must be updateable.

● Each column in the view must be traceable to exactly one source column in one table.

● Each row in the view must be traceable to exactly one source row in one table. However,
note that many vendor products permit modifications (but not inserts) to views created
from multiple tables provided that the update only references columns that trace to a single
base table.

In many cases, you’ll be able to determine the updatability of a view simply by applying
common sense. Let’s take a look at an example. Suppose that you decide to add information
about your employees to your database because you want to track CD sale commissions
earned. You decide to create the EMPLOYEE_COMMISSIONS table, shown in Figure 5-5,
which lists the total amount of commissions each employee made during a 3-year period.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 5: Creating SQL Views 115

Now suppose you want to know the average commission for each year for all the employees.
You can create a view that determines the average for each year and displays those averages in
three separate columns. To do so, you would use the following CREATE VIEW statement:

CREATE VIEW EMP_COMM (AVG_1999, AVG_2000, AVG_2001) AS
 SELECT AVG(YEAR_1999), AVG(YEAR_2000), AVG(YEAR_2001)
 FROM EMPLOYEE_COMMISSIONS;

As you can see from the statement, the EMP_COMM view contains three columns:
AVG_1999, AVG_2000, and AVG_2001. The SELECT clause pulls information from three
columns in the EMPLOYEE_COMMISSIONS table—YEAR_1999, YEAR_2000, and
YEAR_2001—and uses the AVG function to find the average for all the values in each
column, as shown in Figure 5-6. For example, the AVG function first averages the four
values in the YEAR_1999 column and then enters that average in the AVG_1999 column
of the EMP_COMM view.

Now suppose you want to update the commission amounts in the EMPLOYEE_
COMMISSIONS table. You could not do so through the view because values in the view are
based on calculations performed on values in the table. For example, if you tried to update the
value in the AVG_1999 column, the RDBMS would not know how many rows were affected
or how to distribute the values within those rows. In other words, the row in the view is not
traceable back to exactly one source row.

Figure 5-5 Annual commission earnings in the EMPLOYEE_COMMISSIONS table

EMPLOYEE_COMMISSIONS

YEAR_1999:
NUMERIC(7,2)

126.32

EMPLOYEE_ID:
INT

99301

99302

99303

99304

YEAR_2000:
NUMERIC(7,2)

YEAR_2001:
NUMERIC(7,2)

16.27

354.34

112.11

11.28

90.20

16.32

87.56

16.86

198.14

1237.56

14.14

EMP_COMM

152.26

AVG_1999 AVG_2001AVG_2000

366.6851.34

Figure 5-6 The EMP_COMM view, based on the average of quarterly earnings

www.it-ebooks.info

http://www.it-ebooks.info/

 116 SQL: A Beginner’s Guide

You could, however, create a view that simply extracts information from the
EMPLOYEE_COMMISSIONS table:

CREATE VIEW EMP_COMM AS
 SELECT EMPLOYEE_ID, YEAR_1999, YEAR_2000
 FROM EMPLOYEE_COMMISSIONS;

In this statement, you are creating a view that displays only three of the four columns of
the table. No calculations are performed and only one table is used. Figure 5-7 shows how this
view would look.

This view, unlike the last one, is updateable. You can modify and insert data because
no data has been summarized or grouped together, each column is traceable to exactly one
source column in one table, and each row is traceable to exactly one source row in one table.
In addition, no data is summarized or grouped together. Of course, if you were to update or
insert data through the view, it is the data in the underlying table that is actually modified.
That means any data modifications must still adhere to the constraints placed on that table.
For example, you could not insert a row through the EMP_COMM view if null values were
not allowed in the YEAR_2001 column of the table. The view would not have the capacity
to accept a value for that column, and the table would not allow you to insert a row without
supplying that value.

You can often determine whether a table is updateable just by looking at the outcome of
any modification attempts. If your goal is to create views that allow users to update data in the
underlying tables, then you must consider the complexities of those views and the functions
that they are to perform. Also keep in mind that the constraints placed on the underlying tables
affect your ability to modify and insert data through a view.

Using the WITH CHECK OPTION Clause
Now let’s return to the CREATE VIEW syntax that I introduced earlier in the section
“Defining SQL Views.” The last line of the syntax includes the following clause:

[WITH CHECK OPTION]

Figure 5-7 The EMP_COMM view, based on first and second quarterly earnings

EMP_COMM

YEAR_1999

126.32

EMPLOYEE_ID

99301

99302

99303

99304

YEAR_2000

16.27

354.34

112.11

11.28

90.20

16.32

87.56

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 5: Creating SQL Views 117

The WITH CHECK OPTION clause applies to updateable views that include a WHERE
clause in the SELECT statement. The best way to illustrate how this works is through an
example. Let’s modify the last view definition we looked at:

CREATE VIEW EMP_COMM AS
 SELECT EMPLOYEE_ID, YEAR_1999, YEAR_2000
 FROM EMPLOYEE_COMMISSIONS
 WHERE YEAR_1999 > 100;

The WHERE clause specifies that only rows with YEAR_1999 values greater than 100 should
be returned. This in itself is straightforward enough. However, suppose you want to update
this view by setting a YEAR_1999 value to be less than or equal to 100. Because the view is
updateable, it will allow you to do so. However, if you were to then invoke the view, the row
you updated would no longer be visible nor could you update it further.

To work around this problem, you can add the WITH CHECK OPTION clause to your
view definition, as in the following example:

CREATE VIEW EMP_COMM AS
 SELECT EMPLOYEE_ID, YEAR_1999, YEAR_2000
 FROM EMPLOYEE_COMMISSIONS
 WHERE YEAR_1999 > 100
 WITH CHECK OPTION;

Now if you tried to update a YEAR_1999 value to an amount less than or equal to 100, you
would receive an error message telling you that the change could not be made. As you can see,
the WITH CHECK OPTION is a handy way to ensure that your users don’t perform updates
that will prevent them from effectively using the views that you create.

Drop Views from the Database
You will no doubt run into situations when you want to remove a view definition from your
database. The syntax for doing this is quite simple:

DROP VIEW <view name>

When you execute the DROP VIEW statement, the view definition is removed; however,
none of the underlying data (which is stored in the base tables) is affected. Once the view is
dropped, you can recreate the view or create a different view with the same name. Now let’s
look at a quick example:

DROP VIEW EMP_COMM;

This statement removes the EMP_COMM view from your database but leaves the underlying
data untouched.

www.it-ebooks.info

http://www.it-ebooks.info/

 118 SQL: A Beginner’s Guide

Q: You discuss creating views and dropping views, but you do not mention altering
views. Does SQL support any sort of ALTER VIEW statement?

A: No, the SQL:2006 standard does not support altering views. However, some RDBMSs
support an ALTER VIEW statement. Be aware, though, that the functionality supported
by these statements can vary from product to product. For example, SQL Server and
MySQL have ALTER VIEW statements that are fairly robust and allow you to change
many aspects of the view definition, including the SELECT statement. On the other hand,
the ALTER VIEW statement in Oracle is used to manually recompile a view to avoid
runtime overhead or to modify certain constraints that Oracle supports on views. To
actually alter an Oracle view, you must first drop it and then recreate it, as is the case with
the SQL standard. However, Oracle has a CREATE OR REPLACE VIEW statement that
essentially allows you to drop and recreate a view in a single step.

Q: In the examples that you use to show how views are created, you use one or two tables
for your source data. Can views be based on more than two tables?

A: Yes, a view can be based on as many tables as can be logically queried in the SELECT
statement. For example, suppose you want to create a view in the INVENTORY database.
(The INVENTORY database is the one you’ve been working with for the Try This
exercises in this book.) The view might display artists’ names alongside CD titles. To
do that, however, your SELECT statement would have to join together three tables. You
would have to match the ARTIST_ID values in the ARTISTS table and the ARTIST_CDS
table, and you would have to match the COMPACT_DISC_ID values in the COMPACT_
DISCS table and the ARTIST_CDS table. The result would be a view that displays a list of
artists and their CDs. (In Chapter 11, I will discuss how you can join these tables together
in your SELECT statement.)

Q: In the examples that you use to show how views are created, all the views reference
base tables. Are all views created only on base tables?

A: No, views can be created using query expressions that pull data from other views. Also,
it is possible to create a view that contains only calculated data and thus has no data that
maps back to a base table.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 5: Creating SQL Views 119

Try This 5-1 Adding Views to Your Database
In this Try This exercise, you will create two views in the INVENTORY database. The views
will be based on tables you created in previous Try This exercises. The first view will be based
on a single table, and the second view will be based on two tables. You’ll create the second
view two different times. You’ll create it once, then drop the view definition from the database,
and then recreate a modified version of the view. You can download the Try_This_05.txt file,
which contains the SQL statements used in this exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. The first view that you’ll create is named CDS_IN_STOCK. The view is based on the
CD_TITLE and IN_STOCK columns in the COMPACT_DISCS table. You want the view
to include only those rows whose values in the IN_STOCK column are greater than 10.
The view will use the same column names as the table and will include the WITH CHECK
OPTION to prevent values less than or equal to 10 from being added to the IN_STOCK
column. Enter and execute the following SQL statement:

CREATE VIEW CDS_IN_STOCK AS
 SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 10 WITH CHECK OPTION;

 3. Next, you will create a view named CD_PUBLISHERS that will contain the CD_TITLE
column and the PUBLISHER column. The view will be based on the CD_TITLE column
in the COMPACT_DISCS table and the COMPANY_NAME column of the CD_LABELS
table. You will need to use a WHERE clause to match rows in the two tables. The WHERE
clause will also limit the rows included in the view to those whose LABEL_ID value in the
CD_LABELS table is either 5403 or 5402. Enter and execute the following SQL statement:

CREATE VIEW CD_PUBLISHERS
 (CD_TITLE, PUBLISHER) AS
 SELECT COMPACT_DISCS.CD_TITLE, CD_LABELS.COMPANY_NAME
 FROM COMPACT_DISCS, CD_LABELS
 WHERE COMPACT_DISCS.LABEL_ID = CD_LABELS.LABEL_ID
 AND CD_LABELS.LABEL_ID = 5403 OR CD_LABELS.LABEL_ID = 5402;

 4. You decide that you do not want to limit the rows to specific values in the LABEL_ID
column, so you must drop the view definition from the database and recreate the view
without the value restrictions. Enter and execute the following SQL statement:

DROP VIEW CD_PUBLISHERS;

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 120 SQL: A Beginner’s Guide

 5. Now you can recreate the CD_PUBLISHERS view. Enter and execute the following
SQL statement:

CREATE VIEW CD_PUBLISHERS
 (CD_TITLE, PUBLISHER) AS
 SELECT COMPACT_DISCS.CD_TITLE, CD_LABELS.COMPANY_NAME
 FROM COMPACT_DISCS, CD_LABELS
 WHERE COMPACT_DISCS.LABEL_ID = CD_LABELS.LABEL_ID;

 6. Close the client application.

Try This Summary
In addition to the six tables created in earlier Try This exercises, your database should now
include the CDS_IN_STOCK view and the CD_PUBLISHERS view. Later in this book,
you’ll use those views to query data from the base tables and update that data. Once you
have a better understanding of how to create SELECT statements, you’ll be able to define
views that are even more extensive and provide an even greater level of detail than the views
you’ve created so far.

 Chapter 5 Self Test
 1. What are two advantages of using views?

 2. What are the three types of stored tables supported by SQL?

 3. What happens if you don’t assign column names to a view?

 4. How do you assign data types to view columns?

 5. In what circumstances must you provide the view column names in a view definition?

 6. You’re creating a view named EMP_BIRTHDAYS. The view is based on the EMP_NAME
column and the BIRTHDAY column of the EMPLOYEES table. The view column names will
be the same as the table column names. What SQL code should you use to create the view?

 7. You’re creating a view based on the COMPACT_DISCS table in the INVENTORY
database. You want the view to include only those rows whose value in the LABEL_ID
column is 546. What clause—in addition to the SELECT clause and the FROM clause—
should be included in the SELECT statement for the view?

 8. You’re creating a view that references the EMPLOYEE table and the JOB_TITLE table.
The data in the two tables is matched together by the JOB_TITLE_ID column in each table.
How should you write the WHERE clause in the view’s SELECT statement?

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 5: Creating SQL Views 121

 9. You’re creating a view that references the EMPLOYEE table and the JOB_TITLE table.
The data in the two tables is matched together by the JOB_TITLE_ID column in each table.
You want the view to display only those rows whose value in the JOB_TITLE_ID column
of the JOB_TITLE table is 109. How should you write the WHERE clause in the view’s
SELECT statement?

 10. What is a query specification?

 11. Which guidelines should you follow if you want to create an updateable view?

 A Data within the view cannot be summarized, grouped together, or automatically
eliminated.

 B At least one column in the source table must be updateable.

 C Each column in the view must be traceable to exactly one source column in one table.

 D Each row in the view must be traceable to exactly one source row in one table.

 12. You create the following view based on the COMPACT_DISCS table in the INVENTORY
database:

CREATE VIEW IN_STOCK_AVERAGE AS
 SELECT AVG(IN_STOCK)
 FROM COMPACT_DISCS;

 How do you insert data through this view?

 13. What type of view does the WITH CHECK OPTION clause apply to?

 14. You create the following view definition:

CREATE VIEW EMP_COMM AS
 SELECT EMPLOYEE_ID, YEAR_1999, YEAR_2000
 FROM EMPLOYEE_COMMISSIONS
 WHERE YEAR_1999 > 100;

 You want to use the view to update data. What happens if you change the YEAR_1999
value to an amount less than or equal to 100?

 15. You want to alter the EMP_COMM view definition in your database. How do you alter that
definition?

 16. You want to drop the EMP_BIRTHDAYS view definition from your database. What SQL
statement should you use?

 17. What happens to the SQL data when you drop a view from the database?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

123

Chapter 6
Managing
Database Security

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 124 SQL: A Beginner’s Guide

Key Skills & Concepts

● Understand the SQL Security Model

● Create and Delete Roles

● Grant and Revoke Privileges

● Grant and Revoke Roles

A critical component of any database is the ability to protect the data from unauthorized
 access and malicious attacks. A database must ensure that no unauthorized users can view

or change data that they should not be viewing or changing. At the same time, authorized users
should not be prevented from accessing any information that should be available to them. The
ideal balance is to give every database user exactly the privileges they need to do their job,
nothing more and nothing less. In order to support these capabilities, SQL defines a security
model that allows you to determine which users can access specific data and what they can
do with that data. At the core of this model is the authorization identifier. An authorization
identifier, as you learned in Chapter 2, is an object in the SQL environment that represents a
user or group of users that are granted specific access privileges to objects and data within the
SQL environment. Privileges on schema objects are granted to authorization identifiers. The
type of privilege granted determines the type of access. In this chapter, we will look at the SQL
security model, how it uses authorization identifiers, and how to set up privileges on objects in
your SQL database.

Understand the SQL Security Model
Authorization identifiers provide the foundation for your database’s security. Access to all
objects is permitted through these identifiers. If the authorization identifier doesn’t have the
appropriate privileges to access a specific object, such as a table, the data within that table
is unavailable to that user. In addition, each authorization identifier can be configured with
different types of privileges. For example, you can permit some authorization identifiers to
view the data within a specific table, while permitting other authorization identifiers to both
view and modify that data.

SQL supports two types of authorization identifiers: user identifiers (or users) and
role names (or roles). A user identifier is an individual security account that can represent
an individual, an application, or a system service (all of which are considered database
users). The SQL standard does not specify how an SQL implementation should create a
user identifier. The identifier might be tied to the operating system on which the relational
database management system (RDBMS) is running, or it might be explicitly created within
the RDBMS environment.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 6: Managing Database Security 125

A role name is a defined set of privileges that can be assigned to a user or to another role.
If a role name is granted access to a schema object, then all user identifiers and role names
that have been assigned the specified role name are granted the same access to that object
whenever the role name is the current authorization identifier. For example, in Figure 6-1
the MRKT_DEPT role name has been assigned to the ACCT_DEPT role name and to four
user identifiers: Ethan, Max, Linda, and Emma. If the MRKT_DEPT role name is the current
authorization identifier and it has been granted access to the PERFORMERS table, the
ACCT_DEPT role name and all four user identifiers have access to the PERFORMERS table.
Note that, unlike a user identifier, SQL does specify how to create a role name, which I discuss
in the “Create and Delete Roles” section later in this chapter.

Role names are commonly used as a mechanism for granting a uniform set of privileges
to authorization identifiers that should have the same privileges, such as people who work in
the same department. They also have the distinct advantage of existence independent of user
identifiers, which means they can be created prior to the user identifiers, and they persist even
after the user identifiers referencing them are deleted. This is very helpful when administering
privileges for a fluid workforce.

In addition to user identifiers and role names, SQL supports a special built-in authorization
identifier named PUBLIC, which includes everyone who uses the database. Just as with
any other authorization identifier, you can grant access privileges to the PUBLIC account.
For example, suppose you wanted all potential customers to be able to view your list of CDs.

Figure 6-1 The MRKT_DEPT role assigned to four user identifiers and one role

User identifier
(Ethan)

Role name
(ACCT_DEPT)

FULL_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

PERFORMER_ID:
INT

10001

10002

10005

10006

Placido Domingo10008

Luciano Pavarotti10009

PERFORMERS

Authorization identifier
(MRKT_DEPT role name)

User identifier
(Linda)

User identifier
(Emma)

User identifier
(Max)

www.it-ebooks.info

http://www.it-ebooks.info/

 126 SQL: A Beginner’s Guide

You could grant the necessary privileges to the PUBLIC account for the appropriate tables and
columns. Obviously, PUBLIC should be used with great care because it can open the door for
people with ill intentions. In fact, many organizations ban its use completely.

SQL Sessions
Each SQL session is associated with a user identifier and role name. An SQL session is the
connection between some sort of client application and the database. The session provides
the context in which the authorization identifier executes SQL statements during a single
connection. Throughout this connection, the SQL session maintains its association with a user
identifier/role name pair.

Let’s take a look at Figure 6-2, which shows the user identifier/role name pair associated
with a session. When a session is first established, the user identifier is always the SQL session
user identifier, which is a special type of user identifier that remains associated with the session
throughout the connection. It is up to the SQL implementation to determine how a specific
account becomes the SQL session user identifier, although it can be an operating system user
account or an account specific to the RDBMS. Whatever method is used to associate an account
with the SQL session user identifier, it is this account that acts as the current user identifier.

As you can also see in Figure 6-2, the role name is a null value. The role name is always
null when a session is first established. In other words, whenever you log onto an SQL database
and establish a session, the initial user identifier will always be the SQL session user identifier
and the role name will always be a null value.

Figure 6-2 SQL session with user identifier and role name

SQL session
user identifier

User identifier

SQL session

Role name

Null

Implementation
defined

Initial
identifier

pair

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 6: Managing Database Security 127

At any instance during a connection, the session is associated with a user identifier/role
name pair; however, it is not always the same pair throughout the length of the session. For
example, embedded SQL statements, SQL client modules, and SQL-invoked routines can specify
an authorization identifier. If a new identifier is specified, it becomes the current authorization
identifier until the transactions have completed, and access to objects is granted based on the
current user identifier/role name pair.

For any user identifier/role name pair that is current, one of the two values is almost
always null. In other words, if a user identifier is specified, then the role name must be null; if
a role name is specified, then the user identifier must be null. Whichever value is not null is the
authorization identifier.

When more than one user identifier/role name pair is used during a session, an authorization
stack is created that reflects the current authorization identifier. The pair at the top of the stack is
the current authorization identifier. Figure 6-3 shows an example of an authorization stack that
can be created during a session.

In this example, the initial user identifier/role name pair is at the bottom of the stack. As
you would expect, the user identifier is the SQL session user identifier and the role name is
a null value. Access to database objects is based on the privileges granted to the SQL session
user identifier when it is current.

During the session, an embedded SQL statement specifies an authorization identifier of
App_User, which is a user identifier. When the embedded statement is executed, App_User
becomes the current authorization identifier, and access privileges are based on that account.

Suppose one of the embedded SQL statements then calls an SQL-invoked routine that
specifies an authorization of ROUTINE_ROLE, which is a role name. ROUTINE_ROLE
then becomes the current authorization identifier and is at the top of the authorization stack.

Figure 6-3 Authorization stack created during an SQL session

User identifiers Role names

Initial
identifier pair

SQL session
user identifier

Null

Embedded
SQL

App_User Null

SQL-invoked
routine

Null ROUTINE_ROLE

Current
user identifier

Current
authorization

identifier

Current
role name

www.it-ebooks.info

http://www.it-ebooks.info/

 128 SQL: A Beginner’s Guide

Once the routine runs, the current authorization identifier reverts to App_User, until the
embedded statements run, after which the authorization identifier reverts to the SQL session
user identifier.

Notice that in each user identifier/role name pair shown in Figure 6-3, there is exactly one
null value. The other value, the one that is not null, is the authorization identifier.

Q: You state that the current authorization identifier can change. How can you determine
the current authorization user and role name at any time during a session?

A: SQL supports several special values that allow you to determine the current values of
the various types of users. The special values act as placeholders for the actual user-
related value. You can use these special values in expressions to return the value of the
specific type of user. For example, you can use the CURRENT_USER special value to
return the value of the current user identifier. SQL supports five of these special values:
CURRENT_USER, USER, CURRENT_ROLE, SESSION_USER, and SYSTEM_USER.
CURRENT_USER and USER mean the same thing and return a value equal to the current
user identifier. CURRENT_ROLE returns the current role name, and SESSION_USER
returns the SQL session user identifier. If the SQL session user identifier is the current user
identifier, then CURRENT_USER, USER, and SESSION_USER all have the same value,
which can occur if the initial identifier pair is the only active user identifier/role name
pair (the pair at the top of the authorization stack). The last function, SYSTEM_USER,
returns the operating system user who invoked an SQL module. As we get further into
this chapter, you’ll see how the CURRENT_USER and CURRENT_ROLE special values
are used to identify the current authentication identifier when creating roles and granting
privileges. (See the sections “Create and Delete Roles,” “Grant and Revoke Privileges,”
and “Grant and Revoke Roles.”) In addition, you’ll find more information about special
values in Chapter 10.

Ask the Expert

Accessing Database Objects
Now that you have a better understanding of what an authorization identifier is—along with
user identifiers and role names—let’s take a look at what you can do with these identifiers.
Access to data in a database is based on being able to access the objects that contain the
data. For example, you might grant some users access to a specific set of tables, while other
users have access only to specific columns within a table. SQL allows you to define access
privileges on the following schema objects:

● Base tables

● Views

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 6: Managing Database Security 129

● Columns

● Domains

● Character sets

● Collations

● Translations

● User-defined types

● Sequences

● Triggers

● SQL-invoked routines

For each type of object, you can assign specific types of privileges that vary by object
type. These assigned privileges are associated with specific authorization identifiers. In other
words, you can assign one or more privileges for an object to one or more authorization
identifiers. For example, you can assign the SELECT privilege for a table to the PUBLIC
authorization identifier. This would allow all database users to view the contents of that table.

SQL defines nine types of privileges that you can assign to a schema object. Table 6-1
describes each of these privileges and lists the types of objects to which the privilege can
be assigned.

Privilege Description Objects

SELECT Allows specified authorization identifiers to query data in the
object. For example, if UserA is granted the SELECT privilege on
the CD_ARTISTS table, that user can view data in that table.

Tables
Views
Columns
Methods (in
structured types)

INSERT Allows specified authorization identifiers to insert data into the
object. For example, if UserA is granted the INSERT privilege on
the CD_ARTISTS table, that user can add data to that table.

Tables
Views
Columns

UPDATE Allows specified authorization identifiers to update data in the
object. For example, if UserA is granted the UPDATE privilege on
the CD_ARTISTS table, that user can modify data in that table.
However, this privilege does not allow the user to change the
table definition.

Tables
Views
Columns

DELETE Allows specified authorization identifiers to delete data from the
object. For example, if UserA is granted the DELETE privilege on
the CD_ARTISTS table, that user can remove data from that table.
However, this privilege does not allow the user to drop the table
definition from the database.

Tables
Views

Table 6-1 Security Privileges Assigned to Database Objects

www.it-ebooks.info

http://www.it-ebooks.info/

 130 SQL: A Beginner’s Guide

Privileges are granted on database objects by using the GRANT statement to specify the
objects as well as the authorization identifier that will acquire the privileges. You can also
revoke privileges by using the REVOKE statement. I will be going into greater detail about
both these statements as we move through the chapter. However, before I discuss how to grant
or revoke privileges, I want to first discuss how to create a role name. (Remember, the SQL
standard doesn’t support the creation of a user identifier, only role names. The process for
creating user identifiers is implementation specific.)

Create and Delete Roles
For the most part, creating a role is a very straightforward process. The statement includes only
one mandatory clause and one optional clause, as shown in the following syntax:

CREATE ROLE <role name>
[WITH ADMIN { CURRENT_USER | CURRENT_ROLE }]

Privilege Description Objects

REFERENCES Allows specified authorization identifiers to define objects (such
as referential constraints) that reference the table configured with
the REFERENCES privilege. For example, if UserA is granted
the REFERENCES privilege on the CD_ARTISTS table, that user
can create other objects that reference the CD_ARTISTS table, as
would be the case with foreign keys. (Note that UserA must also
have the authorization to create the other object.)

Tables
Views
Columns

TRIGGER Allows specified authorization identifiers to create triggers on the
table. For example, if UserA is granted the TRIGGER privilege on
the CD_ARTISTS table, that user can create triggers on that table.

Tables

USAGE Allows specified authorization identifiers to use the object in a
column definition. For example, if UserA is granted the USAGE
privilege on the MONEY domain, that user can include the
domain in a column definition when creating a table. (Note that
UserA must also have the authorization to create a table.)

Domains
Character sets
Collations
Translations
User-defined types
Sequences

EXECUTE Allows specified authorization identifiers to invoke an SQL-
invoked routine. For example, if UserA is granted the EXECUTE
privilege on the UPDATE_CD_LISTING stored procedure, that
user would be able to invoke that stored procedure.

SQL-invoked
routines

UNDER Allows specified authorization identifiers to define a direct
subtype on a structured type. A direct subtype is a structured type
that is associated with another structured type as a child object of
that type. For example, if UserA is granted the UNDER privilege
on the EMPLOYEE structured type, that user can define direct
subtypes such as MANAGER or SUPERVISOR.

Structured types

Table 6-1 Security Privileges Assigned to Database Objects (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 6: Managing Database Security 131

Notice that the only required part of the syntax is the CREATE ROLE clause, which
means that all you really need to do is specify a name for your role. The WITH ADMIN
clause is optional and you will rarely need to use this. It is necessary only if the current user
identifier/role name pair contains no null values. The clause allows you to designate either the
current user identifier (CURRENT_USER) or the current role name (CURRENT_ROLE) as
the authentication identifier allowed to assign the role to user identifiers or role names. If the
WITH ADMIN clause is not specified, the current authentication identifier, whether the current
user identifier or the current role name, is allowed to assign the role.

NOTE
You’ll probably find that you rarely need to use the WITH ADMIN clause of the CREATE
ROLE statement, particularly as a beginning SQL programmer, and it isn’t widely
supported in RDBMS products. As a result, I keep my discussion of the clause brief.

Now let’s look at creating a role. In the following example, I use the CREATE ROLE
statement to create the CUSTOMERS role:

CREATE ROLE CUSTOMERS;

That’s all there is to it. Once the role is created, you can grant the role to user identifiers or
other role names. I discuss granting and revoking roles in the “Grant and Revoke Roles”
section later in this chapter.

Dropping a role is just as easy as creating one. The syntax you use is as follows:

DROP ROLE <role name>

In this case, you merely need to identify the name of the role, as in the following example:

DROP ROLE CUSTOMERS;

The role is removed from the database. However, before removing a role, be sure that it is a role
that you no longer need or that it is one you specifically want to delete (for security reasons).

As you can see, creating and dropping roles is a very simple process, and it can make
managing your users a lot easier. Roles essentially allow you to group together those users who
require the same privileges on the same objects. Now let’s take a look at granting and revoking
privileges to authentication identifiers, including both user identifiers and role names.

NOTE
Support for the CREATE ROLE and DROP ROLE statements varies from implementation
to implementation. For example, Oracle and SQL Server (2005 and 2008) support both
statements, but not the WITH ADMIN option. MySQL 5.0 does not appear to support
the concept of roles.

Grant and Revoke Privileges
When you grant privileges on an object, you are associating one or more privileges with one
or more authorization identifiers. This set of privileges and authorization identifiers is assigned

www.it-ebooks.info

http://www.it-ebooks.info/

 132 SQL: A Beginner’s Guide

to the object, which allows the authorization identifiers to have access to the object according
to the type of privileges defined. To grant privileges, you must use the GRANT statement, as
shown in the following syntax:

GRANT { ALL PRIVILEGES | <privilege list> }
ON <object type> <object name>
TO { PUBLIC | <authorization identifier list> } [WITH GRANT OPTION]
[GRANTED BY { CURRENT_USER | CURRENT_ROLE }]

The statement, as you can see, includes three required clauses—GRANT, ON, and
TO—and two optional clauses—WITH GRANT OPTION and GRANTED BY. I will discuss
each clause individually except for the GRANTED BY clause. The GRANTED BY clause
is similar to the WITH ADMIN clause in the CREATE ROLE statement. Like that clause,
the GRANTED BY clause applies only in those situations where the current user identifier/
role name pair contains no null values, and it is not widely implemented in RDBMSs. As a
beginner in SQL programming, you do not need to be concerned with the GRANTED BY clause.

NOTE
Many vendor implementations contain provisions for assigning system privileges such
as starting and stopping the database to authorization identifiers using the GRANT
statement. Since the syntax of these variants is entirely implementation-specific, I will not
cover them here.

You must have the necessary privileges on an object to grant privileges on that object. If
you created the object, then you are the owner, which means that you have complete access to
the object. (All privileges have been granted to you, including the ability to assign privileges
to other authorization identifiers.)

Now let’s take a look at the GRANT clause. The clause includes two options: ALL
PRIVILEGES and the <privilege list> placeholder. If you use the ALL PRIVILEGES
keywords, you are granting all available privileges to that object according to the privileges
that you have been granted on the object. For example, assume for a moment that you created
a table and are the owner. As a result, you are automatically granted the SELECT, INSERT,
UPDATE, DELETE, TRIGGER, and REFERENCES privileges. (These are the only privileges
that apply to a table. Refer back to Table 6-1 for a list of privileges and the objects to which
they apply.) You are also automatically granted the ability to assign these privileges. In this
situation, if you use the ALL PRIVILEGES keywords, you would be granting these six
privileges to the authorization identifiers in the GRANT statement.

If you decide not to use the ALL PRIVILEGES option, you must then list each privilege
that should be applied to the user identifiers. However, you can list only those privileges that
can be applied to the specific object. For example, you cannot list the DELETE privilege if
you are granting a privilege on a domain. Also note, if you list more than one privilege, you
must separate the privilege names with commas.

The next clause we’ll look at is the ON clause, which includes two placeholders: <object
type> and <object name>. The <object type> placeholder simply refers to the type of object

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 6: Managing Database Security 133

on which you’re granting permissions. SQL supports the following values for the <object
type> placeholder:

● TABLE (includes views)

● DOMAIN

● COLLATION

● CHARACTER SET

● TRANSLATION

● TYPE

● SEQUENCE

● Special designator for SQL-invoked routines

A value for the <object type> designator is required, unless the value is TABLE, in which
case you can leave that off. If you provide the name of an object without specifying a type,
SQL assumes that the <object type> value is TABLE. As noted in the list, the TABLE keyword
also includes views. And of course, not all implementations support all the object types
included in the SQL standard, and some include types not covered by the standard—all of
which leads to implementation-specific SQL variations.

NOTE
In Oracle, the TABLE keyword must be omitted. On the other hand, in DB2 it is optional,
but highly recommended by the vendor. SQL Server does not support any of the <object
type> keywords from the SQL standard in the GRANT statement, but instead permits
a class keyword followed by a separator <::>, so instead of TABLE, you can write
OBJECT:: (OBJECT being the keyword for database objects such as tables and views).
The obvious lesson here is to always consult the documentation for your specific SQL
implementation.

The <object name> placeholder in the ON clause refers to the name of the specific object.
This value is always required.

The next clause is the TO clause. Like the GRANT clause, the TO clause has two options:
PUBLIC and the <authorization identifier list> placeholder. If you use PUBLIC, all database
users are granted access to the object. If you use the <authorization identifier list> option, then
you must provide the name of one or more authorization identifiers. If you provide more than
one, they must be separated by commas.

The last clause that I am going to discuss is the WITH GRANT OPTION clause. This
clause grants the authorization identifiers permission to grant whatever privileges they’re
being granted in the GRANT statement. For example, suppose you’re granting the EmmaW
user identifier the SELECT privilege on one of your tables. If you use the WITH GRANT
OPTION, EmmaW will be able to grant the SELECT privilege to another user. If you do not

www.it-ebooks.info

http://www.it-ebooks.info/

 134 SQL: A Beginner’s Guide

use the WITH GRANT OPTION, EmmaW will not be able to grant the privilege to another
user. Incidentally, most security experts recommend that you never use this option because you
quickly lose control over who has which privileges.

Now that we’ve taken a look at the syntax, let’s look at a few examples. In the first
example, we’ll look at a GRANT statement that grants the SELECT privilege to the PUBLIC
authorization identifier. The privilege is granted on a view named AVAILABLE_CDS,
which lists the CDs that you currently have in stock. To grant the privilege, use the following
statement:

GRANT SELECT ON TABLE AVAILABLE_CDS TO PUBLIC;

The SELECT privilege allows all database users (PUBLIC) to view data in the
AVAILABLE_CDS view. However, because PUBLIC has not been granted any other
privileges, users can view the data, but not take any action. In addition, because the WITH
GRANT OPTION clause is not included in the statement, users cannot assign the SELECT
privilege to any other users (which is a moot point in this case because everyone can
already access the AVAILABLE_CDS view).

Now let’s look at another example. This time, I’m granting the SELECT, UPDATE, and
INSERT privileges to the SALES role and the ACCOUNTING role so that they have access to
the CD_INVENTORY table:

GRANT SELECT, UPDATE, INSERT
 ON TABLE CD_INVENTORY
 TO SALES, ACCOUNTING WITH GRANT OPTION;

Notice that the privileges are separated by commas, as are the roles. As a result of this
statement, the users associated with the SALES role and the ACCOUNTING role can view,
update, and insert information into the CD_INVENTORY table. In addition, these users can
assign the SELECT, UPDATE, and INSERT privileges to other users who need to access the
CD_INVENTORY table.

The next example we will examine is a slight variation on this last one. Everything is the
same, except that this time, I specify which column can be updated:

GRANT SELECT, UPDATE(CD_TITLE), INSERT
 ON TABLE CD_INVENTORY
 TO SALES, ACCOUNTING WITH GRANT OPTION;

Notice that you can add a column name after the specific privilege. You can add column names
only to the SELECT, INSERT, UPDATE, and REFERENCES privileges. If you add more than
one column name, you must separate them with commas.

The GRANT statement in this example still allows the Sales and Accounting users to view
and insert information into the CD_INVENTORY table, but they can only update values in
the CD_TITLE column. They cannot update any other column values in the table. In addition,
although they can still assign privileges to other users, they can assign the UPDATE privilege
only on the CD_TITLE column.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 6: Managing Database Security 135

Let’s take a look at one more example that grants SELECT privileges to the PUBLIC
authorization identifier:

GRANT SELECT(CD_TITLE, IN_STOCK) ON CD_INVENTORY TO PUBLIC;

The PUBLIC authorization identifier allows all users to view data in the CD_TITLE and IN_
STOCK columns of the CD_INVENTORY table, but they cannot view any other information
in that table and they cannot modify the data in any way. Notice in this statement that the
keyword TABLE isn’t included. As I said earlier, TABLE is not required.

The GRANT statement, when used in conjunction with the available privileges and the
authorization identifiers, provides a strong foundation for your database security. However, each
SQL implementation is different with regard to how security is implemented and maintained.
Therefore, when it comes to matters of security, it is important that you work closely with
network and database administrators and carefully read the product documentation.

Revoking Privileges
Now that you know how to grant privileges to authorization identifiers, it’s time to learn how
to revoke those privileges. The statement that you use to revoke privileges is the REVOKE
statement, as shown in the following syntax:

REVOKE [GRANT OPTION FOR] { ALL PRIVILEGES | <privilege list> }
ON <object type> <object name>
FROM { PUBLIC | <authorization identifier list>
[GRANTED BY { CURRENT_USER | CURRENT_ROLE }]
{ RESTRICT | CASCADE }

You probably recognize many of the syntax elements from the GRANT statement or from
other statements. In fact, the only new component, other than the REVOKE keyword, is the
GRANT OPTION FOR clause. Let’s take a look at that one first, since it’s at the beginning of
the REVOKE statement. This clause applies only when the WITH GRANT OPTION clause
was used in the GRANT statement. If a privilege was granted with this clause, you can use
the GRANT OPTION FOR clause to remove that particular permission. If you do use it,
the privileges are preserved, but the user can no longer grant those privileges to other users.
However, very few RDBMS products support this clause.

Forgetting the GRANT OPTION FOR clause for a moment, let’s look at the REVOKE
clause itself, which is used to revoke either all privileges on an object (ALL PRIVILEGES)
or only the defined privileges (<privilege list>). Both of these options have the same meaning
they did in the GRANT statement; you can either use ALL PRIVILEGES or you can list each
privilege separated by a comma.

The ON clause and GRANTED BY clause in the REVOKE statement are exactly the same
as the ON clause and GRANTED BY clause in the GRANT statement. For the ON clause,
you must specify values for the <object type> placeholder and the <object name> placeholder;
however, if the <object type> value is TABLE, then you can leave that off (and as before you
must omit it in Oracle and SQL Server). As for the GRANTED BY clause, assuming your
RDBMS supports it (most do not), you can choose one of two options (CURRENT_USER or
CURRENT_ROLE).

www.it-ebooks.info

http://www.it-ebooks.info/

 136 SQL: A Beginner’s Guide

The FROM clause in the REVOKE statement can also be compared to the GRANT
statement. The only difference is that in the GRANT statement, you use the TO keyword,
but in the REVOKE statement you use the FROM keyword. In either case, you must either
use PUBLIC as your authorization identifier, or you must list the specific user identifiers
and role names.

The last elements of the statement to discuss are the RESTRICT keyword and the
CASCADE keyword. You might recall these keywords from Chapters 2, 3, and 4. If you specify
RESTRICT, the privilege will not be revoked if it had been passed on to other users—in other
words, if there are any dependent privileges. (This would mean that the WITH GRANT OPTION
had been used in the GRANT statement and that the authorization identifier that had been
granted the privilege had then granted the privilege to someone else.) If you specify CASCADE,
the privilege will be revoked as will any privileges that were passed on to other users.

NOTE
Vendor implementations vary. In Oracle, CASCADE must be specified as CASCADE
CONSTRAINTS. In both Oracle and SQL Server, RESTRICT cannot be specified, but
rather is the default behavior when CASCADE is not specified. MySQL does not allow
either to be specified.

Now let’s take a look at some examples of revoking privileges. The following statement
revokes a SELECT privilege that was granted to the PUBLIC authorization identifier on the
AVAILABLE_CDS view:

REVOKE SELECT ON TABLE AVAILABLE_CDS FROM PUBLIC CASCADE;

As you can see, this statement is very similar to a GRANT statement. You must identify
the privileges, the authorization identifiers, and the object. In addition, you must specify
RESTRICT or CASCADE.

The next example is based on privileges that have been granted on a table named
CD_INVENTORY. The SALES role and ACCOUNTING role have been granted the following
privileges on this table: GRANT, SELECT, and INSERT. To revoke these privileges, use the
following REVOKE statement:

REVOKE SELECT, UPDATE, INSERT ON TABLE CD_INVENTORY
 FROM SALES, ACCOUNTING CASCADE;

Notice that you simply specify the privileges you want to revoke, the name of the
objects, and the name of the authorization identifiers. However, since you are revoking all the
privileges that had been granted, you could have simplified the statement by using the ALL
PRIVILEGES keywords, as shown in the following example:

REVOKE ALL PRIVILEGES ON TABLE CD_INVENTORY
 FROM SALES, ACCOUNTING CASCADE;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 6: Managing Database Security 137

If you do not want to revoke all privileges, but instead want to revoke only the UPDATE
and INSERT privileges, you can specify only those privileges, as shown in the following
example:

REVOKE UPDATE, INSERT ON TABLE CD_INVENTORY
 FROM SALES, ACCOUNTING CASCADE;

You can also choose to revoke privileges for only one of the role names, rather than both. In
addition, you can use the RESTRICT keyword rather than CASCADE.

Now suppose the same privileges had been granted as in the preceding example but in
addition to those, the WITH GRANT OPTION had been specified when granting privileges.
If you want to revoke only the ability of the Sales and Accounting roles to grant privileges to
other users, you can use the following statement:

REVOKE GRANT OPTION FOR ALL PRIVILEGES ON CD_INVENTORY
 FROM SALES, ACCOUNTING CASCADE;

This statement revokes only the ability to grant privileges; the Sales and Accounting roles
still have access to the CD_INVENTORY table. If you want to revoke all their privileges, you
would have to execute this statement without the GRANT OPTION FOR clause. Notice in this
statement that the TABLE keyword wasn’t used before the name of the table. The REVOKE
statement, like the GRANT statement, doesn’t require the TABLE keyword when specifying a
table or view.

NOTE
The vendor implementation variances noted with the use of the TABLE keyword in
the GRANT statement (earlier in this chapter) apply in the same way to the REVOKE
statement. In general, vendors support identical syntax between their GRANT and
REVOKE statements except that TO in the GRANT statement becomes FROM in the
REVOKE statement.

Grant and Revoke Roles
Now that you know how to create and delete roles and grant and revoke privileges, let’s look
at granting and revoking roles. We’ll start with granting roles. To grant a role, you must use a
GRANT statement to assign one or more role names to one or more authorization identifiers,
as shown in the following syntax:

GRANT <role name list>
TO { PUBLIC | <authorization identifier list> } [WITH ADMIN OPTION]
[GRANTED BY { CURRENT_USER | CURRENT_ROLE }]

By now, most of this syntax should look quite familiar to you, except for a few variations.
The GRANT clause allows you to specify a list of one or more role names. If you specify more
than one name, you must separate them with commas. The TO clause allows you to specify
one or more authorization identifiers. Again, if there are more than one, you must separate

www.it-ebooks.info

http://www.it-ebooks.info/

 138 SQL: A Beginner’s Guide

them with commas. You can also specify the PUBLIC authorization identifier to grant a role
to all database users. The WITH ADMIN OPTION clause, which is optional, allows the
authorization identifiers to grant the role to other users. And the GRANTED BY clause, which
is also optional (and only supported in a few RDBMS products), is used in those rare instances
when the user identifier/role name pair does not contain a null value.

Let’s look at an example. Suppose you have created a role named MANAGERS and you
want to assign that role to a user identifier named LindaN. You would use the following syntax:

GRANT MANAGERS TO LindaN;

Now suppose you want to give LindaN the ability to grant the MANAGERS role to other users.
To do this, you simply add the WITH ADMIN OPTION clause, as in the following example:

GRANT MANAGERS TO LindaN WITH ADMIN OPTION;

You can also grant multiple roles to multiple user identifiers. The user identifiers can be
user identifiers or other role names. In the following example, I grant the MANAGERS role
and ACCOUNTING role to the LindaN user identifier and the MARKETING role name:

GRANT MANAGERS, ACCOUNTING TO LindaN, MARKETING WITH ADMIN OPTION;

Now that you know how to grant roles to authorization identifiers, it’s time to learn how to
revoke those roles.

Revoking Roles
Revoking roles is a lot like revoking privileges. The statement that you use to revoke
privileges is the REVOKE statement, as shown in the following syntax:

REVOKE [ADMIN OPTION FOR] <role name list>
FROM { PUBLIC | <authorization identifier list> }
[GRANTED BY { CURRENT_USER | CURRENT_ROLE }]
{ RESTRICT | CASCADE }

As you can see, there is nothing new in the syntax except for the ADMIN OPTION FOR
clause, which is similar to the GRANT OPTION FOR clause used when revoking privileges. It
allows you to revoke the ability to assign roles to other users, without revoking the role itself.

NOTE
The same Oracle, SQL Server, and MySQL variances mentioned with revoking
privileges apply to this use of the REVOKE statement.

Let’s take a look at an example of revoking a role. Suppose you’ve granted the
MANAGERS role to the LindaN user identifier. You can revoke that role by using the
following REVOKE statement:

REVOKE MANAGERS FROM LindaN CASCADE;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 6: Managing Database Security 139

Try This 6-1

If you had granted the MANAGERS role and the ACCOUNTING role to LindaN and the
MARKETING role, your REVOKE statement would look like the following:

REVOKE MANAGERS, ACCOUNTING FROM LindaN, MARKETING CASCADE;

Now that we’ve looked at how to grant and revoke roles, you can see how similar this
is to granting and revoking privileges. Again, I must stress that not all implementations are
alike with regard to how they grant and revoke privileges and roles, so be sure to review your
product documentation and work closely with the database administrator.

 Managing Roles and Privileges
In this Try This exercise, you will create two roles in the INVENTORY database, grant
privileges to the PUBLIC authorization identifier and to one of the roles you created, grant one
of the roles to the other role, and then revoke all the privileges and roles. Finally, you will drop
the two roles that you created. Your ability to follow all the steps in this exercise will depend
on the type of security-related statements supported in the SQL implementation you’re using.
However, the exercise is designed so that any roles you create or privileges you assign are
dropped by the end of the exercise. You will not be using these roles for any Try This exercises
later in the book. If for any reason this exercise might affect the security of the system on
which you’re working, you should discuss this exercise with a database administrator or skip
it altogether. You can download the Try_This_06.txt file, which contains the SQL statements
used in this Try This exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. The first thing you’ll do is create the MRKT role. Enter and execute the following
SQL statement:

CREATE ROLE MRKT;

 3. Next you’ll create the SALES_STAFF role. Enter and execute the following SQL statement:

CREATE ROLE SALES_STAFF;

 4. You’ll now grant the SELECT privilege on the CDS_IN_STOCK view. The privilege
will be assigned to the PUBLIC authorization identifier. Enter and execute the following
SQL statement:

GRANT SELECT ON CDS_IN_STOCK TO PUBLIC;

 5. The next privileges you grant will be to the SALES_STAFF role that you created in step 3.
You’ll be granting the SELECT, INSERT, and UPDATE privileges on the COMPACT_
DISCS table. For the UPDATE privilege you will specify the CD_TITLE column. You will

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 140 SQL: A Beginner’s Guide

also allow the SALES_STAFF role to grant these privileges to other users. Enter and
execute the following SQL statement:

GRANT SELECT, INSERT, UPDATE(CD_TITLE) ON COMPACT_DISCS
 TO SALES_STAFF WITH GRANT OPTION;

 6. You’ll now grant the SALES_STAFF role to the MRKT role. Enter and execute the
following SQL statement:

GRANT SALES_STAFF TO MRKT;

 7. Your next step is to revoke the SELECT privilege that you granted to the PUBLIC authorization
identifier. Enter and execute the following SQL statement:

REVOKE SELECT ON CDS_IN_STOCK FROM PUBLIC CASCADE;

 8. Now you’ll revoke the privileges that you granted to the SALES_STAFF role. Because
you’re revoking all privileges, you can use the ALL PRIVILEGES keyword. You also want
to ensure that any dependent privileges are revoked, so you’ll use the CASCADE keyword.
Enter and execute the following SQL statement:

REVOKE ALL PRIVILEGES ON COMPACT_DISCS FROM SALES_STAFF CASCADE;

 9. You can now revoke the SALES_STAFF role from the MRKT role. Enter and execute the
following SQL statement:

REVOKE SALES_STAFF FROM MRKT CASCADE;

 10. Your next step is to drop the MRKT role. Enter and execute the following SQL statements:

DROP ROLE MRKT;

 11. Finally, you need to drop the SALES_STAFF role. Enter and execute the following
SQL statements:

DROP ROLE SALES_STAFF;

 12. Close the client application.

Try This Summary
The INVENTORY database should now be set up the same way it was before you started
this Try This exercise. The permissions and roles you granted should have been revoked, and
the roles you created should have been dropped. This way, you will not have to worry about
security considerations for other Try This exercises. For the remaining Try This exercises in
the book, you should continue to work within the same security context in which you’ve been
working for this exercise and for all Try This exercises preceding this one.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 6: Managing Database Security 141

 Chapter 6 Self Test
 1. What is the difference between a user identifier and a role name?

 2. What is the name of the special authorization identifier that grants access to all database users?

 3. Each ____________ is associated with a user identifier and role name.

 4. An SQL session is associated with which of the following?

 A Privilege

 B User identifier

 C PUBLIC

 D Role name

 5. When an SQL session is first established, the user identifier is always the ____________.

 6. What is the value of the current role name when an SQL session is first established?

 7. What is an authorization identifier?

 8. What two types of authorization identifiers does SQL support?

 9. Which privilege should you grant on an object if you want to allow an authorization
identifier to query data in that object?

 10. You establish an SQL session with your database. The current user identifier is EthanW.
The current role name is null. What is the current authorization identifier?

 11. On which schema objects can you define access privileges?

 12. On which types of database objects can you assign the DELETE privilege?

 A Tables

 B Views

 C Columns

 D Domains

 13. On which types of database objects can you assign the TRIGGER privilege?

 A Tables

 B Views

 C Columns

 D Domains

 14. You’re creating a role named ACCOUNTING. Which SQL statement should you use?

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 142 SQL: A Beginner’s Guide

 15. You’re granting all privileges on the CD_NAMES view to everyone who uses the database.
Which SQL statement should you use?

 16. You’re granting the SELECT privilege to the SALES_CLERK role on a table in your database.
You want the SALES_CLERK role to be able to assign the SELECT privilege to other users.
What clause should you include in your GRANT statement?

 17. You want to grant the ACCT role to the MaxN user authorization. You do not want the
user to be able to grant the role to other users. What SQL statement should you use to
grant the role?

www.it-ebooks.info

http://www.it-ebooks.info/

Part II
Data Access and
Modification

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

145

Chapter 7
Querying SQL Data

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 146 SQL: A Beginner’s Guide

Key Skills & Concepts

● Use a SELECT Statement to Retrieve Data

● Use the WHERE Clause to Define Search Conditions

● Use the GROUP BY Clause to Group Query Results

● Use the HAVING Clause to Specify Group Search Conditions

● Use the ORDER BY Clause to Sort Query Results

Once the objects in a database have been created and the base tables populated with data,
you can submit queries that allow you to retrieve specific information from the database.

These queries, which usually take the form of SELECT statements, can range in complexity
from a simple statement that returns all columns from a table to a statement that joins multiple
tables, calculates values, and defines search conditions that restrict exactly which rows of
data should be returned. The SELECT statement is made up of a flexible series of clauses that
together determine which data will be retrieved. In this chapter, you will learn how to use each
of these clauses to perform basic data retrieval, define search conditions, group query results,
specify group search conditions, and order search results.

Use a SELECT Statement to Retrieve Data
In Chapter 5, when discussing views, I introduce you to the SELECT statement. As you might
recall, the SELECT statement allows you to form intricate queries that can return exactly the
type of data you want to retrieve. It is one of the most common statements you’ll be using as
an SQL programmer, and it is also one of the most flexible and extensive statements in the
SQL standard.

The SELECT statement is a query expression that begins with the SELECT keyword and
includes a number of elements that form the expression. The basic syntax for the SELECT
statement can be split into several specific clauses that each help to refine the query so that only
the required data is returned. The syntax for the SELECT statement can be shown as follows:

SELECT [DISTINCT | ALL] { * | <select list> }
FROM <table reference> [{ , <table reference> } . . .]
[WHERE <search condition>]
[GROUP BY <grouping specification>]
[HAVING <search condition>]
[ORDER BY <order condition>]

As you can see, the only required clauses are the SELECT clause and the FROM clause.
All other clauses are optional.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 147

The FROM, WHERE, GROUP BY, and HAVING clauses are referred to as the table
expression. This portion of the SELECT statement is always evaluated first when a SELECT
statement is processed. Each clause within the table expression is evaluated in the order listed
in the syntax. The result of that evaluation is a virtual table that is used in the subsequent
evaluation. In other words, the results from the first clause evaluated are used in the next
clause. The results from that clause are then used in the following clause, until each clause in
the table expression is evaluated. For example, the first clause to be evaluated in a SELECT
statement is the FROM clause. Because this clause is required, it is always the first clause
evaluated. The results from the FROM clause are then used in the WHERE clause, if a
WHERE clause is specified. If the clause is not specified, then the results of the FROM clause
are used in the next specified clause, either the GROUP BY clause or the HAVING clause.
Once the final clause in the table expression is evaluated, the results are then used in the
SELECT clause. After the SELECT clause is evaluated, the ORDER BY clause is evaluated.

To sum all this up, the clauses of the SELECT statement are applied in the following order:

● FROM clause

● WHERE clause (optional)

● GROUP BY clause (optional)

● HAVING clause (optional)

● SELECT clause

● ORDER BY clause (optional)

Having a basic understanding of the order of evaluation is important as you create more
complex SELECT statements, especially when working with joins and subqueries (discussed
in Chapter 11 and Chapter 12, respectively). This understanding is also helpful when
discussing each clause individually because it explains how one clause relates to other clauses.
As a result, it is a good idea for you to keep this order of evaluation in mind throughout this
chapter and in subsequent chapters that build upon various aspects of the SELECT statement.

The SELECT Clause and FROM Clause
Now that you have a basic overview of how the SELECT statement is executed, let’s take
a closer look at the SELECT clause and the FROM clause, the two required clauses in the
statement. I’ll discuss the other clauses in separate sections throughout the remainder of the
chapter.

Let’s begin with the SELECT clause. The SELECT clause includes the optional DISTINCT
and ALL keywords. The DISTINCT keyword is used if you want to eliminate duplicate rows
from the query results, and the ALL keyword is used if you want to return all rows in the query
results. For example, suppose your database includes a table named PERFORMER_CDS. The
table includes the PERFORMER_NAME column and the CD_NAME column. Because a
CD can include more than one performer, the CD name can appear more than one time in the
table. Now suppose that you want to query the table for the name of the CDs only, but you don’t

www.it-ebooks.info

http://www.it-ebooks.info/

 148 SQL: A Beginner’s Guide

want the names repeated. You can use the DISTINCT keyword to ensure that your query returns
the name of each CD only one time, or you can use the ALL keyword to specify that all rows be
returned, even if there are duplicates. If you don’t specify either of the keywords, the ALL keyword
is assumed.

Q: You state that you can use an asterisk to include all columns in the query result. Does
this ever present a problem if the number of columns changes?

A: Yes, this can present a problem. In fact, it is generally recommended that you use the
asterisk only when you’re accessing an SQL database through direct invocation. If you use
the asterisk in embedded SQL and the number of columns changes, you might find that
your application no longer responds correctly because the application program was coded
to expect a specific response. If an asterisk is used and specific columns are expected
to be returned, then you could run into a number of surprises if the database has been
changed. For this reason, you should avoid the asterisk unless directly invoking a SELECT
statement. However, in the case of direct invocation, the asterisk is a handy way to return
all columns without having to specify the name of each one. In fact, many of the examples
in the chapter use the asterisk to avoid having to repeat column names unnecessarily.

Ask the Expert

In addition to the DISTINCT and ALL keywords, the SELECT clause includes the asterisk
(*) and the <select list> placeholder. You must specify one of these options in the clause. If
you specify the asterisk, all applicable columns are included in the query result.

If you don’t specify an asterisk in the SELECT clause, you must specify each column as it
is derived from its source. The <select list> placeholder can be broken down into the following
syntax:

<derived column> [[AS] <column name>]
[{ , <derived column> [[AS] <column name>] } . . .]

Let’s take a look at the first line of this syntax. (The second line is merely a repeat—as
many times as necessary—of the first line.) The <derived column> placeholder in most cases
refers to the name of the column in the source table. If more than one column is specified,
then they must be separated with commas. However, the <derived column> placeholder
might also refer to a column or set of columns that are in some way part of an expression. For
instance, in Chapter 5, I discuss the AVG function, which averages the values in a specified
column. The example I show in that chapter uses a SELECT statement to query data from
the EMPLOYEE_COMMISSIONS table, which lists the total amount of commissions each

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 149

employee made during a three-year period. The SELECT statement averages the values in
three different columns, as shown in the following SELECT statement:

SELECT AVG(YEAR_1999), AVG(YEAR_2000), AVG(YEAR_2001)
 FROM EMPLOYEE_COMMISSIONS;

In this case, there are three expressions that are used for the <derived column>
placeholder: AVG(YEAR_1999), AVG(YEAR_2000), and AVG(YEAR_2001). Notice that
each derived column expression is separated by a comma, as would be the case if each value
were simply a column name. The following example shows the same SELECT statement as in
the preceding example, except that it uses only column names as the derived columns:

SELECT YEAR_1999, YEAR_2000, YEAR_2001
 FROM EMPLOYEE_COMMISSIONS;

If you were to execute this SELECT statement, your query would return all the values in
the three columns, rather than averaging those values.

The SELECT clause also allows you to provide a column name for each derived column.
To do this, add the AS keyword and the new column name after the derived column, as shown
in the following example:

SELECT AVG(YEAR_1999) AS AVERAGE_1999
 FROM EMPLOYEE_COMMISSIONS;

In this SELECT statement, the value that is returned from the YEAR_1999 column is
placed in a column named AVERAGE_1999. This is the name of the column that’s returned
as part of a virtual table in the query results. If you don’t specify an AS subclause, the column
name in the virtual table is the same as the column name in the source table. If a column name
cannot be inherited naturally (for example, when adding two column values together), you
must use the AS subclause.

Notice that in the previous examples the FROM clause is used to specify the table
(EMPLOYEE_COMMISSIONS) that contains the columns referred to in the SELECT clause.
The FROM clause includes the FROM keyword and one or more table references. If there
are multiple table references, they must be separated using commas. In most cases, the table
reference is either the name of a table or of joined tables, although it can also be a type of
subquery. I discuss joined tables in Chapter 11 and subqueries in Chapter 12. For this chapter,
the FROM clause is used primarily to reference table names, as I have defined the clause in the
two previous examples (where <table reference> equals EMPLOYEE_COMMISSIONS).

Together the SELECT clause and the FROM clause form the foundation for the SELECT
statement, which can be as simple as querying every row and every column of a table, as
shown in the following example:

SELECT * FROM PERFORMERS;

In this statement, I specify that every column the PERFORMERS table should be
returned. In addition, every row will be returned because no other clauses have been specified.

www.it-ebooks.info

http://www.it-ebooks.info/

 150 SQL: A Beginner’s Guide

Let’s take a closer look at this. The PERFORMERS table includes the PERFORMER_ID,
PERFORMER_NAME, and PLACE_OF_BIRTH columns, as shown in Figure 7-1.

If you execute the SELECT statement shown in the previous example, your query results
would look similar to the following:

PERFORMER_ID PERFORMER_NAME PLACE_OF_BIRTH
------------ ------------------ ------------------------------
2001 Jennifer Warnes Seattle, Washington, USA
2002 Joni Mitchell Fort MacLeod, Alberta, Canada
2003 William Ackerman Germany
2004 Kitaro Toyohashi, Japan
2005 Bing Crosby Tacoma, Washington, USA
2006 Patsy Cline Winchester, Virginia, USA
2007 Jose Carreras Barcelona, Spain
2008 Luciano Pavarotti Modena, Italy
2009 Placido Domingo Madrid, Spain

Notice that every row and every column is returned in the query results. If you use the
asterisk in your SELECT clause, you do not have to specify the column names.

Now suppose you want to return only the PERFORMER_NAME and PLACE_OF_BIRTH
columns. You could modify your SELECT statement to look like the following:

SELECT PERFORMER_NAME AS NAME, PLACE_OF_BIRTH
 FROM PERFORMERS;

Figure 7-1 The PERFORMER_ID, PERFORMER_NAME, and PLACE_OF_BIRTH columns of the
PERFORMERS table

PERFORMER_NAME:
VARCHAR(60)

Jennifer Warnes

PLACE_OF_BIRTH:
VARCHAR (60)

William Ackerman

PERFORMER_ID:
INT

2001

2002

2003

2004

2005

2006

2007

2008

2009

Joni Mitchell

Kitaro

Bing Crosby

Patsy Cline

Jose Carreras

Luciano Pavarotti

Placido Domingo

Seattle, Washington, USA

Fort MacLeod, Alberta, Canada

Germany

Toyohashi, Japan

Tacoma, Washington, United States

Winchester, Virginia, United States

Barcelona, Spain

Modena, Italy

Madrid, Spain

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 151

Your query results will now contain only two columns, as shown in the following:

NAME PLACE_OF_BIRTH
----------------- ------------------------------
Jennifer Warnes Seattle, Washington, USA
Joni Mitchell Fort MacLeod, Alberta, Canada
William Ackerman Germany
Kitaro Toyohashi, Japan
Bing Crosby Tacoma, Washington, USA
Patsy Cline Winchester, Virginia, USA
Jose Carreras Barcelona, Spain
Luciano Pavarotti Modena, Italy
Placido Domingo Madrid, Spain

Notice that the name of the first column is NAME, rather than PERFORMER_NAME.
This is because the AS subclause (specifying NAME) is defined as part of the PERFORMER_
NAME derived column. If you were to specify the DISTINCT keyword in this particular
situation, you would still receive the same number of rows, although they might not be
returned in the same order as they were when you didn’t use the keyword, depending on the
SQL implementation. The reason that the DISTINCT keyword would make no difference in
the query results is that there are no duplicate rows in the table. However, using the DISTINCT
keyword can affect performance, particularly if your RDBMS has to sort through a large
number of rows, so be sure to use the keyword only when necessary.

Now let’s take a look at an example that uses the DISTINCT keyword. Suppose your
database includes a table that matches performers to types of music, as shown in Figure 7-2.

Figure 7-2 The PERFORMER_NAME and PERFORMER_TYPE columns of the PERFORMER_
TYPE table

PERFORMER_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

PERFORMER_TYPE:
VARCHAR(10)

Folk

William Ackerman

Kitaro

Jennifer Warnes Pop

Joni Mitchell

Joni Mitchell

Kitaro International

New Age

New Age

Jazz

Folk

Pop

www.it-ebooks.info

http://www.it-ebooks.info/

 152 SQL: A Beginner’s Guide

If your SELECT statement includes both (all) columns in the SELECT clause, as shown in
the following example, your query will return all rows:

SELECT * FROM PERFORMER_TYPE;

It does not matter if you specify the DISTINCT keyword in this case because your query
results include no duplicate rows. The results would be the same whether you include the ALL
keyword, rather than DISTINCT, or whether you specify neither of the two qualifiers. In either
case, the query results would include the same information that is shown in the table in Figure 7-2.

Now let’s take a look at the same statement, only this time it specifies the DISTINCT
keyword and only one of the two columns:

SELECT DISTINCT PERFORMER_NAME
 FROM PERFORMER_TYPE;

Notice that this statement includes only the PERFORMER_NAME column, which
includes duplicate values. By using the DISTINCT keyword, your query results will include
only one instance of each value. If you execute the SELECT statement in the preceding
example, your query results will look similar to the following:

PERFORMER_NAME

Jennifer Warnes
Joni Mitchell
Kitaro
William Ackerman

Although there are seven rows in the PERFORMER_TYPE table, only four rows are
returned because there are only four unique values in the PERFORMER_NAME column and
the other values are duplicates.

As you can see, the SELECT clause and the FROM clause are fairly straightforward,
at least at this level of coding. Once we get into more complex structures, you’ll find that
both these clauses can at times become more complicated. However, the important thing to
remember right now is that these clauses act as the foundation for the rest of the SELECT
statement. In terms of execution, the SELECT statement, for all practical purposes, begins
with the FROM clause and ends with the SELECT clause. (The ORDER BY clause is used
primarily for display purposes and doesn’t affect which information is actually returned. The
ORDER BY clause is discussed in more detail in the “Use the ORDER BY Clause to Sort
Query Results” section later in this chapter.)

Use the WHERE Clause to Define Search Conditions
The next clause in the SELECT statement is the WHERE clause. The WHERE clause takes
the values returned by the FROM clause (in a virtual table) and applies the search condition
that is defined within the WHERE clause. The WHERE clause acts as a filter on the results
returned by the FROM clause. Each row is evaluated against the search condition. Those rows

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 153

that evaluate to true are returned as part of the query result. Those that evaluate to unknown or
false are not included in the results.

For a better understanding of how each row is evaluated, let’s take a closer look at the
<search condition> placeholder. The search condition is made up of one or more predicates
that are used to test the contents returned by the FROM clause. A predicate is an SQL
expression that defines a fact about any row returned by the SELECT statement. You have
already seen examples of predicates in Chapters 4 and 5. For instance, one example of a view
definition (in Chapter 5) includes the following SELECT statement:

SELECT CD_TITLE, COPYRIGHT, IN_STOCK
 FROM COMPACT_DISC_INVENTORY
 WHERE COPYRIGHT > 1989 AND COPYRIGHT < 2000;

This statement is querying three columns in the COMPACT_DISC_INVENTORY table.
The SELECT clause specifies the columns to be returned, and the FROM clause specifies
the source table. The WHERE clause determines which rows (based on the FROM clause)
are included in the results. In this case, the WHERE clause contains two predicates that are
connected by the AND keyword. The first predicate (COPYRIGHT > 1989) specifies that all
rows included in the query results must contain a value greater than 1989 in the COPYRIGHT
column. The second predicate (COPYRIGHT < 2000) specifies that all rows included in the
query results must contain a value less than 2000 in the COPYRIGHT column.

As rows are evaluated, each predicate is evaluated on an individual basis to determine
whether the row meets the condition defined by that predicate. Returning to the last example,
the first predicate sets the condition that values must be greater than 1989. If the COPYRIGHT
value for a particular row is more than 1989, the condition is met and the predicate evaluates
to true. If the value is not greater than 1989, the predicate evaluates to false. If SQL cannot
determine whether or not the value meets the condition (as would be the case if the value is
null), the predicate evaluates to unknown.

Every predicate evaluates to true, false, or unknown. If more than one predicate is included
in the WHERE clause, they are joined together by the OR keyword or the AND keyword. If OR
is used, then at least one of the predicates on either side of OR must evaluate to true for the row
to pass the filter, and therefore appear in the query results. If AND is used, then predicates on
either side must evaluate to true for the row to pass the filter. For instance, the WHERE clause
in the last example includes two predicates that are connected by the AND keyword. This means
that the first predicate must evaluate to true and the second predicate must evaluate to true. If OR
had been used instead of AND, then only one of the predicates must evaluate to true, which is a
bit nonsensical in this case because all values except null are either above 1989 or below 2000.

Ultimately, the WHERE clause as a whole must evaluate to true in order for a row to be
included in the query results. If the WHERE clause includes more than one predicate, SQL
follows specific guidelines for how the statement as a whole is evaluated. Let’s start by looking
at the OR keyword. Table 7-1 lists the evaluation of a search condition if the OR keyword
is used to separate two predicates. To use the table, match a condition in the left column to a
condition in the top row. The result (where a row and column intersect to form a cell) shows
how the search condition is evaluated based on how each predicate is evaluated.

www.it-ebooks.info

http://www.it-ebooks.info/

 154 SQL: A Beginner’s Guide

True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

Table 7-1 Evaluating Predicates Connected by OR

As the table shows, if both predicates evaluate to true, then the search condition evaluates
to true. If both are false, then the search condition evaluates to false. A condition is provided
for each possible match. For example, suppose your SELECT statement includes the following
WHERE clause:

WHERE PERFORMER_TYPE = 'Folk' OR PERFORMER_TYPE = 'Jazz'

Now suppose that the first predicate in this example (PERFORMER_TYPE = ‘Folk’)
evaluates to true and the second predicate (PERFORMER_TYPE = ‘Jazz’) evaluates to false.
This means that the row being evaluated contains the Folk value in the PERFORMER_TYPE
column, but does not contain the Jazz value in that column. Now refer back to Table 7-1. If
you select True from the first column, select False from the top row, and then match these
two values together (by picking where they intersect), you can see that the search condition
evaluates to true, so the row will be included in the query results.

You can do the same thing with the AND keyword as you did with the OR keyword.
Table 7-2 matches the nine possible outcomes of two predicates.

Again, you simply match up how each predicate is evaluated to determine whether the
search condition will be evaluated to true, false, or unknown. Remember, the search condition
must evaluate to true for the row to be included in the query results. As you can see, the AND
keyword is a lot less forgiving than the OR keyword. The only way for the search condition to
evaluate to true is for both predicates to evaluate to true.

True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

Table 7-2 Evaluating Predicates Connected by AND

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 155

NOTE
Comparison operators and predicates in general are discussed in greater detail in
Chapter 9.

If a search condition includes more than two predicates, the predicates are evaluated in
an order chosen by the RDBMS, unless parentheses are used to separate combinations of
predicates. While the SQL standard does not specify the order in which multiple predicates are
to be evaluated, most RDBMS products evaluate AND before OR. For example, you might
have a SELECT statement that includes the following WHERE clause:

WHERE IN_STOCK = 6 OR IN_STOCK = 27 AND LABEL_ID = 833 OR LABEL_ID = 829

Notice that there are four predicates in this clause and no parentheses. Assuming that AND is
evaluated before OR, the above WHERE clause would be evaluated as if it was written this way:

WHERE IN_STOCK = 6 OR (IN_STOCK = 27 AND LABEL_ID = 833) OR LABEL_ID = 829

In order to evaluate to true, a row must contain one of the following values or set of values:

● IN_STOCK value of 6

● IN_STOCK value of 27 and LABEL_ID value of 833

● LABEL_ID value of 829

When you include both the AND and OR keywords in the same WHERE clause, it is
always a good idea to include parentheses to make sure you are getting the filtering you intend,
keeping in mind that predicates within parentheses are always evaluated first. If the RDBMS
makes other assumptions, or if parentheses are used around other sets of predicates, the results
will be different from what we’ve seen. For example, suppose you use parentheses as follows:

WHERE (IN_STOCK = 6 OR IN_STOCK = 27) AND (LABEL_ID = 833 OR LABEL_ID = 829)

The predicates are first evaluated within the context of the parentheses and then compared
to other predicates accordingly. In this case, a row must contain one of the two IN_STOCK
values and the row must contain one of the two LABEL_ID values. As a result, a row must
contain one of the following sets of values to evaluate to true:

● IN_STOCK value of 6 and LABEL_ID value of 833

● IN_STOCK value of 6 and LABEL_ID value of 829

● IN_STOCK value of 27 and LABEL_ID value of 833

● IN_STOCK value of 27 and LABEL_ID value of 829

www.it-ebooks.info

http://www.it-ebooks.info/

 156 SQL: A Beginner’s Guide

NOTE
SQL includes three operators that you can use if a search condition becomes too
complicated. These operators are IS TRUE, IS FALSE, and IS UNKNOWN. For example,
you can specify the following search condition: (FIRST_NAME = ‘Joni’ AND LAST_
NAME = ‘Mitchell’) IS TRUE. This means that the FIRST_NAME value of a returned row
must be Joni and the LAST_NAME value must be Mitchell. In other words, they must
evaluate to true. If you specify IS FALSE in this situation, the predicate pair would have
to evaluate to false, meaning that at least one of the two predicates had to be false
(could not be Joni or could not be Mitchell).

Another keyword that you might find useful is the NOT keyword, which can be used alone
or along with the AND keyword and the OR keyword to specify the inverse of a predicate. For
example, your SELECT statement might include the following WHERE clause:

WHERE PERFORMER_NAME = 'Joni Mitchell' OR NOT PERFORMER_NAME = 'Kitaro'

In this case, the PERFORMER_NAME value can be Joni Mitchell or it can be any value other
than Kitaro. Of course, Joni Mitchell is not equal to Kitaro, so that predicate is redundant and you
get the same result if you remove it. Furthermore, you would get the same result if you used the
not equal (<>) comparison operator, so the entire WHERE clause can be rewritten more simply as:

WHERE PERFORMER_NAME <> 'Kitaro'

Defining the WHERE Clause
Now that you have an overview of how to define a WHERE clause, let’s put it together with the
SELECT clause and FROM clause and take a look at a few examples. The examples that we’ll
be looking at are based on the INVENTORY table, shown in Figure 7-3. The INVENTORY
table contains five columns, some of which we’ll be using to define our search conditions.

The first example that we’ll be looking at includes a WHERE clause that defines which
rows can be returned based on the IN_STOCK values:

SELECT * FROM INVENTORY
 WHERE IN_STOCK < 20;

If you execute this statement, your query results will be similar to the following:

COMPACT_DISC_ID CD_TITLE COPYRIGHT RETAIL_PRICE IN_STOCK
--------------- ---------------------- --------- ------------ --------
99301 Famous Blue Raincoat 1991 16.99 6
99303 Court and Spark 1974 14.99 18
99304 Past Light 1983 15.99 2
99305 Kojiki 1990 15.99 5
99306 That Christmas Feeling 1993 10.99 3

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 157

As you can see, all but two rows are included in the query results. The rows not included
contain IN_STOCK values greater than 20. In other words, these two rows evaluated to false.

Now let’s take that same SELECT statement and refine the WHERE clause even further. In
the new statement, the WHERE clause includes two predicates that are connected by the AND
keyword, as shown in the following example:

SELECT * FROM INVENTORY
 WHERE IN_STOCK < 20 AND RETAIL_PRICE < 15.00;

When you execute this statement, you receive the following results:

COMPACT_DISC_ID CD_TITLE COPYRIGHT RETAIL_PRICE IN_STOCK
--------------- ---------------------- --------- ------------ --------
99303 Court and Spark 1974 14.99 18
99306 That Christmas Feeling 1993 10.99 3

Notice that only two rows meet the search condition. In other words, only these two rows
have an IN_STOCK value of less than 20 and a RETAIL_PRICE value of less than 15.00.
Because the AND keyword is used, both predicates must evaluate to true, which they do for
these two rows.

Now let’s make one small modification to the SELECT statement. In the WHERE clause,
I have changed the AND keyword to the AND NOT keywords, as shown in the following
example:

SELECT * FROM INVENTORY
 WHERE IN_STOCK < 20 AND NOT RETAIL_PRICE < 15.00;

Figure 7-3 The INVENTORY table containing CD-related data

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

COPYRIGHT:
INT

1991

1971

1983

1990

1993

1988

1974

COMPACT_DISC_ID:
INT

99301

99302

99303

99304

99305

99306

99307

RETAIL_PRICE:
NUMERIC(5,2)

16.99

14.99

15.99

15.99

10.99

16.99

14.99

IN_STOCK:
INT

6

26

2

5

3

25

18

www.it-ebooks.info

http://www.it-ebooks.info/

 158 SQL: A Beginner’s Guide

The NOT keyword changes the query results. As you can see, three rows are returned:

COMPACT_DISC_ID CD_TITLE COPYRIGHT RETAIL_PRICE IN_STOCK
--------------- ---------------------- --------- ------------ --------
99301 Famous Blue Raincoat 1991 16.99 6
99304 Past Light 1983 15.99 2
99305 Kojiki 1990 15.99 5

The returned rows each contain an IN_STOCK value of less than 20 and a RETAIL_
PRICE value that is not less than 15.00, or 15.00 or greater.

Next we’ll look at the same SELECT statement, only this time the two predicates are
connected by the OR keyword, as shown in the following example:

SELECT * FROM INVENTORY
 WHERE IN_STOCK < 20 OR RETAIL_PRICE < 15.00;

The query results for this statement include many more rows than when the AND keyword
was used. By its very nature, the OR keyword permits greater opportunities for a search clause
to evaluate to true. As you can see, six rows have now been returned:

COMPACT_DISC_ID CD_TITLE COPYRIGHT RETAIL_PRICE IN_STOCK
--------------- ---------------------- --------- ------------ --------
99301 Famous Blue Raincoat 1991 16.99 6
99302 Blue 1971 14.99 26
99303 Court and Spark 1974 14.99 18
99304 Past Light 1983 15.99 2
99305 Kojiki 1990 15.99 5
99306 That Christmas Feeling 1993 10.99 3

Each row in the query results contains an IN_STOCK value of less than 20 or a RETAIL_
PRICE value of less than 15.00. Because the OR keyword is being used, only one of the
predicates needs to evaluate to true, although it’s acceptable if both predicates evaluate to true.

In the next example, I add one more predicate that limits the rows returned to those with an
IN_STOCK value greater than 5, along with parentheses to make my intentions clear:

SELECT * FROM INVENTORY
 WHERE (IN_STOCK < 20 AND IN_STOCK > 5) OR RETAIL_PRICE < 15.00;

For a row to be returned, the IN_STOCK value must fall between the range of 5 and 20
or the RETAIL_PRICE value must be less than 15.00. The query results from this SELECT
statement would be as follows:

COMPACT_DISC_ID CD_TITLE COPYRIGHT RETAIL_PRICE IN_STOCK
--------------- ---------------------- --------- ------------ --------
99301 Famous Blue Raincoat 1991 16.99 6
99302 Blue 1971 14.99 26
99303 Court and Spark 1974 14.99 18
99306 That Christmas Feeling 1993 10.99 3

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 159

Now let’s make one more change to the WHERE clause. Suppose you want the IN_STOCK
value to be less than 20 and greater than 5 or the IN_STOCK value to be less than 20 and the
RETAIL_PRICE value to be less than 15. One way to do this is to place parentheses around the
last two predicates:

SELECT * FROM INVENTORY
 WHERE IN_STOCK < 20 AND (IN_STOCK > 5 OR RETAIL_PRICE < 15.00);

The results you receive this time are slightly different because the Blue row no longer
evaluates to true:

COMPACT_DISC_ID CD_TITLE COPYRIGHT RETAIL_PRICE IN_STOCK
--------------- ---------------------- --------- ------------ --------
99301 Famous Blue Raincoat 1991 16.99 6
99303 Court and Spark 1974 14.99 18
99306 That Christmas Feeling 1993 10.99 3

By combining predicates together, you can create a variety of search conditions that allow
you to return exactly the data you need. The key to writing effective search conditions is a
thorough understanding of predicates and the operators used to form those predicates. Chapter 9
takes you through many of the operators you can use and the types of predicates you can create.
With that information, you can create effective, concise search conditions.

Use the GROUP BY Clause to Group Query Results
The next clause in the SELECT statement is the GROUP BY clause. The GROUP BY clause
has a function very different from the WHERE clause. As the name implies, the GROUP
BY clause is used to group together types of information in order to summarize related data.
The GROUP BY clause can be included in a SELECT statement whether or not the WHERE
clause is used.

As you saw in the “Use a SELECT Statement to Retrieve Data” section, the syntax for the
GROUP BY clause, as it appears in the SELECT statement syntax, looks like the following:

[GROUP BY <grouping specification>]

However, the <grouping specification> placeholder can be broken down into smaller elements:

<column name> [{ , <column name> } . . .]
| { ROLLUP | CUBE } (<column name> [{ , <column name> } . . .])

In actuality, the <grouping specification> syntax, like some of the other syntax in this
book, is even more complex than what I’m presenting here; however, for the purposes of
this chapter, this syntax will provide you with all the details you need to use the GROUP BY
clause effectively.

Now let’s look at the syntax itself. The first line should be self-explanatory. You
specify one or more column names that contain values that should be grouped together.
This normally applies to columns that represent some sort of categories whose values

www.it-ebooks.info

http://www.it-ebooks.info/

 160 SQL: A Beginner’s Guide

are repeated within the table. For example, your database might include a table that lists
the employees in your organization. Suppose that the table includes a job title for each
employee. You might find that you want to group together information in the table by job
title, with one row in the result set for each job title value, perhaps to determine such things
as the average salary of each job or number of employees holding each job title. If you need
to specify more than one column name, be sure to separate them with a comma following
each name (except the last).

As you can see from the syntax, you can specify the second line rather than the first. In
this case, you can use either the ROLLUP or CUBE keyword, along with the list of column
names, enclosed in parentheses. Again, be sure to separate column names with commas.
With regard to ROLLUP and CUBE, the best way to understand these operators is through
the use of examples. In fact, the best way to understand the entire GROUP BY clause is
through examples. However, before we get into those, let’s take a look at the table on which
the examples will be based. Figure 7-4 shows the COMPACT_DISC_STOCK table, which
contains a list of CDs, whether they’re vocal or instrumental, the price, and how many of each
title are currently in stock.

Now we can get on with the examples. In the first one we’ll look at, I use the GROUP BY
clause to group rows based on the CATEGORY column of the COMPACT_DISC_STOCK
table, as shown in the following SELECT statement:

SELECT CATEGORY, SUM(ON_HAND) AS TOTAL_ON_HAND
 FROM COMPACT_DISC_STOCK
 GROUP BY CATEGORY;

First, let’s take a look at the GROUP BY clause, which specifies that the rows should
be grouped together based on the CATEGORY column. If you look at Figure 7-4, you’ll see
that the column contains only two values: Vocal and Instrumental. As a result, the SELECT
statement will return only two rows, one for Instrumental and one for Vocal:

CATEGORY TOTAL_ON_HAND
------------ -------------
Instrumental 78
Vocal 217

Now let’s look at the SELECT clause in the preceding SELECT statement example.
Notice that the select list includes the SUM function, which adds data in the ON_HAND
column. The resulting column is then named TOTAL_ON_HAND. The only other
column included in the select list is the CATEGORY column. The select list can include
only those columns that are specified in the GROUP BY clause or that can somehow be
summarized.

What this statement does, then, is add together the total ON_HAND values for each value
in the CATEGORY column. In this case, there are 217 total CDs in stock that are categorized
as Vocal, and 78 in stock that are categorized as Instrumental. If there were another category,
then a row would appear for that one as well.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 161

Figure 7-4 CD information in the COMPACT_DISC_STOCK table

COMPACT_DISC:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

CATEGORY:
VARCHAR(15)

Vocal

Vocal

Instrumental

Instrumental

Vocal

Vocal

Vocal

PRICE:
NUMERIC(5,2)

16.99

14.99

15.99

15.99

14.99

16.99

14.99

ON_HAND:
INT

13

42

17

6

8

32

22

Carreras Domingo Pavarotti in Concert

After the Rain: The Soft Sounds of Erik Satie Instrumental 16.99 21

Out of Africa Instrumental 16.99 29

Leonard Cohen The Best of Vocal 15.99 12

Fundamental Vocal 15.99 34

Blues on the Bayou Vocal 14.99 27

Orlando Instrumental 14.99 5

Vocal 15.99 27

Q: Are there performance considerations regarding the use of GROUP BY?

A: Yes, the use of GROUP BY can cause performance issues because the RDBMS usually
must perform a sort in order to properly group the rows, and sorts of large numbers of rows
(tens of thousands or more) can consume considerable resources. But also be aware that
the ORDER BY clause (presented later in this chapter) and the DISTINCT keyword also
usually require sorts and thus have similar performance considerations. That doesn’t mean
you should be afraid to use them, but rather that you should strive to learn the performance
impact of your SQL statements as you gain experience, and thus become more skilled at
writing statements that perform best on your particular vendor implementation. For example,
in Oracle, a GROUP BY that lists all columns in the SELECT clause is more efficient than
using the DISTINCT keyword, and yet the query results of the two approaches are identical.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 162 SQL: A Beginner’s Guide

As I said earlier, you can still use the WHERE clause in a SELECT statement that includes
a GROUP BY clause. For example, suppose you want to view totals only for CDs that sell for
less than $16.00. To do this, simply modify your SELECT statement as follows:

SELECT CATEGORY, SUM(ON_HAND) AS TOTAL_ON_HAND
 FROM COMPACT_DISC_STOCK
 WHERE PRICE < 16.00
 GROUP BY CATEGORY;

Your query results from this statement will be slightly different than if the WHERE clause
had not been included:

CATEGORY TOTAL_ON_HAND
------------ -----------
Instrumental 28
Vocal 172

Notice that with CDs that sell for $16.00 or more excluded, your results now show only 28
instrumental CDs and 172 vocal CDs.

In the previous two examples, the GROUP BY clause specified only one column. However,
you can specify additional columns as necessary. This allows you to create subgroups that group
data within the scope of the main groups. For example, suppose you want to group data not
only according to the values in the CATEGORY column, but also according to the values in the
PRICE column. To do this, you should include the PRICE column in the select list as well as the
GROUP BY clause, as shown in the following SELECT statement:

SELECT CATEGORY, PRICE, SUM(ON_HAND) AS TOTAL_ON_HAND
 FROM COMPACT_DISC_STOCK
 GROUP BY CATEGORY, PRICE;

Now your query results will include six rows, rather than two:

CATEGORY PRICE TOTAL_ON_HAND
------------ ----- -------------
Instrumental 14.99 5
Vocal 14.99 99
Instrumental 15.99 23
Vocal 15.99 73
Instrumental 16.99 50
Vocal 16.99 45

Notice that for each CATEGORY value, there are three rows, one for each of the PRICE
values. For example, in the Vocal group, there are 99 CDs at 14.99, 73 CDs at 15.99, and 45
CDs at 16.99. The number of rows depends on how many different values there are in the
columns specified in the GROUP BY clause. In this example, there are two different values in
the CATEGORY column and three different values in the PRICE column, which means that
six (two times three) rows will be returned.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 163

NOTE
The order in which your query results are returned can vary from implementation to
implementation. For example, some products might return all the Instrumental rows
together, followed by all the Vocal rows. However, regardless of how the information
appears in your user interface, the end results should be the same. Also, most
implementations permit you to add an ORDER BY clause (discussed later in this chapter)
to sort the summarized rows.

Now let’s take a look at the ROLLUP and CUBE operators. Both operators are similar in
function in that they return additional data in your query results when added to the GROUP
BY clause. The main difference between the two is that the CUBE operator returns more
information than the ROLLUP operator. Let’s start with an example of the ROLLUP operator
so I can demonstrate the difference.

In the following SELECT statement, the GROUP BY clause applies the ROLLUP operator
to the CATEGORY and PRICE columns:

SELECT CATEGORY, PRICE, SUM(ON_HAND) AS TOTAL_ON_HAND
 FROM COMPACT_DISC_STOCK
 GROUP BY ROLLUP (CATEGORY, PRICE);

NOTE
Implementations can vary with regard to how they support the ROLLUP and CUBE
operators. For example, in SQL Server, you must add WITH ROLLUP or WITH CUBE
to the end of the GROUP BY clause, rather than defining the clause in the way
the SQL:2006 standard specifies. Be sure to check your product documentation to
determine how these operators are supported.

Now when you execute the SELECT statement, the query results include an additional
row for each value in the CATEGORY column, plus a grand total row at the end:

CATEGORY PRICE TOTAL_ON_HAND
------------ ----- -------------
Instrumental 14.99 5
Instrumental 15.99 23
Instrumental 16.99 50
Instrumental NULL 78
Vocal 14.99 99
Vocal 15.99 73
Vocal 16.99 45
Vocal NULL 217
NULL NULL 295

The two additional CATEGORY rows provide totals for each value in the CATEGORY
column. In the preceding example, the Instrumental group includes a total of 78 CDs, and
the Vocal group includes a total of 217 CDs. Notice that the PRICE column includes a null

www.it-ebooks.info

http://www.it-ebooks.info/

 164 SQL: A Beginner’s Guide

value for these particular rows. A value cannot be calculated for this column because all three
subgroups (from the PRICE column) are represented here. The last row (the one with NULL
for both the CATEGORY and PRICE columns) contains a grand total of all CDs counted by
the query (both category groups and all three price subgroups).

The CUBE operator returns the same data as the ROLLUP operator, and then some. Notice
that, in the following SELECT statement, I’ve merely replaced the CUBE keyword for ROLLUP:

SELECT CATEGORY, PRICE, SUM(ON_HAND) AS TOTAL_ON_HAND
 FROM COMPACT_DISC_STOCK
 GROUP BY CUBE (CATEGORY, PRICE);

This statement returns the following query results:

CATEGORY PRICE TOTAL_ON_HAND
------------ ----- -------------
Instrumental 14.99 5
Instrumental 15.99 23
Instrumental 16.99 50
Instrumental NULL 78
Vocal 14.99 99
Vocal 15.99 73
Vocal 16.99 45
Vocal NULL 217
NULL NULL 295
NULL 14.99 104
NULL 15.99 96
NULL 16.99 95

You can see that three additional rows have been added to the query results, one row for
each different value in the PRICE column. Unlike the ROLLUP operator, the CUBE operator
summarizes the values for each subgroup. Also notice that a null value is shown for the
CATEGORY column for these rows. This is because both Vocal and Instrumental values are
included in each subgroup summary.

As you can see, the GROUP BY clause can be a valuable tool when trying to summarize
data, particularly when you make use of the many functions available in SQL, such as SUM
and AVG. In Chapter 10, I discuss these and many other functions that you can use to make
your SELECT statement more robust and applicable to your needs.

Use the HAVING Clause to Specify
Group Search Conditions

The HAVING clause is similar to the WHERE clause in that it defines a search condition.
However, unlike the WHERE clause, the HAVING clause is concerned with groups, not
individual rows:

● If a GROUP BY clause is specified, the HAVING clause is applied to the groups created
by the GROUP BY clause.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 165

● If a WHERE clause is specified and no GROUP BY clause is specified, the HAVING clause
is applied to the output of the WHERE clause and that output is treated as one group.

● If no WHERE clause and no GROUP BY clause are specified, the HAVING clause is
applied to the output of the FROM clause and that output is treated as one group.

The best way to understand the HAVING clause is to remember that the clauses in a
SELECT statement are processed in a definite order. A WHERE clause can receive input only
from a FROM clause, but a HAVING clause can receive input from a GROUP BY, WHERE,
or FROM clause. This is a subtle, yet important, distinction, and the best way to illustrate it is
to look at a couple of examples.

In the first example, which is based on the COMPACT_DISC_STOCK table in Figure 7-4, I
use a WHERE clause to specify that the query results should include only rows whose ON_HAND
value is less than 20, as shown in the following SELECT statement:

SELECT CATEGORY, AVG(PRICE) AS AVG_PRICE
 FROM COMPACT_DISC_STOCK
 WHERE ON_HAND < 20
 GROUP BY CATEGORY;

The statement returns two columns: CATEGORY and AVG_PRICE, which is the average
of all prices for each category. The averages include only those rows where ON_HAND values
are less than 20. If you executed this statement, the results would look similar to the following:

CATEGORY AVG_PRICE
------------ ---------
Instrumental 15.656666
Vocal 15.990000

As you would expect, the query result returns two rows—one for the Instrumental group
and one for the Vocal group.

If you were to use the HAVING clause, rather than the WHERE clause, to limit values to
less than 20, you might use the following SELECT statement:

SELECT CATEGORY, AVG(PRICE) AS AVG_PRICE
 FROM COMPACT_DISC_STOCK
 GROUP BY CATEGORY
HAVING ON_HAND < 20;

However, if you were to try to execute this statement, you would receive an error because
you cannot apply individual ON_HAND values to the groups. For a column to be included in
the HAVING clause, it must be a grouped column or it must be summarized in some way.

Now let’s take a look at another example that uses the HAVING clause. In this case, the
clause includes a summarized column:

SELECT PRICE, CATEGORY, SUM(ON_HAND) AS TOTAL_ON_HAND
 FROM COMPACT_DISC_STOCK
 GROUP BY PRICE, CATEGORY
HAVING SUM(ON_HAND) > 10;

www.it-ebooks.info

http://www.it-ebooks.info/

 166 SQL: A Beginner’s Guide

The HAVING clause in this statement will work because the ON_HAND values are being
added together, which means they can work within the group structure. The query results
would be as follows:

PRICE CATEGORY TOTAL_ON_HAND
----- ------------ -------------
15.99 Instrumental 23
16.99 Instrumental 50
14.99 Vocal 99
15.99 Vocal 73
16.99 Vocal 45

The HAVING clause is applied to the results after they have been grouped together
(in the GROUP BY clause). For each group, the ON_HAND values are added together,
but only groups with TOTAL_ON_HAND values over 10 are included. If the HAVING
clause were not included, the query results would include an additional row for the 14.99/
Instrumental group.

For the most part, you’ll probably find that you’ll be using the HAVING clause in
conjunction with the GROUP BY clause. By using these two together, you can group together
relevant data and then filter that data to refine your search even further. The HAVING clause
also has the advantage of allowing you to use set functions such as AVG or SUM, which you
cannot use in a WHERE clause unless you place them within a subquery. The important points
to keep in mind with the HAVING clause are that it is the last clause in the table expression to
be applied and that it is concerned with grouped data, rather than individual rows.

Use the ORDER BY Clause to Sort Query Results
The ORDER BY clause, when it is used in a SELECT statement, is the last clause to be
processed. The ORDER BY clause takes the output from the SELECT clause and orders the
query results according to the specifications within the ORDER BY clause. The clause does
not group rows together, as they’re grouped by the GROUP BY clause, nor does it filter out
rows, as they’re filtered by the WHERE clause or the HAVING clause. You can, however,
specify whether the rows are organized in an ascending order (by using the ASC keyword) or
in descending order (by using the DESC keyword).

To use the ORDER BY clause, simply specify one or more columns and the optional ASC
or DESC keywords (one per column). If a keyword is not specified, ASC is assumed. The rows
are organized according to the column you specify. If you define more than one column in the
ORDER BY clause, the rows are organized in the order in which the columns are specified.

Let’s take a look at a few examples to clarify how the ORDER BY clause works. (The
examples are based on the COMPACT_DISC_STOCK table in Figure 7-4.) In the first
example, I order the rows based on the PRICE column:

SELECT * FROM COMPACT_DISC_STOCK
 WHERE PRICE < 16.00
 ORDER BY PRICE;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 167

Notice that the PRICE column is specified in the ORDER BY clause. Also notice that
neither the ASC nor the DESC keyword has been specified, so the ASC keyword will be
assumed. If you execute this query, you will receive results similar to the following:

COMPACT_DISC CATEGORY PRICE ON_HAND
------------------------------------- ------------ ----- --------
Blue Vocal 14.99 42
Court and Spark Vocal 14.99 22
That Christmas Feeling Vocal 14.99 8
Blues on the Bayou Vocal 14.99 27
Orlando Instrumental 14.99 5
Carreras Domingo Pavarotti in Concert Vocal 15.99 27
Leonard Cohen The Best Of Vocal 15.99 12
Fundamental Vocal 15.99 34
Past Light Instrumental 15.99 17
Kojiki Instrumental 15.99 6

The rows are listed according to the PRICE column. The values in the PRICE column
appear in ascending order (lowest price to highest price). Because the WHERE clause was
specified, no rows with prices above 15.99 are included in the query results. Also, since only
the PRICE column was included in the ORDER BY, the order of rows that have the same price
is unpredictable. For example, the five rows with a PRICE of 14.99 will all appear before
those with a PRICE of 15.99, but those five rows might appear in any order.

In the next example, the SELECT statement is nearly the same as the last statement, except
that an additional column is specified in the ORDER BY clause:

SELECT * FROM COMPACT_DISC_STOCK
 WHERE PRICE < 16.00
 ORDER BY PRICE, ON_HAND DESC;

In this case, the ON_HAND column is followed by the DESC keyword, which means that
the rows will be listed in descending order. However, because there are two columns, the rows
are first ordered by the PRICE column and then by the ON_HAND column. If you execute this
SELECT statement, you’ll receive the following results:

COMPACT_DISC CATEGORY PRICE ON_HAND
------------------------------------- ------------ ----- -------
Blue Vocal 14.99 42
Blues on the Bayou Vocal 14.99 27
Court and Spark Vocal 14.99 22
That Christmas Feeling Vocal 14.99 8
Orlando Instrumental 14.99 5
Fundamental Vocal 15.99 34
Carreras Domingo Pavarotti in Concert Vocal 15.99 27
Past Light Instrumental 15.99 17
Leonard Cohen The Best Of Vocal 15.99 12
Kojiki Instrumental 15.99 6

www.it-ebooks.info

http://www.it-ebooks.info/

 168 SQL: A Beginner’s Guide

As you can see, the rows are listed according to the order of the PRICE values, which
are in ascending order. In addition, the ON_HAND values are listed in descending order
for each price. So for the set of 14.99 PRICE values, the rows start with a value of 42 in the
ON_HAND column and end with a value of 5. Then we jump to the next group of PRICE
values: 15.99. Once again, the largest ON_HAND value for the 15.99 PRICE range is listed
first and the last row contains the smallest ON_HAND value for the 15.99 PRICE range.

Whenever you’re using the ORDER BY clause, you must be aware of the order in which
you list column names within that clause. In the preceding example, the PRICE column is
listed first, so the rows are ordered first by the PRICE column and then by the ON_HAND
column. However, you can reverse the column names, as shown in the following SELECT
statement:

SELECT * FROM COMPACT_DISC_STOCK
 WHERE PRICE < 16.00
 ORDER BY ON_HAND, PRICE DESC;

This time, the ON_HAND column is listed first and the PRICE column listed second, and
the PRICE column is assigned the DESC keyword. As a result, the rows will be sorted by the
ON_HAND column first, as shown in the following query results:

COMPACT_DISC CATEGORY PRICE ON_HAND
------------------------------------- ------------ ----- -------
Orlando Instrumental 14.99 5
Kojiki Instrumental 15.99 6
That Christmas Feeling Vocal 14.99 8
Leonard Cohen The Best Of Vocal 15.99 12
Past Light Instrumental 15.99 17
Court and Spark Vocal 14.99 22
Carreras Domingo Pavarotti in Concert Vocal 15.99 27

Q: How does the ORDER BY clause affect query results in embedded SQL and SQL
modules?

A: You can use the ORDER BY clause only in direct invocation and when defining cursors.
(I discuss cursors in Chapter 15.) You cannot use an ORDER BY clause in other situations.
This is because of limitations in application languages—they cannot handle an unknown
number of rows in a query result. Application languages do not know what to do with
this sort of uncertainty. And because the ORDER BY clause applies only to multirow
query results, the clause is not applicable to environments that require rows to be returned
one at a time. However, cursors offer a way for application languages to deal with that
uncertainty, allowing the ORDER BY clause to be used in cursor definitions. Cursors are
discussed in more detail in Chapter 15.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 169

Try This 7-1

Blues on the Bayou Vocal 14.99 27
Fundamental Vocal 15.99 34
Blue Vocal 14.99 42

Notice that the ON_HAND values are in ascending order. The rows are then ordered
according to the PRICE value. However, because there are only two rows that share the same
ON_HAND value (27), these are the only rows that the ORDER BY column affects, with
regard to the PRICE column.

The ORDER BY clause is a convenient tool for organizing your query results, but remember,
it doesn’t affect which data is displayed. Only the other clauses can actually name, filter, and
group data. The ORDER BY clause is merely an organizer for what already exists. And in fact,
while it is not a very sound practice, you can include columns in the ORDER BY clause that are
not in the SELECT clause, thereby sorting on columns that are not visible in the query results.

 Querying the Inventory Database
For the Try This exercises in previous chapters, you created a number of persistent base tables
that are capable of storing data. In this chapter, you learned how to create SELECT statements
that allow you to query data in base tables. As a result, this exercise focuses on creating
SELECT statements that query data in the tables that you created. However, before you can
actually query those tables, data must be stored within them. While I do not cover inserting
data until Chapter 8, I do provide the statements you need to insert the data in the Try_This_
07.txt file, which you can download from our web site. The file contains a series of INSERT
statements that allow you to populate the tables, along with the SELECT statements used in
this exercise. You can also view these statements in Appendix C.

If you look at the Try_This_07.txt file, you’ll see a series of INSERT statements that are
grouped together according to the tables that you created in the INVENTORY database. For
example, the first set of INSERT statements are for the CD_LABELS table, as shown in the
following statements:

--Insert data into the CD_LABELS table
INSERT INTO CD_LABELS VALUES (827, 'Private Music');
INSERT INTO CD_LABELS VALUES (828, 'Reprise Records');
INSERT INTO CD_LABELS VALUES (829, 'Asylum Records');
INSERT INTO CD_LABELS VALUES (830, 'Windham Hill Records');
INSERT INTO CD_LABELS VALUES (831, 'Geffen');
INSERT INTO CD_LABELS VALUES (832, 'MCA Records');
INSERT INTO CD_LABELS VALUES (833, 'Decca Record Company');
INSERT INTO CD_LABELS VALUES (834, 'CBS Records');
INSERT INTO CD_LABELS VALUES (835, 'Capitol Records');
INSERT INTO CD_LABELS VALUES (836, 'Sarabande Records');
--End inserts for the CD_LABELS table

You will need to copy these statements into your client application and execute
them. Each INSERT statement adds one row of data to the applicable table. For example,
the first INSERT statement listed in the preceding code adds one row of data to the

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 170 SQL: A Beginner’s Guide

CD_LABELS table. The values that are added are 827 (for the LABEL_ID column)
and Private Music (for the COMPANY_NAME column). Again, I present the INSERT
statement in greater detail in Chapter 8. If you are uncomfortable inserting this data before
reading about the INSERT statement, I suggest that you review the information in Chapter
8 before working on this Try This exercise and then return here to perform each step.
However, if you decide to do this exercise now, then you simply need to execute each
statement, as described in the following steps.

NOTE
As you probably noticed, each block of INSERT statements begins and ends with a line
that starts off with double hyphens (--). Double hyphens indicate that the line of text that
follows is a comment. Your SQL implementation will simply skip over these lines. The
comments are there only to provide information to the SQL programmers so they can
better understand the code.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. Open the Try_This_07.txt file and copy the INSERT statements into your client application.
Most applications will allow you to execute blocks of statements, rather than having to
enter the data one row at a time. If your application supports executing multiple statements,
execute the statements one table at a time by copying and pasting blocks of statements into
your client application. You should enter data for each table in the order that the data appears
in the Try_This_07.txt file. For example, you should insert values into the CD_LABELS
table before the COMPACT_DISCS table.

 For each INSERT statement that you execute, you should receive a message acknowledging
that the row has been inserted into the table. After you’ve populated each table with data,
you’re ready to move on to the next step.

 3. You will now query all the data in the ARTISTS table. Enter and execute the following SQL
statement:

SELECT *
 FROM ARTISTS;

 Your query results should include the ARTIST_ID, ARTIST_NAME, and PLACE_OF_
BIRTH columns. There should be 18 rows of data in all.

 4. Now let’s create a query that specifies which columns to include in the query results. For
the next SELECT statement, you will query the COMPACT_DISC table, but return only the
CD_TITLE and IN_STOCK columns. Enter and execute the following SQL statement:

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 171

 Your query results should include only the two columns you specified in the SELECT
statement. In addition, the query should return 15 rows of data.

 5. In Chapter 5, Try This 5-1, you created the CD_IN_STOCK view. The view returns the
same data as specified in the SELECT statement in step 4, except that it limits the results
to rows with IN_STOCK values greater than 10. You will now query that view. Enter and
execute the following SQL statement:

SELECT *
 FROM CDS_IN_STOCK;

 Notice that your SELECT statement is the same as it would have been for a persistent
base table. You can even specify the view column names if you want. (In fact, you should
if you’re querying the view in any way other than through direct invocation.) In the last
SELECT statement, the query returned 15 rows, but this query returns only 12 rows because
the IN_STOCK values must be over 10. The nice part about the view is that it is already set
up to return exactly the information you want, without having to define the WHERE clause.

 6. Now let’s query the COMPACT_DISCS table but refine our SELECT statement by using a
WHERE clause. Enter and execute the following SQL statement:

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 10 AND IN_STOCK < 30;

 Because the WHERE clause has been added, your query results should now include only
nine rows, and each row should contain an IN_STOCK value between 10 and 30.

 7. The next SELECT statement that you create groups together information in the
COMPACT_DISCS table. Enter and execute the following SQL statement:

SELECT LABEL_ID, SUM(IN_STOCK) AS TOTAL_IN_STOCK
 FROM COMPACT_DISCS
 GROUP BY LABEL_ID;

 One row is returned for each different LABEL_ID value, and for each of those values, the
total for the IN_STOCK values is returned. There are 10 rows in all. Notice that, in your
query results, the name of the column with the IN_STOCK totals is TOTAL_IN_STOCK.
When you learn more about joining tables, you’ll be able to group data based on more
complex queries. Joining tables is discussed in Chapter 11.

 8. Now you’ll add a HAVING clause to the SELECT statement you just executed. Enter and
execute the following SQL statement:

SELECT LABEL_ID, SUM(IN_STOCK) AS TOTAL_IN_STOCK
 FROM COMPACT_DISCS
 GROUP BY LABEL_ID
HAVING SUM(IN_STOCK) > 10;

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 172 SQL: A Beginner’s Guide

 The HAVING clause limits the rows that are returned to those whose TOTAL_IN_STOCK
values are greater than 10. Now only eight rows are returned.

 9. You can also execute a SELECT statement that orders the data returned by your query.
Enter and execute the following SQL statement:

SELECT *
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 10
 ORDER BY CD_TITLE DESC;

 Your query results should be organized according to the CD_TITLE column, with the
columns listed in descending order. Because the WHERE clause is used, only 12 rows
should have been returned.

 10. Close the client application.

Try This Summary
In this Try This exercise, you inserted data into the tables of the INVENTORY database.
You then created SELECT statements that allowed you to query data in those tables. You
should feel free to experiment with SELECT statements and try different types of queries.
As you become more comfortable with using the SELECT statement and learn more
advanced techniques for querying data, you’ll be able to write SELECT statements that
access multiple tables, calculate data, and summarize information. However, even the more
advanced techniques rely on the basic foundation that you have demonstrated in this exercise.
Everything else builds on this.

Chapter 7 Self Test
 1. Which clauses in a SELECT statement are part of the table expression?

 A SELECT

 B FROM

 C WHERE

 D ORDER BY

 2. In what order are the clauses of a SELECT statement applied?

 3. You are writing a SELECT statement that retrieves the CD_TITLE column and all rows
from the INVENTORY table. Which SELECT statement should you use?

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 7: Querying SQL Data 173

 4. You are writing a SELECT statement that retrieves the CD_TITLE column and all rows
from the INVENTORY table. You want the column in the query results to be named
COMPACT_DISC. Which SELECT statement should you use?

 5. Which clauses in a SELECT statement are required?

 A SELECT

 B FROM

 C WHERE

 D GROUP BY

 6. Which keyword should you add to the SELECT clause to ensure that each row of the query
result is unique?

 A ALL

 B ROLLUP

 C DISTINCT

 D CUBE

 7. You’re creating a SELECT statement for the INVENTORY table and you want to ensure
that only rows with a RETAIL_PRICE value of less than $16.00 are included in the query
results. What WHERE clause should you use?

 8. You’re creating a SELECT statement that includes a WHERE clause. The WHERE clause
contains two predicates. You want the condition of either one of the predicates to be met,
but it’s not necessary for both conditions to be met. What keyword should you use to
connect the two predicates?

 9. Each predicate in a WHERE clause is evaluated to which of the following?

 A True

 B Not

 C False

 D Unknown

 10. Which clause allows you to group together values in a specified column?

 A ROLLUP

 B HAVING

 C ORDER BY

 D GROUP BY

www.it-ebooks.info

http://www.it-ebooks.info/

 174 SQL: A Beginner’s Guide

 11. Which two operators can you use in a GROUP BY clause to return additional summary data
in a query result?

 A ROLLUP

 B HAVING

 C CUBE

 D DISTINCT

 12. You’re writing a SELECT statement that retrieves the CATEGORY and PRICE columns
from the COMPACT_DISC_STOCK table. You want to group data together first by the
CATEGORY column and then by the PRICE column. Which SELECT statement should
you use?

 13. You’re writing a SELECT statement that retrieves the CATEGORY and PRICE columns
from the COMPACT_DISC_STOCK table. You want to group together data first by the
CATEGORY column and then by the PRICE column. You then want to filter out any groups
that have a PRICE value over 15.99. Which SELECT statement should you use?

 14. You’re creating a SELECT statement that includes a SELECT clause, FROM clause,
WHERE clause, GROUP BY clause, and HAVING clause. From which clause will the
HAVING clause receive output?

 A SELECT

 B FROM

 C WHERE

 D GROUP BY

 15. How does the HAVING clause differ from the WHERE clause?

 16. From which clause does the ORDER BY clause receive output?

 17. Which keyword should you add to an ORDER BY clause to sort data in descending order?

www.it-ebooks.info

http://www.it-ebooks.info/

175

Chapter 8
Modifying SQL Data

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 176 SQL: A Beginner’s Guide

Key Skills & Concepts

● Insert SQL Data

● Update SQL Data

● Delete SQL Data

One of the primary functions of any database is to be able to manipulate the data stored
within its tables. Designated users must be able to insert, update, and delete data as

necessary in order to keep the database current and ensure that only the appropriate data is
being stored. SQL provides three statements for basic data manipulation: INSERT, UPDATE,
and DELETE. In this chapter, I will examine each of these statements and demonstrate how
they can be used in an SQL environment to modify data in the database.

Insert SQL Data
In Chapter 7, Try This 7-1, I introduce you briefly to the INSERT statement. As you can see
from that exercise, the INSERT statement allows you to add data to the various tables in your
database. I present the basic syntax in this section and an alternate syntax in the next section
(“Inserting Values from a SELECT Statement”). The syntax for a basic INSERT statement is
relatively straightforward:

INSERT INTO <table name>
[(<column name> [{ , <column name> } . . .])]
VALUES (<value> [{ , <value> } . . .])

Only the first and last lines in the syntax are required. The second line is optional. Both the
first and second lines are part of the INSERT INTO clause. In this clause, you must identify
the name of the table (or view) into which you will be inserting data. The table name follows
the INSERT INTO keywords. You then have the option of identifying the column names in the
table that will be receiving the data. This is the purpose of the second line in the syntax. You
can specify one or more columns, all of which must be enclosed in parentheses. If you specify
more than one column, they must be separated using commas.

NOTE
Most SQL implementations support inserts into views. However, there are restrictions.
For example, you cannot insert into a view if there are table columns that are not
included in the view and those columns do not allow null values and do not have a
default value defined. Furthermore, if the view has more than one base table, you may
not be able to insert into it at all, but if you can, you will be required to name columns
from only one of the base tables because an insert can affect only one base table.
Always check your vendor documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 8: Modifying SQL Data 177

In the third line of syntax, which is the VALUES clause, you must specify one or more
values that will be inserted into the table. The list of values must be enclosed in parentheses
and, if more than one is specified, they must be separated using commas. In addition, the
values must meet the following requirements:

● If the column names are not specified in the INSERT INTO clause, then there must be one
value for each column in the table and the values must be in the same order as they are
defined in the table.

● If the column names are specified in the INSERT INTO clause, then there must be exactly
one value per specified column and those values must be in the same order in which they
are defined in the INSERT INTO clause. However, the column names and values do not
have to be in the same order as the columns in the table definition.

● You must provide a value for each column in the table except for columns that either allow
null values or have a default value defined.

● Each value with a character string data type must be enclosed in single quotes.

● You may use the keyword NULL (or null) as the data value in the VALUES clause to
assign a null value to any column that allows nulls.

NOTE
Many SQL programmers prefer to specify the column names in the INSERT INTO clause,
whether or not it’s necessary to do so, because it provides a method for documenting
which columns are supposed to be receiving data. This practice also makes the INSERT
statement less prone to errors and other problems should columns be added or the
column order be changed at some future time. For these reasons, many organizations
require the use of the column names in all INSERT statements.

Now let’s take a look at some examples of the INSERT statement. For these examples,
I will use the CD_INVENTORY table. The table is based on the following table definition:

CREATE TABLE CD_INVENTORY
 (CD_NAME VARCHAR(60) NOT NULL,
 MUSIC_TYPE VARCHAR(15),
 PUBLISHER VARCHAR(50) DEFAULT 'Independent' NOT NULL,
 IN_STOCK INT NOT NULL);

The first example I’ll show you inserts values into every column in the CD_INVENTORY
table:

INSERT INTO CD_INVENTORY
 VALUES ('Patsy Cline: 12 Greatest Hits', 'Country', 'MCA Records', 32);

Notice that the INSERT INTO clause includes only the name of the CD_INVENTORY table,
but does not specify any columns. In the VALUES clause, four values have been specified.
The values are separated by commas, and the values with character string data types are

www.it-ebooks.info

http://www.it-ebooks.info/

 178 SQL: A Beginner’s Guide

enclosed in single quotes. If you refer back to the table definition, you’ll see that the values
specified in the VALUES clause are in the same order as the column definitions.

When you execute the INSERT statement shown in the example, the data is added to the
CD_INVENTORY table, as shown in Figure 8-1.

If you had tried to execute an INSERT statement like the last example, but included only
three values, rather than four, you would have received an error. For example, you would not
be able to execute the following statement:

INSERT INTO CD_INVENTORY
 VALUES ('Patsy Cline: 12 Greatest Hits', 'MCA Records', 32);

In this example, only three values have been specified. In this case, the missing value is for the
MUSIC_TYPE column. Even though this column accepts null values, the SQL implementation
has no way of knowing which value is being omitted, so an error is returned.

Instead of leaving the value out of the VALUES clause, you can specify a null value, as
shown in the following example:

INSERT INTO CD_INVENTORY
 VALUES ('Out Of Africa', null, 'MCA Records', 29);

If you execute the INSERT statement, your table will now include an additional row. Figure 8-2
shows what the table would look like, assuming that the two INSERT statements have been
executed.

The null value was inserted into the MUSIC_TYPE column, and the other values were
inserted into the appropriate columns. If a null value were not permitted in the MUSIC_TYPE
column, you would have had to specify a value.

NOTE
Figure 8-2 shows the new row being inserted after the existing row in the table.
However, the row might be inserted at any place in a table, depending on how the SQL
implementation inserts rows. The SQL standard does not specify where a row should
be inserted in a table. In fact, you should never rely on the rows in a table being in
any particular order—you should use the ORDER BY clause whenever the results of a
SELECT need to be in a particular sequence.

Rather than having to provide a value for every column when you insert a row, you can
specify which columns receive values. For example, you can specify values for the CD_NAME,

Figure 8-1 The CD_INVENTORY table with the new row of data

CD_NAME:
VARCHAR(60)

Patsy Cline: 12 Greatest Hits Country MCA Records

IN_STOCK:
INT

32

MUSIC_TYPE:
VARCHAR(15)

PUBLISHER:
VARCHAR(50)

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 8: Modifying SQL Data 179

PUBLISHER, and IN_STOCK columns of the CD_INVENTORY table, as shown in the
following example:

INSERT INTO CD_INVENTORY (CD_NAME, PUBLISHER, IN_STOCK)
 VALUES ('Fundamental', 'Capitol Records', 34);

In this case, one value has been specified for each of the columns identified in the INSERT
INTO clause, and the values are specified in the same order as the columns in the INSERT
INTO clause. Notice that the INSERT statement doesn’t include the MUSIC_TYPE column
in the INSERT INTO clause or in the VALUES clause. You can omit this column because
null values are permitted in that column. If you were to execute this statement, your
CD_INVENTORY table would now have a third row (shown in Figure 8-3).

Once again, the null value is automatically added to the MUSIC_TYPE column. If
a default value had been defined for the column, that value would have been added. For
example, the following INSERT statement omits the PUBLISHER column, rather than the
MUSIC_TYPE column:

INSERT INTO CD_INVENTORY (CD_NAME, MUSIC_TYPE, IN_STOCK)
 VALUES ('Orlando', 'Soundtrack', 5);

When the row is added to the CD_INVENTORY table, the default value (Independent) is
added to the PUBLISHER column, as shown in Figure 8-4.

Figure 8-2 The CD_INVENTORY table with two rows of data

CD_NAME:
VARCHAR(60)

Patsy Cline: 12 Greatest Hits Country MCA Records

IN_STOCK:
INT

32

MUSIC_TYPE:
VARCHAR(15)

PUBLISHER:
VARCHAR(50)

Out of Africa NULL MCA Records 29

Figure 8-3 The CD_INVENTORY table with three rows of data

CD_NAME:
VARCHAR(60)

Patsy Cline: 12 Greatest Hits Country MCA Records

IN_STOCK:
INT

32

MUSIC_TYPE:
VARCHAR(15)

PUBLISHER:
VARCHAR(50)

Out of Africa NULL MCA Records 29

Fundamental NULL Capitol Records 34

www.it-ebooks.info

http://www.it-ebooks.info/

 180 SQL: A Beginner’s Guide

If you try to execute an INSERT statement that omits a column that does not permit null
values and is not defined with a default value, you will receive an error. When you insert a
new row, the RDBMS must get a value for each column from somewhere, so if nulls are not
permitted, then the value must come from either a default value (if defined) or the VALUES
clause of the INSERT statement.

NOTE
The values that you specify in the VALUES clause must conform to all restrictions placed
on a table. This means that the values must conform to the data types or domains
associated with a column. In addition, the values are limited by any constraints defined
on the table. For example, a foreign key constraint would prevent you from adding any
values that violate the constraint, or a check constraint may limit the range of values that
can be inserted into the table. Be sure that you’re familiar with the restrictions placed on
a table before trying to insert data into that table. You can learn more about data types
in Chapter 3. You can learn more about domains and constraints in Chapter 4.

You can, of course, specify all columns in the INSERT INTO clause. If you do this,
you must be sure to specify the same number of values, in the same order in which the
columns are specified. The following INSERT statement inserts values into all columns of
the CD_INVENTORY table:

INSERT INTO CD_INVENTORY (CD_NAME, MUSIC_TYPE, PUBLISHER, IN_STOCK)
 VALUES ('Court and Spark', 'Pop', 'Asylum Records', 22);

When you execute this statement, a row is added to the CD_INVENTORY table, with a value for
each column. Figure 8-5 shows the new row, along with the other four rows we have inserted. If
you were to omit one of the values from the VALUES clause—even if null values were allowed
for the related column—you would receive an error when you executed that statement.

Inserting Values from a SELECT Statement
Earlier in this chapter, at the beginning of the “Insert SQL Data” section, I say that the VALUES
clause is mandatory and that you need to specify at least one value. There is, however, an
alternative to the VALUES clause. You can use a SELECT statement to specify the values that

Figure 8-4 The CD_INVENTORY table with four rows of data

CD_NAME:
VARCHAR(60)

Patsy Cline: 12 Greatest Hits Country MCA Records

IN_STOCK:
INT

32

MUSIC_TYPE:
VARCHAR(15)

PUBLISHER:
VARCHAR(50)

Out of Africa NULL MCA Records 29

Fundamental NULL Capitol Records 34

Orlando Soundtrack Independent 5

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 8: Modifying SQL Data 181

you want to insert into a table. The key to using a SELECT statement, just as with using the
VALUES clause, is to make sure that the number of values returned by the SELECT statement
matches the required number of values and that those values conform to any restriction on the
target table. Let’s look at an example.

Suppose that, in addition to the CD_INVENTORY table I’ve been using in previous
examples, your database includes a second table named CD_INVENTORY_2, which includes
two columns, as shown in the following table definition:

CREATE TABLE CD_INVENTORY_2
 (CD_NAME_2 VARCHAR(60) NOT NULL,
 IN_STOCK_2 INT NOT NULL);

The CD_NAME_2 column in the CD_INVENTORY_2 table has the same data type
as the CD_NAME column in the CD_INVENTORY table, and the IN_STOCK_2 column
in the CD_INVENTORY_2 table has the same data type as the IN_STOCK column in the
CD_INVENTORY table. As a result, values taken from the two columns in one table can be
inserted into the two columns in the second table.

NOTE
A column in one table does not have to be the same data type as a column in another
table for values to be copied from one to the other, as long as the values inserted into
the target table conform to the data restrictions of that table.

By using an INSERT statement, you can copy values from the CD_INVENTORY table
to the CD_INVENTORY_2 table. The following INSERT statement includes a SELECT
statement that queries the CD_INVENTORY table:

INSERT INTO CD_INVENTORY_2
 SELECT CD_NAME, IN_STOCK
 FROM CD_INVENTORY;

Figure 8-5 The CD_INVENTORY table with five rows of data

CD_NAME:
VARCHAR(60)

Patsy Cline: 12 Greatest Hits Country MCA Records

IN_STOCK:
INT

32

MUSIC_TYPE:
VARCHAR(15)

PUBLISHER:
VARCHAR(50)

Out of Africa NULL MCA Records 29

Fundamental NULL Capitol Records 34

Orlando Soundtrack Independent 5

Court and Spark Pop Asylum Records 22

www.it-ebooks.info

http://www.it-ebooks.info/

 182 SQL: A Beginner’s Guide

As you can see, no columns are specified in the INSERT INTO clause; as a result, values
will be inserted into both columns in the CD_INVENTORY_2 table. In the second line of the
statement, a SELECT statement is used to pull values from the CD_NAME and IN_STOCK
columns of the CD_INVENTORY table. The values will then be inserted into their respective
columns in the CD_INVENTORY_2 table, as shown in Figure 8-6.

Notice that the CD_INVENTORY_2 table contains the same five rows of data that are
shown in Figure 8-5, only the CD_INVENTORY_2 table contains only two columns:
CD_NAME_2 and IN_STOCK_2.

Like any other SELECT statement, the SELECT statement that you use in an INSERT
statement can contain a WHERE clause. In the following INSERT statement, the SELECT
statement contains a WHERE clause that limits the IN_STOCK values to an amount greater
than 10:

INSERT INTO CD_INVENTORY_2
 SELECT CD_NAME, IN_STOCK
 FROM CD_INVENTORY
 WHERE IN_STOCK > 10;

If you were to execute this statement, only four rows would be added to the CD_
INVENTORY_2 table, rather than the five rows we saw in the previous example. The WHERE
clause in this case works just like the WHERE clause in any SELECT statement. As a result,
any row with an IN_STOCK value that is not greater than 10 is eliminated from the query
results. Those new filtered results are then inserted into the CD_INVENTORY_2 table.

Update SQL Data
As its name implies, the UPDATE statement allows you to update data in your SQL database.
With the UPDATE statement, you can modify data in one or more rows for one or more
columns. The syntax for the UPDATE statement can be shown as follows:

UPDATE <table name>
SET <set clause expression> [{ , <set clause expression> } . . .]
[WHERE <search condition>]

Figure 8-6 The CD_INVENTORY_2 table with five rows of data

CD_NAME:
VARCHAR(60)

Patsy Cline: 12 Greatest Hits

IN_STOCK:
INT

32

Out of Africa 29

Fundamental 34

Orlando 5

Court and Spark 22

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 8: Modifying SQL Data 183

As you can see, the UPDATE clause and the SET clause are required, and the WHERE
clause is optional. In the UPDATE clause, you must specify the name of the table (or view)
that you’re updating. In the SET clause, you must specify one or more set clause expressions,
which I discuss in more detail later in this chapter. In the WHERE clause, as with the WHERE
clause in a SELECT statement (see Chapter 7), you must specify a search condition. The
WHERE clause works here in much the same way it does in the SELECT statement. You
specify a condition or set of conditions that act as a filter for the rows that are updated. Only
the rows that meet these conditions are updated. In other words, only rows that evaluate to true
are updated.

NOTE
SQL supports using view names in UPDATE statements. However, if the view is based
on multiple tables, all columns being updated must come from a single base table, and
there may be other restrictions as described in your DBMS documentation.

Now let’s return to the SET clause. As you can see, the clause includes the <set clause
expression> placeholder. You must specify one or more set clause expressions. If you
specify more than one, you must separate them with a comma. The syntax of the <set clause
expression> placeholder can be broken down as follows:

<column name> = <value expression>

Basically, you must specify a column name (from the table that you’re updating) and
provide a value that the value in the column should equal. For example, suppose you want
a value in the IN_STOCK column to be changed to 37. (It doesn’t matter what the current
value is.) The set clause expression would be as follows: IN_STOCK = 37. In this case, the
value expression is 37; however, the value expression can be more complicated than that. For
example, you can base the new value on an old value: IN_STOCK = (IN_STOCK + 1). In this
case, the value expression is IN_STOCK + 1, which adds the current value in the IN_STOCK
column to 1 to give you a new value. In this case, if the original value was 37, the new value
will be 38.

Now that we’ve taken a look at the various parts of the UPDATE statement, let’s put it
all together using some examples. The examples we’ll be looking at are based on the CD_
INVENTORY table, which is shown in Figure 8-5.

In the first example, I use the UPDATE statement to change the values of the IN_STOCK
column to 27, as shown in the following SQL statement:

UPDATE CD_INVENTORY
 SET IN_STOCK = 27;

This statement does exactly what you might expect: changes every row in the CD_
INVENTORY table so that the IN_STOCK column for each row contains a value of 27. This
is fine if that’s what you want, but it is unlikely that you’ll want to change every row in a table
so that one of the column values is the same in every row. More likely than not, you’ll want to
qualify the update by using a WHERE clause.

www.it-ebooks.info

http://www.it-ebooks.info/

 184 SQL: A Beginner’s Guide

In the next example, I modify the previous UPDATE statement to include a WHERE clause:

UPDATE CD_INVENTORY
 SET IN_STOCK = 27
 WHERE CD_NAME = 'Out of Africa';

The UPDATE statement still changes the IN_STOCK column to a value of 27, but it does so
only for the rows that meet the search condition in the WHERE clause. In this case, only one
row meets that condition: Out of Africa.

You might find that you want to change a value based on a value that already exists,
such as the amount of inventory in stock. For example, you can add 2 to the value in the
IN_STOCK column:

UPDATE CD_INVENTORY
 SET IN_STOCK = (IN_STOCK + 2)
 WHERE CD_NAME = 'Out of Africa';

If the Out of Africa row contains the value 27 in the IN_STOCK column, and you execute
this UPDATE statement, the new value will be 29. If you execute this statement without the
WHERE clause, 2 will be added to the IN_STOCK value for every row in the table.

The WHERE clause also allows you to specify more than one predicate, as you can do
with a WHERE clause in a SELECT statement. In the following example, I subtract 2 from
the IN_STOCK value for any row that contains a MUSIC_TYPE value of Country and an
IN_STOCK value greater than 30:

UPDATE CD_INVENTORY
 SET IN_STOCK = (IN_STOCK - 2)
 WHERE MUSIC_TYPE = 'Country' AND IN_STOCK > 30;

Only one row (Patsy Cline: 12 Greatest Hits) conforms to the search conditions specified in
the WHERE clause. The IN_STOCK value for that row has been changed from 32 to 30.

You can also specify multiple expressions in the SET clause. In other words, you can
change the values of more than one column at a time. For example, suppose you want to
change the PUBLISHER value and IN_STOCK value for the Orlando row. Your UPDATE
statement might look something like the following:

UPDATE CD_INVENTORY
 SET PUBLISHER = 'Sarabande Records',
 IN_STOCK = (IN_STOCK * 2)
 WHERE CD_NAME = 'Orlando';

Notice that the two expressions in the SET clause are separated by a comma. When you
execute this statement, the PUBLISHER value is changed from Independent to Sarabande
Records, and the IN_STOCK value is changed from 5 to 10. (The 5 value is multiplied by 2.)

One thing you cannot do, however, is change the value for the same column for two
different rows if you’re trying to put different values in those rows. Let’s look at an example to
make this clearer. Suppose you want to update the MUSIC_TYPE value for the Out of Africa
row and the Fundamental row, but you want to update these rows with different values.
The Out of Africa row should have a MUSIC_TYPE value of Soundtrack, and the Fundamental

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 8: Modifying SQL Data 185

row should have a MUSIC_TYPE value of Blues. As a result, you might try to execute
a statement similar to the following:

UPDATE CD_INVENTORY
 SET MUSIC_TYPE = 'Soundtrack',
 MUSIC_TYPE = 'Blues'
 WHERE CD_NAME = 'Out of Africa' OR CD_NAME = 'Fundamental';

If you tried to execute this statement, the SQL implementation would not know which
MUSIC_TYPE value to put into which row, and you would receive an error. To handle a
situation like this, you would need to create two separate UPDATE statements:

UPDATE CD_INVENTORY
 SET MUSIC_TYPE = 'Soundtrack'
 WHERE CD_NAME = 'Orlando';
UPDATE CD_INVENTORY
 SET MUSIC_TYPE = 'Blues'
 WHERE CD_NAME = 'Fundamental';

Updating Values from a SELECT Statement
In the “Inserting Values from a SELECT Statement” section earlier in this chapter, I told
you that you can use a SELECT statement in place of the VALUES clause. You can also use
a SELECT statement in the SET clause of the UPDATE statement. The SELECT statement
returns the value that is defined in the <value expression> portion of the set clause expression.
In other words, the SELECT statement is added to the right of the equal sign.

Let’s take a look at a few examples to see how this works. The following examples
are based on the original data in the CD_INVENTORY table (shown in Figure 8-5) and the
CD_INVENTORY_2 table (shown in Figure 8-6). Suppose you want to update data in the
CD_INVENTORY_2 table by using values from the CD_INVENTORY table. You might
create an UPDATE statement that is similar to the following:

UPDATE CD_INVENTORY_2
 SET IN_STOCK_2 =
 (SELECT AVG(IN_STOCK)
 FROM CD_INVENTORY);

The SELECT statement calculates the average of the IN_STOCK values in the
CD_INVENTORY table, which is 24, so the set clause expression can be interpreted as
follows: IN_STOCK_2 = 24. As a result, all IN_STOCK_2 values in the CD_INVENTORY_2
table are set to 24. Of course, you probably don’t want all your IN_STOCK_2 values to
be the same, so you can limit which rows are updated by adding a WHERE clause to the
UPDATE statement:

UPDATE CD_INVENTORY_2
 SET IN_STOCK_2 =
 (SELECT AVG(IN_STOCK)
 FROM CD_INVENTORY)
 WHERE CD_NAME_2 = 'Orlando';

Now only the Orlando row will be updated and the IN_STOCK_2 value will be changed to 24.

www.it-ebooks.info

http://www.it-ebooks.info/

 186 SQL: A Beginner’s Guide

You can even add a WHERE clause to the SELECT statement, as shown in the following
example:

UPDATE CD_INVENTORY_2
 SET IN_STOCK_2 =
 (SELECT IN_STOCK
 FROM CD_INVENTORY
 WHERE CD_NAME = 'Orlando')
 WHERE CD_NAME_2 = 'Orlando';

In this case, the IN_STOCK value of 5 is taken directly from the Orlando row of the
CD_INVENTORY table and used as the <value expression> portion of the set clause expression.
As a result, the set clause expression can be interpreted as the following: IN_STOCK_2 = 5.
(Of course, the value in the CD_INVENTORY_2 table won’t change because it is already 5,
but if it were something other than 5, it would have been updated to 5.)

You can add one more layer of complexity to the UPDATE statement by modifying the SET
clause even further. For example, suppose you want to increase the value by 2 before inserting it
into the IN_STOCK_2 column. To do so, you can change the value expression to the following:

UPDATE CD_INVENTORY_2
 SET IN_STOCK_2 =
 (SELECT IN_STOCK
 FROM CD_INVENTORY
 WHERE CD_NAME = 'Orlando') + 2
 WHERE CD_NAME_2 = 'Orlando';

Again, the SELECT clause pulls the value of 5 from the IN_STOCK column of the CD_
INVENTORY table, but this time, 2 is added to the value returned by the SELECT statement,
resulting in a total of 7. As a result, the new set clause expression can be represented as
follows: IN_STOCK_2 = (5) + 2. If you execute this statement, the IN_STOCK_2 value will
be changed to 7 in the Orlando row of the CD_INVENTORY_2 table.

By combining the SET clause with the WHERE clause, you can create UPDATE
statements that can calculate very specific values that can be used to modify any number of
rows and columns that you need to update. However, as with the INSERT statement, any
values that you modify must conform to the restrictions of that table. In other words, the new
values must abide by applicable data types, domains, and constraints.

Delete SQL Data
Of all the data modification statements supported by SQL, the DELETE statement is probably
the simplest. It contains only two clauses, only one of which is mandatory. The following
syntax shows you just how basic the DELETE statement is:

DELETE FROM <table name>
[WHERE <search condition>]

As you can see, the DELETE FROM clause requires that you specify the name of the table
(or view) from which you are deleting rows. The WHERE clause, which is similar to

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 8: Modifying SQL Data 187

the WHERE clause in a SELECT statement and an UPDATE statement, requires that you
specify a search condition. If you don’t include a WHERE clause in your DELETE statement,
all rows are deleted from the specified table. Be sure you understand that the DELETE
statement does not delete the table itself, only rows in the table—the DROP TABLE statement,
as described in Chapter 3, is used to remove table definitions from the database.

NOTE
SQL supports referencing views in the DELETE statement, but the actual delete is done to
rows in the base table. In nearly all implementations you cannot delete rows using views
that reference more than one base table—see your vendor documentation for specifics.

Notice in the DELETE statement that no column names are specified. This is because you
cannot delete individual column values from a table. You can delete only rows. If you need to
delete a specific column value, you should use an UPDATE statement to set the value to null.
But you can do this only if null values are supported for that column.

Now let’s take a look at a couple of examples of the DELETE statement. The first example
deletes all data (all rows) from the CD_INVENTORY table, shown in Figure 8-5:

DELETE FROM CD_INVENTORY;

That’s all there is to it. Of course, you would use this statement only if you want to delete
all data from the CD_INVENTORY. Although you might run into some occasions where
it’s necessary to delete every row from a table, it is more likely that you’ll want to use the
WHERE clause to specify which rows to delete. Let’s modify the statement we just looked at
to delete only rows where the MUSIC_TYPE value is Country:

DELETE FROM CD_INVENTORY
 WHERE MUSIC_TYPE = 'Country';

When you execute this statement, all rows whose MUSIC_TYPE value is Country will be
deleted from the CD_INVENTORY table, which in this case is the Patsy Cline: 12 Greatest
Hits row.

Now let’s modify this DELETE statement a little further by including two predicates in the
WHERE clause:

DELETE FROM CD_INVENTORY
 WHERE MUSIC_TYPE = 'Pop'
 OR PUBLISHER = 'Independent';

This statement will delete any rows in the CD_INVENTORY table that include a MUSIC_
TYPE value of Pop or a PUBLISHER value of Independent, which means that the Court and
Spark row and Orlando row will be deleted.

As you can see, the number of rows that are deleted from any table depends on the search
conditions defined within the WHERE clause. When a WHERE clause is not specified, all
rows evaluate to true and are deleted from the table. The WHERE clause allows you to specify
exactly which rows should be deleted from the table.

www.it-ebooks.info

http://www.it-ebooks.info/

 188 SQL: A Beginner’s Guide

Try This 8-1 Modifying SQL Data
In this Try This exercise, you will use the data modification statements discussed in this
chapter to modify data in the INVENTORY database. You will use the INSERT statement to
add data, the UPDATE statement to modify data, and the DELETE statement to remove the
data from the database. Because you will be working only with data, you will not affect the
underlying structure of the tables. You can download the Try_This_08.txt file, which contains
the SQL statements used in this exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. First you will add a new company to the CD_LABELS table. The company is DRG
Records and it will have a LABEL_ID value of 837. Enter and execute the following SQL
statement:

INSERT INTO CD_LABELS
 VALUES (837, 'DRG Records');

One row will be added to the CD_LABELS table.

 3. Now let’s add a new CD to the COMPACT_DISCS table. The CD is named Ann Hampton
Callaway, which has a COMPACT_DISC_ID value of 116. There are 14 of these CDs in
stock and the LABEL_ID value should be 836. (This is not the correct LABEL_ID value,
but we will use it here for the purposes of this exercise.) Enter and execute the following
SQL statement:

INSERT INTO COMPACT_DISCS
 VALUES (116, 'Ann Hampton Callaway', 836, 14);

One row will be added to the COMPACT_DISCS table. The LABEL_ID value of 836
represents Sarabande Records.

 4. Now let’s insert another row into the COMPACT_DISCS table; only this time, your
INSERT statement will specify the column names of the target table. You will insert a CD
named Rhythm Country and Blues. The new row will contain a COMPACT_DISC_ID value
of 117, a LABEL_ID value of 832 (MCA Records), and an IN_STOCK value of 21. Enter
and execute the following SQL statement:

INSERT INTO COMPACT_DISCS
 (COMPACT_DISC_ID, CD_TITLE, LABEL_ID, IN_STOCK)
 VALUES (117, 'Rhythm Country and Blues', 832, 21);

One row will be inserted into the COMPACT_DISCS table.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 8: Modifying SQL Data 189

 5. After you enter the Rhythm Country and Blues row, you realize that the IN_STOCK value
is incorrect, and you want to update that value to 25. Enter and execute the following SQL
statement:

UPDATE COMPACT_DISCS
 SET IN_STOCK = 25
 WHERE COMPACT_DISC_ID = 117;

The IN_STOCK value of the Rhythm Country and Blues row will be changed to 25.

 6. You now realize that you entered the wrong LABEL_ID value for the Ann Hampton Callaway
row. However, you want to be able to modify the existing value by specifying the company
name rather than the LABEL_ID value. The company name is DRG Records, which you
added to the CD_LABELS table in step 2. Enter and execute the following SQL statement:

UPDATE COMPACT_DISCS
 SET LABEL_ID =
 (SELECT LABEL_ID
 FROM CD_LABELS
 WHERE COMPANY_NAME = 'DRG Records')
WHERE COMPACT_DISC_ID = 116;

In this statement, you used a SELECT statement to pull the LABEL_ID value from the
CD_LABELS table. The statement returned a value of 837. The value 837 was then used
as the LABEL_ID value for the COMPACT_DISCS table. Note that you would not have
been able to enter the value of 837 into the LABEL_ID column of the COMPACT_DISCS
table if it did not already exist in the CD_LABELS table. Not only is this because
a SELECT statement was used to pull that value, but also because the LABEL_ID column
in the COMPACT_DISCS table is a foreign key that references the CD_LABELS table. As
a result, the value must exist in the referenced table before it can be added to
the referencing table. See Chapter 4 for more information about foreign keys.

 7. Now let’s take a look at the data that you’ve entered and updated. Enter and execute the
following SQL statement:

SELECT *
 FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = 116
 OR COMPACT_DISC_ID = 117;

The SELECT statement requests data from all columns in the COMPACT_DISCS table,
but only for those rows that have a COMPACT_DISC_ID value of 116 or 117. Your query
results should include two rows. Verify that the information in those rows is correct. The
Ann Hampton Callaway row should have a LABEL_ID value of 837 and an IN_STOCK
value of 14, and the Rhythm Country and Blues row should have a LABEL_ID value of
832 and an IN_STOCK value of 25.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 190 SQL: A Beginner’s Guide

 8. Now let’s delete the two rows you added to the COMPACT_DISCS table. Enter and execute
the following SQL statement:

DELETE FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = 116
 OR COMPACT_DISC_ID = 117;

The Ann Hampton Callaway row and the Rhythm Country and Blues row should have been
deleted from the COMPACT_DISCS table.

 9. Next delete the row you added to the CD_LABELS table. Enter and execute the following
SQL statement:

DELETE FROM CD_LABELS
 WHERE LABEL_ID = 837;

The DRG Records row should have been deleted from the CD_LABELS table.

NOTE
If you had tried to delete this row before deleting the Ann Hampton Callaway row in
the COMPACT_DISCS table, you would have received an error because the LABEL_ID
value in COMPACT_DISCS references the DRG Records row in CD_LABELS. The Ann
Hampton Callaway row had to be deleted first, or the LABEL_ID value had to be
changed to another value that conformed to the foreign key constraint.

 10. Close the client application.

Try This Summary
In this Try This exercise, you added one row to the LABEL_ID table and two rows to the
COMPACT_DISCS table. You then updated the two rows in the COMPACT_DISCS table.
After that, you deleted all the rows that you created. By the time you finished the exercise,
the INVENTORY database should have been the same as when you began. As you can see,
modifying data within tables is a very straightforward process; however, individual data
modification statements can become far more complex. When you learn more advanced
techniques for querying data, you’ll be able to refine your statements to an even greater
degree, providing you with more flexibility in inserting, updating, and deleting data.

 Chapter 8 Self Test
 1. Which SQL statement should you use to add data to a table?

 A SELECT

 B INSERT

 C UPDATE

 D DELETE

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 8: Modifying SQL Data 191

 2. What two clauses are mandatory in an INSERT statement?

 3. In which clause in the INSERT statement do you identify the table that will receive
the new data?

 4. You create the following INSERT statement to add data to the PERFORMING_ARTISTS
table:

INSERT INTO PERFORMING_ARTISTS VALUES (12, 'Frank Sinatra');

The PERFORMING_ARTISTS table includes three columns. What will happen when you
try to execute this statement?

 5. What information must you specify in the VALUES clause of an INSERT statement?

 6. What requirements must be met by the values in a VALUES clause?

 7. You’re creating an INSERT statement to insert data into the ARTIST_TYPES table. The
table includes only two columns: ART_ID and TYPE_NAME. You want to insert one row
that includes the ART_ID value of 27 and the TYPE_NAME value of Gospel. Which SQL
statement should you use?

 8. You’re creating an INSERT statement that inserts values taken from another table. Which
type of statement or clause can you use in place of the VALUES clause to pull data from
that other table?

 A UPDATE

 B SET

 C SELECT

 D WHERE

 9. Which statement should you use to modify existing data in one or more rows in a table?

 A SELECT

 B INSERT

 C UPDATE

 D DELETE

 10. Which clauses in an UPDATE statement are mandatory?

 11. What is the purpose of the WHERE clause in an UPDATE statement?

 12. You’re creating an UPDATE statement to update data in the PERFORMING_ARTISTS
table. You want to update the ART_ID value in the row that contains the PERF_ART_ID
value of 139. The new ART_ID value is 27. Which SQL statement should you use?

 13. You’re creating an UPDATE statement to update data in the PERFORMING_ARTISTS
table. You want to update the ART_ID value of every row to 27. Which SQL statement
should you use?

www.it-ebooks.info

http://www.it-ebooks.info/

 192 SQL: A Beginner’s Guide

 14. You’re updating two columns in the CD_INVENTORY table. You want to change the
PUBLISHER value to MCA Records and you want to double the IN_STOCK value. Which
SET clause should you use?

 15. You’re creating an UPDATE statement that includes a SET clause with one value expression.
You want the value expression to pull a value from another table in the database. Which
statement or clause can you use as a value expression to choose data from another table?

 A SELECT

 B WHERE

 C UPDATE

 D INSERT

 16. Which clause in a DELETE statement is required?

 17. Which statement or clause do you use in a DELETE statement to specify which rows are
deleted from a table?

www.it-ebooks.info

http://www.it-ebooks.info/

193

Chapter 9
Using Predicates

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 194 SQL: A Beginner’s Guide

Key Skills & Concepts

● Compare SQL Data

● Return Null Values

● Return Similar Values

● Reference Additional Sources of Data

● Quantify Comparison Predicates

Up to this point in the book, I have presented a great deal of information about various
aspects of database objects and the data they store. In relation to this, I discussed querying

data (Chapter 7) and modifying data (Chapter 8). Now I want to take a step back and focus
on one aspect of these discussions: the WHERE clause. The WHERE clause, as you might
recall, allows you to specify a search condition that filters out those rows that you do not want
returned by a SELECT statement or modified by an UPDATE or DELETE statement. The
search condition includes one or more predicates that each state a fact about any row that is
to be returned or modified. SQL supports a number of types of predicates, all of which allow
you to test whether a condition is true, false, or unknown. In this chapter, I focus on those
predicates that are most commonly used by SQL programmers, and I provide examples of how
they’re used to view and modify data in an SQL database.

Compare SQL Data
The first types of predicates that I plan to discuss are those that compare data. These
predicates, like any predicate, are included in the WHERE clause. You can include a WHERE
clause in a SELECT, UPDATE, or DELETE statement, and in each case, the clause can
contain one or more comparison predicates.

Each predicate in the WHERE clause (whether a comparison predicate or another type) is
evaluated on an individual basis to determine whether it meets the condition defined by that
predicate. After the predicates are evaluated, the WHERE clause is evaluated as a whole. The
clause must evaluate to true in order for a row to be included in a search result, be updated,
or be deleted. If the clause evaluates to false or unknown, the row is not included or is not
modified. For a complete discussion of how predicates and the WHERE clause are evaluated,
see Chapter 7.

A comparison predicate is a type of predicate that compares the values in a specified
column to a specified value. A comparison operator is used to compare those values. You have
already seen a number of comparison operators (and, subsequently, comparison predicates)
throughout the book. Table 9-1 lists the six comparison operators supported by SQL and
provides an example of each one.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 195

You no doubt recognize several of these operators, and even those you don’t recognize
should be fairly self-explanatory. But let’s take a quick look at the examples in Table 9-1 to
make sure you understand how a comparison predicate works. In the first row in the table (the
Equal to row), the example predicate is IN_STOCK = 47. If this were to appear in a WHERE
clause, it would look like the following:

WHERE IN_STOCK = 47

IN_STOCK is the name of the column in the table identified in the statement that contains
the WHERE clause. The equals sign (=) is the comparison operator that is used to compare the
values in the IN_STOCK column to the value to the right of the equals sign, which in this case
is 47. Therefore, for a row to be evaluated to true, the IN_STOCK value for that row must be 47.
All six comparison operators work in the same way. In each case, the WHERE clause must
evaluate to true in order for the row to be returned in the query results or to be modified.

While it is traditional to place the column name to the left of the comparison operator
and the constant value to the right, you can reverse them and form an equivalent statement,
assuming you also adjust the comparison operator if needed. For example, the following two
WHERE clauses are logically identical, each selecting rows with IN_STOCK values greater
than 5:

WHERE IN_STOCK > 5
WHERE 5 < IN_STOCK

NOTE
As you learned in Chapter 7, you can combine predicates by using the AND keyword
or the OR keyword to join together two or more predicates in a WHERE clause. You
can also use the NOT keyword to create an inverse condition for a particular predicate.
Remember, no matter how many predicates are included in the WHERE clause, the
clause must still evaluate to true for a given row to be selected.

Now that you have an overview of the six types of comparison predicates, let’s take a look
at some examples. These examples are based on Figure 9-1, which shows the data stored in the
CDS_ON_HAND table.

Operator Symbol Example

Equal to = IN_STOCK = 47

Not equal to <> IN_STOCK <> 47

Less than < IN_STOCK < 47

Greater than > IN_STOCK > 47

Less than or equal to <= IN_STOCK <= 47

Greater than or equal to >= IN_STOCK >= 47

Table 9-1 SQL Comparison Operators

www.it-ebooks.info

http://www.it-ebooks.info/

 196 SQL: A Beginner’s Guide

In the first example we’ll look at, the WHERE clause uses an equal to operator to compare
the values in the CD_TITLE column with one of the CD titles:

SELECT CD_TITLE, COPYRIGHT
 FROM CDS_ON_HAND
 WHERE CD_TITLE = 'Past Light';

This statement will return one row with only two values (one for each column specified in the
SELECT clause), as shown in the following query results:

CD_TITLE COPYRIGHT
---------- ---------
Past Light 1983

Now let’s change this SELECT statement a bit. Instead of using the equal to operator, I’ll
use the not equal to operator:

SELECT CD_TITLE, COPYRIGHT
 FROM CDS_ON_HAND
 WHERE CD_TITLE <> 'Past Light';

When you execute this statement, six rows are returned:

CD_TITLE COPYRIGHT
----------------------------- ---------
Famous Blue Raincoat 1991
Blue 1971
Court and Spark 1974
Kojiki 1990
That Christmas Feeling 1993
Patsy Cline: 12 Greatest Hits 1988

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

COPYRIGHT:
INT

1991

1971

1983

1990

1993

1988

1974

RETAIL_PRICE:
NUMERIC(5,2)

16.99

14.99

15.99

15.99

10.99

16.99

14.99

INVENTORY:
INT

6

26

2

5

3

25

18

Figure 9-1 Comparing data in the CDS_ON_HAND table

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 197

Notice that all rows except the Past Light row are included in the query results. In this case, the
WHERE clause evaluates to true only when the CD_TITLE value does not equal Past Light.
Note, however, that if a row contained a null value for CD_TITLE, that row would not appear
in either of the prior result sets. Keep in mind that a comparison with a null value will always
evaluate to unknown (null)—the DBMS cannot tell what it is either equal to or not equal to
because the value is unknown. As you will see later in the “Return Null Values” section, there
are special operators used for dealing with null values.

Now let’s take a look at the less than operator and the greater than operator. In the next
example, I combine two comparison predicates together by using the AND keyword:

SELECT CD_TITLE, INVENTORY
 FROM CDS_ON_HAND
 WHERE INVENTORY > 2
 AND INVENTORY < 25;

As you can see, the rows returned by this SELECT statement must contain an INVENTORY
value between 2 and 25. If you execute this statement, four rows are returned:

CD_TITLE INVENTORY
---------------------- ---------
Famous Blue Raincoat 6
Court and Spark 18
Kojiki 5
That Christmas Feeling 3

When defining the predicates in a WHERE clause, you’re not limited to using only
one column. For instance, if you want to select rows based on both the INVENTORY and
RETAIL_PRICE column values, you can modify the last SELECT statement as shown in the
following example:

SELECT CD_TITLE, INVENTORY
 FROM CDS_ON_HAND
 WHERE INVENTORY > 2
 AND INVENTORY < 25
 AND RETAIL_PRICE <> 16.99;

Because the conditions are connected using AND, any row returned in the query results must
meet all three conditions defined in the WHERE clause. As a result, only three rows are
returned when you execute this statement:

CD_TITLE INVENTORY
---------------------- ---------
Court and Spark 18
Kojiki 5
That Christmas Feeling 3

Notice that the query results do not include the RETAIL_PRICE column. That is because this
column is not specified in the SELECT clause. Even so, you can still use that column in a
predicate in the WHERE clause to define a search condition.

www.it-ebooks.info

http://www.it-ebooks.info/

 198 SQL: A Beginner’s Guide

Now let’s take a look at the less than or equal to operator and the greater than or equal to
operator. In the following example, both operators are used to limit the rows returned to those
with a COPYRIGHT value that falls within the range of 1971 through 1989.

SELECT CD_TITLE, COPYRIGHT
 FROM CDS_ON_HAND
 WHERE COPYRIGHT >= 1971
 AND COPYRIGHT <= 1989;

This statement will return slightly different results than what would be returned if you simply
used the greater than and less than operators. By using the greater than or equal to operator
and the less than or equal to operator, values that equal the specified value are also returned, as
shown in the following query results:

CD_TITLE COPYRIGHT
----------------------------- ---------
Blue 1971
Court and Spark 1974
Past Light 1983
Patsy Cline: 12 Greatest Hits 1988

Notice that the Blue row includes a COPYRIGHT value of 1971. This would not have been
included if you had merely used the greater than operator.

Up to this point, the examples I’ve shown you have all been based on SELECT statements.
However, you can add a WHERE clause to an UPDATE statement or a DELETE statement.
Suppose you want to increase the INVENTORY value for the That Christmas Feeling row. You
can use the following UPDATE statement:

UPDATE CDS_ON_HAND
 SET INVENTORY = 10
 WHERE CD_TITLE = 'That Christmas Feeling';

When you execute this statement, the INVENTORY value is increased to 10 for the That
Christmas Feeling row, but not for any other row because the WHERE clause evaluates to
true only for that row. You could have just as easily added this WHERE clause to a DELETE
statement, in which case the That Christmas Feeling row would have been deleted.

As with the WHERE clause in a SELECT statement, you can combine two or more
predicates to form a search condition:

UPDATE CDS_ON_HAND
 SET INVENTORY = 3
 WHERE CD_TITLE = 'That Christmas Feeling'
 AND COPYRIGHT = 1993;

When you specify the AND keyword, both predicates must evaluate to true in order for the
WHERE clause to evaluate to true. If you specify the OR keyword, instead of AND, then only
one of the predicates must evaluate to true for the row to be selected.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 199

Using the BETWEEN Predicate
Strictly speaking, the BETWEEN predicate is not a comparison predicate, at least not as it is
presented in the SQL:2006 standard. It is, however, so similar in function to a combination
of the greater than or equal to operator and the less than or equal to operator that it’s worth
discussing here.

The BETWEEN predicate is used in conjunction with the AND keyword to identify a
range of values that can be included as a search condition in the WHERE clause. Values in the
identified column must fall within that range in order to evaluate to true. When you use the
BETWEEN clause, you must specify the applicable column, the low end of the range, and the
high end of the range. The following example (which is based on the CDS_ON_HAND table
in Figure 9-1) specifies a range from 14 through 16:

SELECT CD_TITLE, RETAIL_PRICE
 FROM CDS_ON_HAND
 WHERE RETAIL_PRICE BETWEEN 14 AND 16;

The RETAIL_PRICE value for each selected row must fall within that range, including the end
points. If you execute this statement, only four rows are included in the query results:

CD_TITLE RETAIL_PRICE
--------------- ------------
Blue 14.99
Court and Spark 14.99
Past Light 15.99
Kojiki 15.99

Now let’s take a look at a query similar to the one in the last example, only this time using
comparison predicates rather than the BETWEEN predicate:

SELECT CD_TITLE, RETAIL_PRICE
 FROM CDS_ON_HAND
 WHERE RETAIL_PRICE >= 14
 AND RETAIL_PRICE <= 16;

Notice that two predicates are used: one with the greater than or equal to operator and one with
the less than or equal to operator. This SELECT statement will produce the same query results
as the previous SELECT statement.

Now let’s return to the BETWEEN predicate. As with any predicate, you can combine the
BETWEEN predicate with other predicates. In the following statement, the WHERE clause
includes a BETWEEN predicate and a comparison predicate:

SELECT CD_TITLE, RETAIL_PRICE
 FROM CDS_ON_HAND
 WHERE RETAIL_PRICE BETWEEN 14 AND 16
 AND INVENTORY > 10;

www.it-ebooks.info

http://www.it-ebooks.info/

 200 SQL: A Beginner’s Guide

As a result of both predicates, the query results can include only those rows with a RETAIL_
PRICE value that falls within the range of 14 through 16 and with an INVENTORY value
greater than 10. When you execute this query, only two rows are returned:

CD_TITLE RETAIL_PRICE
--------------- ------------
Blue 14.99
Court and Spark 14.99

Again, you will notice that the query results don’t include the INVENTORY column even
though that column is specified in a predicate in the WHERE clause. You’ll also notice that
more than one column is referenced in the WHERE clause.

In addition to what you’ve seen so far with the BETWEEN predicate, you can also use the
clause to specify the inverse of a condition. This is done by using the NOT keyword within the
predicate. For example, suppose you change the last example to the following:

SELECT CD_TITLE, RETAIL_PRICE
 FROM CDS_ON_HAND
 WHERE RETAIL_PRICE NOT BETWEEN 14 AND 16;

The rows returned in the query result will include all rows that do not have a RETAIL_PRICE
value within the range of 14 through 16. When you execute the statement, three rows are
returned:

CD_TITLE RETAIL_PRICE
----------------------------- ------------
Famous Blue Raincoat 16.99
That Christmas Feeling 10.99
Patsy Cline: 12 Greatest Hits 16.99

Notice that all values within the specified range have been excluded from the query results.
If you find the NOT keyword confusing (as many people do), you can write an equivalent
WHERE clause using the OR keyword and the greater than and less than operators as follows:

WHERE RETAIL_PRICE < 14
 OR RETAIL_PRICE > 16;

Return Null Values
As you might recall from Chapter 4, a null value is used in place of a value when that value
is undefined or not known. A null indicates that the value is absent. This is not the same as a
zero, a blank, or a default value. By default, SQL allows nulls to be used in place of regular
values (although you can override the default by including a NOT NULL constraint in your
column definition). In those cases where null values are permitted, you might find it necessary
to specify that null values be returned when you query a table. For this reason, SQL provides
the NULL predicate, which allows you to define search conditions that return null values.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 201

The NULL predicate is very straightforward to implement. Used in conjunction with the
IS keyword, the predicate is added to a WHERE clause in the same way any other predicate is
added, and it applies only to null values that might exist in the column that you query. The best
way to illustrate this is through the use of examples. In these examples, I use the ARTISTS_
BIO table, shown in Figure 9-2.

The first example is a SELECT statement that returns rows with a PLACE_OF_BIRTH
value of null:

SELECT *
 FROM ARTISTS_BIO
 WHERE PLACE_OF_BIRTH IS NULL;

The statement returns all columns from the ARTISTS_BIO table; however, it returns only two
rows, as you can see in the following query results (your results may look different depending
on how your SQL client application displays null values):

PERFORMER_NAME PLACE_OF_BIRTH YEAR_BORN
---------------- -------------- ---------
William Ackerman NULL NULL
Bing Crosby NULL 1904

The fact that the YEAR_BORN column contains a null value for the William Ackerman
row has no bearing on the fact that a NULL predicate is used. The NULL predicate in this
case identifies the PLACE_OF_BIRTH column only, not the YEAR_BORN column. You can,
however, replace the PLACE_OF_BIRTH column in the predicate with the YEAR_BORN
column, in which case the rows returned will be those with a YEAR_BORN value of null.

PERFORMER_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

Placido Domingo

Luciano Pavarotti

PLACE_OF_BIRTH:
VARCHAR(60)

Seattle, Washington, USA

Fort MacLeod, Alberta, Canada

NULL

Winchester, Virginia, United States

Madrid, Spain

Modena, Italy

William Ackerman NULL

Kitaro Toyohashi, Japan

Jose Carreras Barcelona, Spain

YEAR_BORN:
INT

1947

NULL

1932

1904

NULL

NULL

1943

1941

1935

Figure 9-2 Returning null values from the ARTISTS_BIO table

www.it-ebooks.info

http://www.it-ebooks.info/

 202 SQL: A Beginner’s Guide

According to the SQL:2006 standard, you can also specify both columns in the NULL
predicate, as shown in the following example:

SELECT *
 FROM ARTISTS_BIO
 WHERE (PLACE_OF_BIRTH, YEAR_BORN) IS NULL;

When you include both columns, the PLACE_OF_BIRTH column and YEAR_BORN
column must both return null values in order for a row to be returned, which in the case of the
ARTISTS_BIO table would only be one row.

NOTE
Although the SQL standard permits you to specify multiple columns in the NULL
predicate, many implementations do not support this. Instead you must specify two
NULL predicates connected with the AND keyword.

As an alternative to including both columns in one predicate, you can write your SELECT
statement as follows:

SELECT *
 FROM ARTISTS_BIO
 WHERE PLACE_OF_BIRTH IS NULL
 AND YEAR_BORN IS NULL;

If you execute this statement, you’ll receive the following query results:

PERFORMER_NAME PLACE_OF_BIRTH YEAR_BORN
---------------- -------------- ---------
William Ackerman NULL NULL

SQL supports another feature in the NULL predicate. You can use the NOT keyword to
find the inverse results of the predicate. For example, suppose you want to return all rows
that include an actual value in the PLACE_OF_BIRTH column, rather than a null value. Your
statement might look like the following:

SELECT *
 FROM ARTISTS_BIO
 WHERE PLACE_OF_BIRTH IS NOT NULL;

Your query results will now include seven rows, all of which contain values in the PLACE_
OF_BIRTH column:

PERFORMER_NAME PLACE_OF_BIRTH YEAR_BORN
----------------- ----------------------------- ---------
Jennifer Warnes Seattle, Washington, USA 1947
Joni Mitchell Fort MacLeod, Alberta, Canada 1943
Kitaro Toyohashi, Japan NULL
Patsy Cline Winchester, Virginia, USA 1932

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 203

Jose Carreras Barcelona, Spain NULL
Luciano Pavarotti Modena, Italy 1935
Placido Domingo Madrid, Spain 1941

Notice that null values can still exist in other columns. Because only the PLACE_OF_BIRTH
column is specified in the NULL predicate, only that column must contain a value in order for
a row to be returned.

As with the predicates we looked at earlier in the chapter, you can combine the NULL
predicate with other types of predicates. For example, you can modify the last example to limit
the YEAR_BORN values to certain years, as shown in the following example:

SELECT *
 FROM ARTISTS_BIO
 WHERE PLACE_OF_BIRTH IS NOT NULL
 AND YEAR_BORN > 1940;

Now any rows returned must include a value in the PLACE_OF_BIRTH column and the
YEAR_BORN value must be greater than 1940. If you execute this query, you’ll receive the
following results:

PERFORMER_NAME PLACE_OF_BIRTH YEAR_BORN
--------------- ----------------------------- ---------
Jennifer Warnes Seattle, Washington, USA 1947
Joni Mitchell Fort MacLeod, Alberta, Canada 1943
Placido Domingo Madrid, Spain 1941

As you can see, only three rows are returned. No rows with a PLACE_OF_BIRTH value of
null are returned because null evaluates to unknown, and only WHERE clauses that evaluate to
true can be included in the query results.

Return Similar Values
If any predicate can be fun, it is the LIKE predicate. The LIKE predicate provides a flexible
environment in which you can specify values that are only similar to the values stored in the
database. This is particularly advantageous if you know only part of a value but still need to
retrieve information based on that value. For example, suppose you don’t know the entire title
of a CD, but you do know part of that title. Or perhaps you know only part of a performer’s
name. By using the LIKE predicate, you can ask for values that are similar to what you do
know and from those results determine if the information you need is there.

Before we take a look at the LIKE predicate itself, let’s look at two symbols used within
the predicate. The LIKE predicate uses two special characters, the percentage sign (%) and the
underscore (_), to help define the search condition specified in the predicate. The percentage
sign represents zero or more unknown characters, and the underscore represents exactly one
unknown character. You can use these characters at the beginning of a value, in the middle, or
at the end, and you can combine them with each other as necessary. The way in which you use
these two characters determines the type of data that is retrieved from the database.

www.it-ebooks.info

http://www.it-ebooks.info/

 204 SQL: A Beginner’s Guide

Table 9-2 provides a number of examples of how these special characters can be used in a
LIKE predicate.

As you can see, the percentage sign and underscore special characters provide a great deal
of flexibility and allow you to query a wide range of data.

NOTE
Some vendor implementations can be configured to be case insensitive for data
comparisons, meaning that lowercase letters and uppercase letters compare as the
same. In fact, this is the default behavior for SQL Server and Sybase; however, Oracle
is always case sensitive. Looking at Table 9-2, uppercase letters in the Sample Value
column can be changed to lowercase with the same results whenever the DBMS is
configured as case insensitive. For example, a LIKE predicate value of %spark will still
select the Court and Spark row in a case-insensitive implementation.

Now that you have an understanding of the special characters, let’s take a look at the LIKE
predicate as a whole. The LIKE predicate includes the column name, the LIKE keyword, and a
value enclosed in a set of single quotation marks, which is then enclosed in a set of parentheses
(the parentheses are optional in most vendor implementations). For example, the following
WHERE clause includes one LIKE predicate:

WHERE CD_ID LIKE ('%01')

The predicate includes the CD_ID column, the LIKE keyword, and a value of %01. Only
rows that contain the correct value in the CD_ID column are returned in the query results.
The CD_ID column is part of the CDS table, which is shown in Figure 9-3. I will be using
this table for the examples in this section. Notice that, based on the LIKE predicate defined
in the preceding WHERE clause, only one row can be returned by this clause, the row with
a CD_ID value of 99301.

Sample Value Possible Query Results

‘J%’ Jennifer Warnes, Joni Mitchell, Jose Carreras

‘%Spark’ Court and Spark

‘%Blue%’ Famous Blue Raincoat, Blue, Blues on the Bayou

‘%Cline%Hits’ Patsy Cline: 12 Greatest Hits

‘194_’ 1940, 1942, 1947

‘19__’ 1900, 1907, 1938, 1963, 1999

‘__ue’ Blue

‘9__01’ 90201, 91401, 95501, 99301, 99901

‘9_3%’ 9032343, 903, 95312, 99306, 983393300333

Table 9-2 Using Special Characters in a LIKE Predicate

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 205

Now let’s take a look at a few examples of SELECT statements that include a LIKE
predicate. Suppose you want to find any CDs that contain the word Christmas in the title. You
can create the following SELECT statement to query the CDS table:

SELECT *
 FROM CDS
 WHERE CD_TITLE LIKE ('%Christmas%');

Your query results will include only one row:

CD_ID CD_TITLE
------ ---------------------
99306 That Christmas Feeling

If you had included only one percentage sign, no rows would have been returned. For
example, if you eliminated the first percentage sign, your SQL implementation would have
interpreted this to mean that the value must begin with the word Christmas, which it does not.
The same is true for the other percentage sign. If you had eliminated that, your implementation
would have assumed that Christmas must be the last word in the character string. In addition,
if no percentage signs were used, no rows would have been returned because no values would
have matched Christmas exactly.

You can also add the NOT keyword to a LIKE predicate if you want all rows returned
except those specified by the predicate. Take, for instance, the last example. If you add the
NOT keyword, it will look like the following:

SELECT *
 FROM CDS
 WHERE CD_TITLE NOT LIKE ('%Christmas%');

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

CD_ID:
INT

99301

99302

99303

99304

99305

99306

99307

Figure 9-3 Returning similar values from the CDS table

www.it-ebooks.info

http://www.it-ebooks.info/

 206 SQL: A Beginner’s Guide

Try This 9-1

This time, your query results include all rows that do not include the word Christmas:

CD_ID CD_TITLE
----- ------------------------------
99301 Famous Blue Raincoat
99302 Blue
99303 Court and Spark
99304 Past Light
99305 Kojiki
99307 Patsy Cline: 12 Greatest Hits

Notice that the That Christmas Feeling row is now among the missing.
You can also combine one LIKE predicate with another LIKE predicate. Suppose, for

example, you still want to exclude the Christmas value, but you want to include the Blue
value, as shown in the following example:

SELECT *
 FROM CDS
 WHERE CD_TITLE NOT LIKE ('%Christmas%')
 AND CD_TITLE LIKE ('%Blue%');

The WHERE clause in this SELECT statement eliminates any rows that have the word
Christmas appearing anywhere in the CD_TITLE value. In addition, the CD_TITLE value
must include the word Blue. As a result, only two rows are returned.

CD_ID CD_TITLE
----- --------------------
99301 Famous Blue Raincoat
99302 Blue

But what happens if the CD title includes both words? For example, Elvis Presley’s Blue
Christmas is now available on CD. The AND keyword used to connect the predicates means
that both predicates must be true in order for a row to be returned. Even if a Blue Christmas
row existed, it would not be included in the query results because the first predicate (the NOT
LIKE one) would evaluate to false.

 Using Predicates in SQL Statements
Before we move on to other predicates, I think it’s a good idea to review those predicates
that have already been discussed. These include the six types of comparison predicates, the
BETWEEN predicate, the NULL predicate, and the LIKE predicate. In this Try This exercise,
you will try a number of these predicates through the use of SELECT statements that will
include the appropriate WHERE clauses. You will be querying tables that you created in the
INVENTORY database. Because you will be using only SELECT statements, you won’t be
modifying the tables or the database structure in any way. You’ll simply request data based on
the predicates that you define. You can download the Try_This_09.txt file, which contains the
SQL statements used in this exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 207

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. In the first statement you create, you’ll query the MUSIC_TYPES table to return the names
of those rows whose TYPE_ID value is equal to 11 or 12. Enter and execute the following
SQL statement:

SELECT TYPE_ID, TYPE_NAME
 FROM MUSIC_TYPES
 WHERE TYPE_ID = 11
 OR TYPE_ID = 12;

 The statement should return two rows, one for Blues and one for Jazz. Notice that the OR
keyword is used to indicate that either value is acceptable.

 3. Now you’ll query the ARTISTS table and look for artists other than Patsy Cline and Bing
Crosby. Enter and execute the following SQL statement:

SELECT ARTIST_NAME, PLACE_OF_BIRTH
 FROM ARTISTS
 WHERE ARTIST_NAME <> 'Patsy Cline'
 AND ARTIST_NAME <> 'Bing Crosby';

 Your query should return 16 rows and should not include the Patsy Cline row or the Bing
Crosby row.

 4. Now let’s combine a couple of comparison predicates to create a different sort of search
condition. In this statement, you’ll again query the ARTISTS table, but you’ll request only
those rows whose ARTIST_ID values lie between 2004 and 2014 (excluding the endpoints).
Enter and execute the following SQL statement:

SELECT ARTIST_ID, ARTIST_NAME
 FROM ARTISTS
 WHERE ARTIST_ID > 2004
 AND ARTIST_ID < 2014;

 Your query should return nine rows.

 5. Now let’s modify the SELECT statement that you just executed. You should use a
BETWEEN predicate rather than the two comparison predicates. Enter and execute the
following SQL statement:

SELECT ARTIST_ID, ARTIST_NAME
 FROM ARTISTS
 WHERE ARTIST_ID BETWEEN 2004 AND 2014;

 You should now see 11 rows, rather than the 9 that were returned in the previous step
because BETWEEN always includes the endpoints. Had you used the greater than or equal

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 208 SQL: A Beginner’s Guide

to operator and the less than or equal to operator in the last step, your query results would
have been the same as in this step.

 6. Now let’s query the ARTISTS table once more, only this time we’ll use the NULL
predicate. Enter and execute the following SQL statement:

SELECT *
 FROM ARTISTS
 WHERE PLACE_OF_BIRTH IS NULL;

 Your query will return no results because the PLACE_OF_BIRTH column contains no null
values.

 7. Let’s try the same query as in the last step, only this time we’ll add the NOT keyword to the
NULL predicate. Enter and execute the following SQL statement:

SELECT *
 FROM ARTISTS
 WHERE PLACE_OF_BIRTH IS NOT NULL;

 Your query should now return every row in the table (18 in all).

 8. In the next statement, you will use the LIKE predicate to find CD titles that include the
word Best or the word Greatest. Your predicate will reference the CD_TITLE column of the
COMPACT_DISCS table. Enter and execute the following SQL statement:

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE CD_TITLE LIKE ('%Greatest%')
 OR CD_TITLE LIKE ('%Best%');

 Your query should return three rows. In all those rows, the CD_TITLE value should contain
the words Greatest or Best.

 9. Next you’ll modify the statement in the previous step to include the NOT keyword in
both predicates. You should also change the OR keyword to AND. Enter and execute the
following SQL statement:

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE CD_TITLE NOT LIKE ('%Greatest%')
 AND CD_TITLE NOT LIKE ('%Best%');

 Your query results should now include 12 rows. If you had not changed the OR keyword to
AND, your results would have included all 15 rows. This is because the statement would
always evaluate to true—the first predicate would evaluate to true for a row containing
Greatest; the second predicate would evaluate to true for a row containing Best; and both
predicates would evaluate to true for any other row.

 10. Close the client application.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 209

Try This Summary
In this Try This exercise, you created a number of SELECT statements that included various
predicates. The predicates were contained in WHERE clauses that were part of the SELECT
statements; however, these clauses could also have been part of UPDATE and DELETE
statements. As you move through the rest of this chapter, you will learn about other predicates
and how they can be used in various types of statements. These predicates can be used
in conjunction with the ones I’ve already discussed or used by themselves to create more
complex search conditions and return more precise results.

Reference Additional Sources of Data
SQL supports several types of predicates that allow you to reference sources other than the
main table that you’re querying or modifying. As a result, you can create search conditions
that compare data between tables in order to determine which rows should be included in your
query results, which rows should be updated, or which ones deleted. In this section, I look at
two important predicates that you can use to reference other tables: the IN predicate and the
EXISTS predicate.

Both predicates can use subqueries to reference data in the table being queried or modified,
or more commonly, in other tables. I first introduce the topic of subqueries in Chapter 4. As you
might recall from that chapter, a subquery is an expression that is used as a component within
another expression. In its most common usage, a subquery is simply a SELECT statement
embedded within another statement. When used in a predicate, a subquery becomes part of that
predicate and consequently is embedded in the WHERE clause of a SELECT, UPDATE, or
DELETE statement. Although subqueries are discussed in detail in Chapter 12, I mention them
here because they’re an integral part of the predicates I’ll be discussing in the remaining part of
this chapter. In each of these predicates, subqueries are used to reference data in other tables.
For the purposes of this chapter, I keep my examples of subqueries simple, but know that they
can be far more elaborate than what you see here, and once you complete Chapter 12, you’ll be
able to apply that knowledge to the predicates you learn about in this chapter.

Using the IN Predicate
The IN predicate allows you to determine whether the values in the specified column of one
table are contained in a defined list or contained within another table. In the first case, you
specify the column name, the IN keyword, and a list of values that are compared to the values
in the specified column. In the second case, you specify the column name, the IN keyword,
and a subquery, which references the second table. In either case, if the column value matches
one of the values in the list or in the subquery results, the predicate evaluates to true, and the
row is returned in the query results.

The best way to illustrate both of these methods is through examples. However, before we
look at those, refer to the tables shown in Figure 9-4. These are the tables I’ll be using for the
examples.

www.it-ebooks.info

http://www.it-ebooks.info/

 210 SQL: A Beginner’s Guide

As I mentioned, the first method for using the IN predicate is to define a list. Your list
should include all values that are to be compared to the values in the specified column. For
example, suppose you want to limit your query results to rows in the COMPACT_DISC_
INVENTORY table that have an IN_STOCK value of 12, 22, 32, or 42. You can create a
SELECT statement that looks like the following:

SELECT CD_NAME, IN_STOCK FROM COMPACT_DISC_INVENTORY
WHERE IN_STOCK IN (12, 22, 32, 42);

This statement returns only two rows because those are the only rows that have the correct
IN_STOCK values:

CD_NAME IN_STOCK
--------------- --------
Blue 42
Court and Spark 22

Figure 9-4 Querying data from the COMPACT_DISC_INVENTORY table and the COMPACT_
DISC_ARTISTS table

CD_NAME:
VARCHAR (60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Court and Spark

IN_STOCK:
INT

13

42

17

6

8

22

Out of Africa 29

Blues on the Bayou 27

Orlando 5

TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

After the Rain: The Soft Sounds of Erik Satie

Out of Africa

Leonard Cohen The Best of

Fundamental

Blues on the Bayou

Orlando

COMPACT_DISC_INVENTORY COMPACT_DISC_ARTISTS

ARTIST:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

William Ackerman

Kitaro

Joni Mitchell

Bonnie Raitt

Leonard Cohen

John Barry

Pascal Roge

B.B. King

David Motion

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 211

As you can see, using the IN predicate to define a list is a fairly straightforward process
and a useful one when you know exactly which values you want to compare your columns to.
It also is a simpler method than defining separate predicates for each value, as in the following
example:

SELECT CD_NAME, IN_STOCK
 FROM COMPACT_DISC_INVENTORY
 WHERE IN_STOCK = 12
 OR IN_STOCK = 22
 OR IN_STOCK = 32
 OR IN_STOCK = 42;

This statement will return the same results as the SELECT statement in the previous
example; however, as you can see, it’s much more cumbersome.

Now let’s take a look at a SELECT statement that uses a subquery in the IN predicate.
Suppose you want to create a query that returns CD names and their artists. You want
your query results to include only those CDs that have more than 10 copies in stock.
If you refer back to Figure 9-4, you’ll see that the COMPACT_DISC_ARTISTS table
includes the CD names and their artists. However, as you can also see, the IN_STOCK
values are stored in the COMPACT_DISC_INVENTORY table, which means you’ll need
to reference that table in order to return the correct rows. To do so, you can create the
following SELECT statement:

SELECT TITLE, ARTIST
 FROM COMPACT_DISC_ARTISTS
 WHERE TITLE IN
 (SELECT CD_NAME
 FROM COMPACT_DISC_INVENTORY
 WHERE IN_STOCK > 10);

If you execute this statement, you’ll receive the following results:

TITLE ARTIST
-------------------- ----------------
Famous Blue Raincoat Jennifer Warnes
Blue Joni Mitchell
Court and Spark Joni Mitchell
Past Light William Ackerman
Out of Africa John Barry
Blues on the Bayou B.B. King

Notice that only six rows have been returned. These are the six CDs listed in the COMPACT_
DISC_INVENTORY table that have an IN_STOCK value greater than 10.

Now let’s take a closer look at the SELECT statement in order to give you a better
understanding of how the IN predicate works. The WHERE clause contains only one predicate.
It begins with the name of the column (TITLE) whose values you want to verify. The TITLE

www.it-ebooks.info

http://www.it-ebooks.info/

 212 SQL: A Beginner’s Guide

column is followed by the IN keyword. The keyword is then followed by a subquery, which is
enclosed in parentheses. The subquery consists of the following SELECT statement:

SELECT CD_NAME
 FROM COMPACT_DISC_INVENTORY
 WHERE IN_STOCK > 10

If you were to execute this statement by itself, you would receive the following results:

CD_NAME

Famous Blue Raincoat
Blue
Court and Spark
Past Light
Out of Africa
Blues on the Bayou

Each row in the query results, which are derived from the COMPACT_DISC_INVENTORY
table, contains an IN_STOCK value greater than 10. The values in the TITLE column of the
COMPACT_DISC_ARTISTS table are then compared against these results. Any row that
contains a TITLE value that matches one of six CD_NAME values (in the subquery results) is
included in the query results of the main SELECT statement.

NOTE
When including a subquery in an IN predicate, the SELECT clause of the subquery must
return only one column of data. If you specify more than one column in the result set or
you specify an asterisk, you will receive an error.

Like many other predicates, the IN predicate allows you to specify the inverse of a
condition by using the NOT keyword. Suppose you rewrite the SELECT statement in the last
example to include the NOT keyword in the IN predicate:

SELECT TITLE, ARTIST
 FROM COMPACT_DISC_ARTISTS
 WHERE TITLE NOT IN
 (SELECT CD_NAME
 FROM COMPACT_DISC_INVENTORY
 WHERE IN_STOCK > 10);

Your query results will include all those rows that were not returned by the last SELECT
statement and will exclude all those rows that were returned, as shown in the following results:

TITLE ARTIST
--- -------------
Kojiki Kitaro
That Christmas Feeling Bing Crosby
Patsy Cline: 12 Greatest Hits Patsy Cline

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 213

After the Rain: The Soft Sounds of Erik Satie Pascal Roge
Leonard Cohen The Best Of Leonard Cohen
Fundamental Bonnie Raitt
Orlando David Motion

As you can see, the IN predicate is a very flexible tool for comparing values in a specified
column to data in other tables. You’ll find this extremely useful as you learn more about
subqueries and can create more complex predicates.

Using the EXISTS Predicate
Although similar to an IN predicate, the EXISTS predicate has a slightly different focus. It is
concerned only with determining whether or not the subquery returns any rows. If it returns
one or more rows, the predicate evaluates to true; otherwise, the predicate evaluates to false.
The predicate is made up of the EXISTS keyword and a subquery. For the subquery to be of
any real value (and subsequently the EXISTS predicate itself), it should include a predicate
that matches two columns in different tables. For example, in Figure 9-4, the COMPACT_
DISC_INVENTORY table includes the CD_NAME column, and the COMPACT_DISC_
ARTISTS table includes the TITLE column. The two columns can be matched together to
ensure that only relevant rows are returned by the subquery. Let’s take a look at an example to
help clarify this issue.

Suppose you want to retrieve rows from the COMPACT_DISC_INVENTORY table so
you can determine how many Joni Mitchell CDs you have in stock. You want to display only
the CD names and the number of CDs in stock. You do not want to display the artist’s name,
and you do not want to display CDs by other artists. To accomplish this, you can use the
following SELECT statement:

SELECT *
 FROM COMPACT_DISC_INVENTORY
 WHERE EXISTS
 (SELECT TITLE
 FROM COMPACT_DISC_ARTISTS
 WHERE ARTIST = 'Joni Mitchell'
 AND COMPACT_DISC_INVENTORY.CD_NAME =
 COMPACT_DISC_ARTISTS.TITLE);

If you execute this statement, you’ll receive the following query results:

CD_NAME IN_STOCK
--------------- --------
Blue 42
Court and Spark 22

The best way to understand how this statement works is to look at how individual
rows are evaluated. As you will learn in Chapter 12, subqueries like this one are called
correlated subqueries because the subquery is executed for each row returned in the main
SELECT statement. Because the subquery WHERE clause matches the CD_NAME value

www.it-ebooks.info

http://www.it-ebooks.info/

 214 SQL: A Beginner’s Guide

to the TITLE value, the TITLE value in the row being evaluated (in the subquery) must
match the CD_NAME value in order for that row to be returned. For example, the first row
in the COMPACT_DISC_INVENTORY table contains a CD_NAME value of Famous
Blue Raincoat. When this row is tested against the EXISTS predicate, the Famous Blue
Raincoat value is matched with the Famous Blue Raincoat value of the TITLE column in the
COMPACT_DISC_ARTISTS table. In addition, the Joni Mitchell value is matched against
the ARTIST value for the Famous Blue Raincoat row. Because the ARTIST value is Jennifer
Warnes, and not Joni Mitchell, the search condition specified in the subquery WHERE clause
evaluates to false, so no subquery row is returned for the Famous Blue Raincoat row. As a
result, the WHERE clause in the main SELECT statement evaluates to false for the Famous
Blue Raincoat row of the COMPACT_DISC_INVENTORY table, and the row is not included
in the query results.

This process is repeated for each row in the COMPACT_DISC_INVENTORY table. If the
WHERE clause in the subquery evaluates to true, then the EXISTS predicate evaluates to true,
which means that the WHERE clause in the main SELECT statement evaluates to true. In the
case of our last example SELECT statement, only two rows meet this criteria.

NOTE
It does not matter what columns or how many columns you specify in the SELECT clause
of the subquery in an EXISTS predicate. This type of predicate is concerned only with
whether rows are being returned, rather than the content of those rows. You can specify
any column names or just an asterisk.

The EXISTS predicate, as you might expect, allows you to test the inverse of the predicate
condition by using the NOT keyword:

SELECT *
 FROM COMPACT_DISC_INVENTORY
 WHERE NOT EXISTS
 (SELECT TITLE
 FROM COMPACT_DISC_ARTISTS
 WHERE ARTIST = 'Joni Mitchell'
 AND COMPACT_DISC_INVENTORY.CD_NAME =
 COMPACT_DISC_ARTISTS.TITLE);

In this case, all CDs except the Joni Mitchell CDs are included in the query results. This means
that, if the WHERE clause of the subquery evaluates to true (which means that the subquery
returns a row), the predicate itself evaluates to false, and no row is returned. On the other hand,
if the subquery does not return a row, the predicate evaluates to true, and the row is returned in
the query results of the main SELECT statement.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 215

Q: You’ve provided examples that show that there is often more than one way to achieve
the same outcome. How do you know which option to select when you’re writing an
SQL statement?

A: You’ll find that, as you learn more about SQL programming and gain a better understanding
of the nuances of each statement, there will often be more than one way to achieve the
same results. In these cases, your choice of methods will often depend on which statement
is the simplest to write or which one performs the best in a particular SQL implementation.
As your understanding of SQL grows, so too will your ability to choose the method that’s
best for your situation. In many cases, the difference between one method and another
will not be very great, and your choice might merely depend on your personal preference.
However, you might also run into situations in which the SQL implementation in which
you’re working does not support all the methods provided in the SQL standard. Therefore,
you must select the method that can be implemented in your particular environment.
Whichever methods you might ultimately use in any given environment, it is best for now
that you have as complete a foundation as possible in the basics of SQL. That way you’ll be
more prepared for various situations and be better equipped to move from implementation
to implementation. In addition, you should learn about performance issues related to the
implementation with which you’re working. You should consider issues of performance
when making a decision about which SQL statements to use.

Q: When you provided examples of the EXISTS predicate, your subqueries always
matched columns within the subquery WHERE clause. Is this necessary?

A: You can, if you want, create an EXISTS predicate that does not match columns in the
subquery, such as in the following statement:

SELECT TITLE, ARTIST
 FROM COMPACT_DISC_ARTISTS
 WHERE EXISTS
 (SELECT CD_NAME
 FROM COMPACT_DISC_INVENTORY
 WHERE IN_STOCK > 10);

In this case, your subquery merely checks to see whether any rows exist in the
COMPACT_DISC_INVENTORY table with an IN_STOCK value greater than 10. If
those rows exist, the predicate evaluates to true, which means the WHERE clause in the
main SELECT statement evaluates to true. As a result, all rows in the COMPACT_DISC_
ARTISTS table are returned. Using this sort of subquery is generally not very useful
because it offers little advantage over a simple SELECT statement. When using EXISTS,
matching columns from different tables within the subquery is essential to providing
meaningful filtering for the main SELECT statement.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 216 SQL: A Beginner’s Guide

Quantify Comparison Predicates
SQL includes another type of predicate called a quantified comparison predicate, which is a
type of predicate used in conjunction with a comparison operator to determine whether any
or all returned values meet the search requirement. SQL supports three quantified comparison
predicates: SOME, ANY, and ALL. The SOME and ANY predicates are referred to as
existential quantifiers and are concerned with whether any returned values meet the search
requirements. These two predicates are identical in meaning and can be used interchangeably.
The ALL predicate is referred to as a universal quantifier and is concerned with whether all
returned values meet the search requirements. Now let’s take a closer look at each one.

Using the SOME and ANY Predicates
As I mentioned, the SOME and ANY predicates return identical results. For each row,
the predicates compare the value in a specified column to the results of a subquery. If the
comparison evaluates to true for any of the results, the condition has been satisfied and that
row is returned. To create one of these predicates, you must specify the column name that
contains the values you want to compare, the comparison operator (see the “Compare SQL
Data” section), the SOME or ANY keyword, and the subquery. Although you can use either
keyword, I prefer ANY because it seems more intuitive to me, but feel free to use either one.

Now let’s take a look at an example to give you a better feel for how these predicates
work. The example is based on the CD_RETAIL table and the CD_SALE table, which are
shown in Figure 9-5.

In this example, I want to query data from the CD_SALE table. I want to return only those
rows that have a SALE value less than some of the RETAIL values in the CD_RETAIL table.

CD_NAME:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

RETAIL:
NUMERIC(5,2)

16.99

14.99

15.99

15.99

10.99

16.99

14.99

CD_RETAIL

TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

SALE:
NUMERIC(5,2)

14.99

12.99

14.99

13.99

10.99

16.99

14.99

CD_SALE

IN_STOCK:
INT

5

8

4

11

12

10

14

Figure 9-5 Using qualified comparison predicates on the CD_RETAIL and CD_SALE tables

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 217

The RETAIL values should be from rows that have an IN_STOCK value greater than 9. In
other words, the query should return only those CDs whose sale price is less than any retail
price of those CDs in which there are more than nine in stock. To accomplish this, I will use
the following SELECT statement:

SELECT TITLE, SALE
 FROM CD_SALE
 WHERE SALE < ANY
 (SELECT RETAIL
 FROM CD_RETAIL
 WHERE IN_STOCK > 9);

If you want, you can use the SOME keyword rather than the ANY keyword. The query results
would be the same, as shown in the following results:

TITLE SALE
---------------------- -----
Famous Blue Raincoat 14.99
Blue 12.99
Court and Spark 14.99
Past Light 14.99
Kojiki 13.99
That Christmas Feeling 10.99

Now let’s look at the SELECT statement more closely. The ANY predicate contains the
following subquery:

SELECT RETAIL
 FROM CD_RETAIL
 WHERE IN_STOCK > 9

If you were to execute this subquery on its own, you would receive the following results:

RETAIL

14.99
14.99
15.99
16.99

The SALE value in each row in the CD_SALE table is then compared to the subquery
results. For example, the Past Light row has a SALE value of 14.99. This value is compared to
the subquery results to see whether 14.99 is less than any value. Because it is less than 15.99
and 16.99, the predicate evaluates to true, and the row is returned. The only row that does not
evaluate to true is the Patsy Cline: 12 Greatest Hits row because the SALE value is 16.99, and
this is not less than any of the values returned by the query results.

You can use any of the six comparison operators in an ANY or SOME predicate. For
example, if you had used the greater than operator, only the Patsy Cline: 12 Greatest Hits row

www.it-ebooks.info

http://www.it-ebooks.info/

 218 SQL: A Beginner’s Guide

would have been returned because it would have been the only row with a SALE value greater
than any row in the subquery results.

NOTE
The quantified comparison predicates do not support an inverse condition like other
predicates. In other words, you cannot add the NOT keyword before ANY or SOME.
However, you can achieve the same results using the not equal to (<>) operator,

Using the ALL Predicate
The ALL predicate works much like the ANY and SOME predicates in that it compares column
values to the subquery results. However, rather than the column values having to evaluate to
true for any of the result values, the column values must evaluate to true for all the result values;
otherwise, the row is not returned.

Let’s return to the previous example we looked at, only this time substitute the keyword
ALL for the keyword ANY. Your new SELECT statement will look like the following:

SELECT TITLE, SALE
 FROM CD_SALE
 WHERE SALE < ALL
 (SELECT RETAIL
 FROM CD_RETAIL
 WHERE IN_STOCK > 9);

If you execute this statement, you’ll find that your query results are quite different from what
they were in the previous example:

TITLE SALE
---------------------- -----
Blue 12.99
Kojiki 13.99
That Christmas Feeling 10.99

This time, only three rows are returned because they are the only ones that meet the condition
of the WHERE predicate.

If you take a closer look at the statement, you’ll find that the subquery returns the same
values as it does in the previous examples. However, the SALE value for each row in the
CD_SALE table must now be less than all the values in the subquery results. For example, the
Kojiki row contains a SALE value of 13.99. The subquery results include the values 14.99,
15.99, and 16.99. The 13.99 value is less than all three of the subquery result values, which
means that the predicate evaluates to true, so that row is included in the query results. On the
other hand, the Past Light row contains a SALE value of 14.99, which is not less than the
14.99 subquery value, so that row is not included in the query results.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 219

As with the ANY and SOME predicates, you can use any of the six comparison operators
in an ALL predicate. In addition, you can create any type of subquery, as long as it fits in
logically with the main SELECT statement. The point to remember is that the column value
must be true for all subquery results, not just some of them.

Q: In your discussions about quantified comparison predicates, you included examples on
how to use these predicates; however, the examples included only one predicate in the
WHERE clause. Can you use multiple predicates when using a quantified comparison
predicate?

A: Yes, you can use multiple predicates. As with any other sort of predicate, you simply
connect the predicates using the AND keyword or the OR keyword. But you must make
sure that the logic you’re using not only makes sense in terms of the data being returned,
but also in the sense of being able to understand the statement itself. As a result, the best
way to treat these sorts of situations is to set off each predicate in parentheses and then
connect the parenthetical expressions with AND or OR. For example, suppose you want to
take the example in the section “Using the SOME and ANY Predicates” and add a LIKE
predicate to it. (The example is based on Figure 9-5.) You can create a SELECT statement
similar to the following:

SELECT TITLE, SALE
 FROM CD_SALE
 WHERE (SALE < ANY (SELECT RETAIL
 FROM CD_RETAIL
 WHERE IN_STOCK > 9))
 AND (TITLE LIKE ('%Blue%'));

Notice that each predicate has been enclosed in a set of parentheses and that they are
joined together by AND. If you execute this statement, your query results will meet the
condition of the ANY predicate and the LIKE predicate, which specifies that the TITLE
value include the word Blue. If you wanted to, you could write these statements without
enclosing the predicates in parentheses, but then the statements can start to get confusing
and, in more complex structures, can start producing unexpected results.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 220 SQL: A Beginner’s Guide

Try This 9-2 Using Subqueries in Predicates
This Try This exercise basically picks up where you left off in Try This 9-1. Once more, you’ll
be working with predicates, only this time it will be those that use subqueries. These are the
predicates that were discussed since the last exercise. They include the IN, EXISTS, ANY, and
ALL predicates. As with the previous Try This exercise, you’ll apply these predicates to the
tables you created in the INVENTORY database. You can download the Try_This_09.txt file,
which contains the SQL statements used in this exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. In your first statement, you’ll use an IN predicate to query data from the COMPACT_
DISCS table. You want to view CD and inventory information for CDs published by Decca
Record Company. To find out which CDs these are, you must create a subquery that queries
data from the CD_LABELS table. Enter and execute the following SQL statement:

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE LABEL_ID IN
 (SELECT LABEL_ID
 FROM CD_LABELS
 WHERE COMPANY_NAME = 'Decca Record Company');

Your query results should include only two rows. Both these rows have a LABEL_ID
value of 833, which is the value returned by the subquery.

 3. Now you will try a SELECT statement similar to the one in step 2, only this time you’ll
use an EXISTS predicate to return data. In addition, you will have to add a predicate to the
subquery WHERE clause that matches the LABEL_ID value in the COMPACT_DISCS
table to the LABEL_ID value in the CD_LABELS table. Enter and execute the following
SQL statement:

SELECT CD_TITLE, IN_STOCK FROM COMPACT_DISCS
WHERE EXISTS
(SELECT LABEL_ID FROM CD_LABELS
 WHERE COMPACT_DISCS.LABEL_ID = CD_LABELS.LABEL_ID
 AND LABEL_ID > 830);

Notice that one of the predicates in the subquery WHERE clause uses a comparison
operator to look for LABEL_ID values greater than 830. If you were to look at the CD_
LABELS table, you would see that six rows contain LABEL_ID values greater than 830.
If you were then to match these six values to the LABEL_ID values in the COMPACT_
DISCS table, you would find 11 rows that would evaluate to true. These are the 11 rows
returned by your SELECT statement.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 221

 4. In this statement, you’ll use an ANY predicate to compare LABEL_ID values in the
CD_LABELS table to LABEL_ID values in the COMPACT_DISCS table that are included in
rows with an IN_STOCK value greater than 20. The LABEL_ID values in the CD_LABELS
table can match any values in the subquery results. Enter and execute the following SQL
statement:

SELECT LABEL_ID, COMPANY_NAME
 FROM CD_LABELS
 WHERE LABEL_ID = ANY
 (SELECT LABEL_ID
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 20);

Your query should return only five rows.

 5. Now try creating the same SELECT statement in step 4, only use an ALL predicate rather
than an ANY predicate. Enter and execute the following SQL statement:

SELECT LABEL_ID, COMPANY_NAME
 FROM CD_LABELS
 WHERE LABEL_ID = ALL
 (SELECT LABEL_ID
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 20);

You’ll find that no rows are returned by this query. This is because the subquery
returns eight rows with five different values. The LABEL_ID value for each row in the
CD_LABELS table cannot match all values, only one or some of them. The only way
you would return any rows in this case would be if the subquery returned only one row
or returned multiple rows all with the same value.

 6. Now try modifying the SELECT statement by changing the comparison predicate in
the subquery WHERE clause to greater than 40. Enter and execute the following SQL
statement:

SELECT LABEL_ID, COMPANY_NAME
 FROM CD_LABELS
 WHERE LABEL_ID = ALL
 (SELECT LABEL_ID
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 40);

Your query results will now return one row. This is because the subquery returns only
one row, which meets the condition of the ALL predicate.

 7. Close the client application.

www.it-ebooks.info

http://www.it-ebooks.info/

 222 SQL: A Beginner’s Guide

Try This Summary
In this Try This exercise, you used the IN, EXISTS, ANY, and ALL predicates to query data
from the INVENTORY database. You could have also used the SOME predicate in place of
the ANY predicate. Combined with the steps in Try This 9-1, your statements here should have
allowed you to try a large variety of predicates. As you learn more about subqueries, you will
be able to create even more elaborate predicates, ones that you can use not only in SELECT
statements, but in UPDATE and DELETE statements as well. In the meantime, I suggest that
you experiment with various types of SELECT statements and try different predicates within
those statements to see exactly what types of query results you can receive.

 Chapter 9 Self Test
 1. In which SELECT statement clause do you include predicates?

 2. Which comparison operator symbol should you use to express a not equal condition?

 A <=

 B >=

 C <>

 D =<

 3. Which keywords can you use to combine predicates in a WHERE clause?

 4. You want to query a table that includes the PRICE column. You want to ensure that all rows
returned have a PRICE value of 13.99. What predicate should you use?

 5. You create the following SQL statement:

SELECT CD_TITLE, RETAIL_PRICE
 FROM CDS_ON_HAND
 WHERE RETAIL_PRICE >= 14
 AND RETAIL_PRICE <= 16;

What predicate can you use in place of the two predicates shown in this statement?

 6. What keyword can you add to a BETWEEN predicate to find the inverse of the condition
specified by the predicate?

 7. When is a null value used in a column?

 8. You want to query a table to determine which values are null. What type of predicate should
you use?

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 9: Using Predicates 223

 9. You’re creating a SELECT statement that queries the ARTISTS_BIO table. You want to
return all columns in the table, but you want to return only those rows that do not contain
null values in the PLACE_OF_BIRTH column. Which SELECT statement should you use?

 10. You’re querying the CD_INVENTORY table. You want to view all columns, but you want
to view only rows that contain the word Christmas in the name of the CD. The names are
stored in the CD_TITLE column. Which SELECT statement should you use?

 11. What is the difference between a percentage sign and an underscore when used in a LIKE
predicate?

 12. What two types of data sources can you use in an IN predicate?

 13. Which type of predicate is concerned only with determining whether or not a subquery
returns any rows?

 14. What column names must be specified in an EXISTS predicate?

 15. You’re creating a SELECT statement that includes a predicate in the WHERE clause. You
want to use a comparison operator to compare the values in one of the columns to the
results of a subquery. You want the predicate to evaluate to true for any of the subquery
results. Which type of predicate should you use?

 A EXISTS

 B ANY

 C ALL

 D IN

 16. What is the difference between a SOME predicate and an ANY predicate?

 17. How does the ALL predicate differ from the SOME predicate?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

225

Chapter 10
Working with Functions
and Value Expressions

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 226 SQL: A Beginner’s Guide

Key Skills & Concepts

● Use Set Functions

● Use Value Functions

● Use Value Expressions

● Use Special Values

In earlier parts of the book, you have been briefly introduced to various value-related functions
and expressions. These values and expressions are used in examples and Try This exercises
in a number of chapters to demonstrate different components of SQL. In this chapter, I take
a closer look at many of these values and expressions, focusing on those that you are most
likely to use as a beginning SQL programmer. You should keep in mind, however, that this
chapter covers only a portion of the many types of functions and expressions supported by
SQL. In addition, SQL implementations can vary greatly with regard to which SQL functions
and expressions they support, how those values and expressions are implemented, and what
nonstandard functions and expressions they include in their products in addition to the
standard ones. Be sure to check the product documentation to determine what functionality is
supported. In general, I include in this chapter those functions and expressions most commonly
supported by SQL implementations.

Use Set Functions
In Chapter 3, I introduce the concept of a function. As you might recall, a function is a named
operation that performs predefined tasks that you can’t normally perform by using SQL
statements alone. It is a type of routine that takes input parameters, which are enclosed in
parentheses, and returns values based on those parameters. An important property of functions
is that each execution of a function returns exactly one data value, and this is why functions can
be used in place of table column names in the SELECT list of a query—the function returns
a single value for each row processed by the query. You have already seen examples of functions,
such as SUM and AVG. Both of these functions are known as set functions. A set function,
sometimes referred to as an aggregate function, processes or calculates data and returns the
appropriate values. Set functions require that the data be grouped in some way, such as would
be the case if the GROUP BY clause were used in a SELECT statement. If the rows are not
explicitly grouped in some way, the entire table is treated as one group.

In this section, I discuss five set functions: COUNT, MAX, MIN, SUM, and AVG. These
functions are all commonly supported in SQL implementations. For all the set functions,
I provide examples of how you would use them in the SELECT clause of a SELECT statement.
The examples are based on the table shown in Figure 10-1.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 227

Using the COUNT Function
The first set function that we’ll look at is the COUNT function. As the name implies, the
COUNT function counts the number of rows in a table or the number of values in a column,
as specified in a SELECT statement. When you use the COUNT function, you must specify
a column name to count the number of non-null values in a column, or an asterisk to count
all the rows in a table regardless of null values. For example, if you want to know the total
number of rows in the ARTIST_CDS table, you can use the following SELECT statement:

SELECT COUNT(*) AS TOTAL_ROWS
 FROM ARTIST_CDS;

In this statement, the COUNT function is used with an asterisk—in parentheses—to count
every row in the ARTIST_CDS table and return the total count. The returned value is listed
in the TOTAL_ROWS column, a name given to the column returned in the query results, as
shown in the following results:

TOTAL_ROWS

10

As you can see, the query results include only one value (one row with one column), as can be
expected of a set function used without any row grouping. The value of 10 indicates that the
ARTIST_CDS table contains 10 rows.

Figure 10-1 Using set functions on the ARTIST_CDS table

CD_NAME:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

Out of Africa

Leonard Cohen The Best of

Fundamental

Blues on the Bayou

ARTIST_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

William Ackerman

Joni Mitchell

Bonnie Raitt

Leonard Cohen

John Barry

B.B. King

NUMBER_SOLD:
INT

23

12

34

45

23

54

34

20

29

18

www.it-ebooks.info

http://www.it-ebooks.info/

 228 SQL: A Beginner’s Guide

As with any other sort of SELECT statement, you can qualify your query results by
adding the necessary clauses to the statement. For example, suppose you want to find out how
many rows include a NUMBER_SOLD value greater than 20. You can modify your SELECT
statement to include a WHERE clause:

SELECT COUNT(*) AS TOTAL_ROWS
 FROM ARTIST_CDS
 WHERE NUMBER_SOLD > 20;

The value returned will now be 7, rather than 10, because only seven rows meet the search
condition specified in the WHERE clause.

You might find that, instead of querying the number of rows in a table, you want to know
the number of values in a given column (excluding null values). In this case, you would
specify the column name rather than the asterisk. For example, suppose you modify the
SELECT statement shown in the last example to count values in the ARTIST_NAME column:

SELECT COUNT(ARTIST_NAME) AS TOTAL_ARTISTS
 FROM ARTIST_CDS
 WHERE NUMBER_SOLD > 20;

When you execute this query, the value returned is again 7. This means that seven
ARTIST_NAME values have a NUMBER_SOLD value greater than 20. However, this
statement doesn’t account for ARTIST_NAME values that might be duplicated. If you want
to arrive at a count that takes into consideration duplicate values, you can add the DISTINCT
keyword to the COUNT function:

SELECT COUNT(DISTINCT ARTIST_NAME) AS TOTAL_ARTISTS
 FROM ARTIST_CDS
 WHERE NUMBER_SOLD > 20;

This time, a value of 6 is returned rather than 7. This is because the ARTIST_NAME
column includes two instances of the Joni Mitchell value. The column contains only six unique
values that meet the condition set forth in the search criteria.

NOTE
Keep in mind that the SELECT statement is processed in a specific order: first the FROM
clause, then the WHERE clause, and then the SELECT clause. As a result, the COUNT
function applies only to the rows that meet the search condition defined in the WHERE
clause. Rows that are not included in the results of the WHERE clause have no bearing on
the COUNT function. For more information about the SELECT statement, see Chapter 7.

As already mentioned, if the column specified in the COUNT function contains null values,
those values are not included in the count. For example, if we were to add a row to the ARTIST_
CDS table with an ARTIST_NAME value of null and a NUMBER_SOLD value greater than 20,
the SELECT statement shown in the previous example would still return a value of 6 because the
null value would not be counted. However, if you use an asterisk rather than a column name in
the COUNT function, all rows are counted, even if some contain null values.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 229

Using the MAX and MIN Functions
The MAX and MIN functions are so similar that it is worth discussing them together. The
MAX function returns the highest value from the specified column, and the MIN function
returns the lowest value. Both functions require that you specify a column name. For example,
suppose you want to return the highest value from the NUMBER_SOLD column in the
ARTIST_CDS table. Your SELECT statement would look like the following:

SELECT MAX(NUMBER_SOLD) AS MAX_SOLD
 FROM ARTIST_CDS;

When you execute this statement, your query results will include only one value (one row
and one column), as shown in the following results:

MAX_SOLD

54

This result, by itself, is not particularly helpful. It would be nice if your query results
also included the name of the artist and the CD. However, SQL does not support a SELECT
statement such as the following:

SELECT ARTIST_NAME, CD_NAME, MAX(NUMBER_SOLD)
 FROM ARTIST_CDS;

Because set functions treat data as groups, you cannot specify the artist name and CD
name without somehow grouping the data together. As it stands now, the MAX function treats
the entire table as one group; however, neither the ARTIST_NAME values nor the CD_NAME
values are grouped together in any way, so the SELECT clause becomes illogical.

Whenever you include a set function in an SQL statement, then every argument in the
SELECT list must either be a set function or be included in a group (using the GROUP BY
clause described a little later in this topic). One way around this is to use a subquery in the
WHERE clause to return the maximum value and then return the necessary information based
on that value, as shown in the following example:

SELECT ARTIST_NAME, CD_NAME, NUMBER_SOLD
 FROM ARTIST_CDS
 WHERE NUMBER_SOLD = (SELECT MAX(NUMBER_SOLD)
 FROM ARTIST_CDS);

The subquery finds the maximum value (54) and uses that value as a condition in the
WHERE clause. The NUMBER_SOLD value must equal 54 as long as that is the highest
NUMBER_SOLD value in the table. Once you define the necessary search condition in the
WHERE clause, you can then use these results to return the information you need. If you
execute this statement, one row is returned:

ARTIST_NAME CD_NAME NUMBER_SOLD
------------ ---------------------------- -----------
Patsy Cline: Patsy Cline 12 Greatest Hits 54

www.it-ebooks.info

http://www.it-ebooks.info/

 230 SQL: A Beginner’s Guide

As you can see, you now have all the information you need to determine which artist and CD
have sold the greatest number.

As I said earlier, the MAX and MIN functions are very similar. If you replace MIN for
MAX in the previous example, your query results will look like the following:

ARTIST_NAME CD_NAME NUMBER_SOLD
---------------- ---------- -----------
William Ackerman Past Light 12

The Past Light row is returned because that is the row with the lowest NUMBER_SOLD
value.

The MAX and MIN functions are not limited to numeric data. You can also use them to
compare character strings. For example, suppose you want to know which artist comes first
alphabetically. The following statement will return B.B. King:

SELECT MIN(ARTIST_NAME) AS LOW_NAME
 FROM ARTIST_CDS;

If you use the MAX function, the statement will return William Ackerman.

NOTE
It is quite likely that the tables in your database will separate first names from last
names because this is a more flexible design. I’ve included both names in one column
to provide you with simple examples of how various statements work. If names were
separated into two columns, the MIN or MAX function would need to be used with the
appropriate column.

Now let’s back up a little and return to the idea of grouping data. As I mentioned, a set
function treats a table as one group if no grouping has been implemented. However, you
can easily use a GROUP BY clause to group data. Suppose you want to know the maximum
amount sold by each artist. You can group data based on the ARTIST_NAME values:

SELECT ARTIST_NAME, MAX(NUMBER_SOLD) AS MAX_SOLD
 FROM ARTIST_CDS
 WHERE NUMBER_SOLD > 30
 GROUP BY ARTIST_NAME;

The WHERE clause returns only those rows with a NUMBER_SOLD value greater than
30. These rows are then grouped together according to the ARTIST_NAME values. Once
they’re grouped together, the maximum amount is returned for each artist, as shown in the
following query results:

ARTIST_NAME MAX_SOLD
------------- --------
Bing Crosby 34
Joni Mitchell 45
Patsy Cline 54

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 231

The GROUP BY clause creates three groups, one for each artist that meets the search
condition defined in the WHERE clause. Of these three groups, only one is made up of
duplicate values: Joni Mitchell. Because there are two Joni Mitchell rows in the ARTIST_CDS
table, there are two NUMBER_SOLD values: 45 and 34. As you can see, the highest value
is 45, which is the value that’s included in the query results for the Joni Mitchell group. If
the MIN function had been used in the SELECT statement, the 34 value would have been
returned. As for the other two artist groups, because there is only one value for each of them,
the same value is returned regardless of whether the MAX or the MIN function is used.

Using the SUM Function
Unlike the MIN and MAX functions, which select the lowest and highest values from a
column, the SUM function adds column values together. This is particularly handy when
you want to find the totals for grouped data (although the SUM function, like any other
set function, treats the entire table as a single group if data hasn’t been explicitly grouped
together).

To better understand the SUM function, let’s take the last example we looked at and
modify it slightly:

SELECT ARTIST_NAME, SUM(NUMBER_SOLD) AS TOTAL_SOLD
 FROM ARTIST_CDS
 WHERE NUMBER_SOLD > 30
 GROUP BY ARTIST_NAME;

As you saw before, the WHERE clause returns only those rows with a NUMBER_SOLD
value greater than 30. These rows are then grouped together according to the ARTIST_NAME
values. Once they’re grouped together, the total amount for each artist group is returned in the
query results:

ARTIST_NAME TOTAL_SOLD
------------- ----------
Bing Crosby 34
Joni Mitchell 79
Patsy Cline 54

Notice that the query results include the same three groups that were returned in the
previous example. The only difference is that the TOTAL_SOLD value in the Joni Mitchell
row is 79, as opposed to 45 or 34. The SUM function adds these two values together and
returns a value of 79. Because the other two groups are each made up of only one entry, their
TOTAL_SOLD values are the same as their NUMBER_SOLD values in the ARTIST_CDS
table.

You do not have to use a GROUP BY clause in a SELECT statement that uses a SUM
function. You can create a SELECT statement as simple as the following:

SELECT SUM(NUMBER_SOLD) AS TOTAL_SOLD
 FROM ARTIST_CDS;

www.it-ebooks.info

http://www.it-ebooks.info/

 232 SQL: A Beginner’s Guide

This statement merely adds together all the values in the NUMBER_SOLD column and
returns a value of 292. By itself, this is not always the most helpful information, which is why
using the function along with a GROUP BY clause is far more effective.

Using the AVG Function
As you probably realize, the AVG function merely averages the values in a specified column.
Like the SUM function, it is most effective when used along with a GROUP BY clause,
although it can be used without the clause, as shown in the following example:

SELECT AVG(NUMBER_SOLD) AS AVG_SOLD
 FROM ARTIST_CDS;

This statement returns a value of 29, which is based on the NUMBER_SOLD values in
the ARTIST_CDS table. This means that, for all the CDs listed in the table, an average of 29
for each one has been sold. Although you might find this information helpful, it might be more
useful to you if you were to create a statement that groups data together:

SELECT ARTIST_NAME, AVG(NUMBER_SOLD) AS AVG_SOLD
 FROM ARTIST_CDS
 WHERE NUMBER_SOLD > 30
 GROUP BY ARTIST_NAME;

If you execute this statement, you will receive the following query results:

ARTIST_NAME AVG_SOLD
------------- --------
Bing Crosby 34
Joni Mitchell 39
Patsy Cline 54

As in the previous examples, three groups are created, and for each group, an average is
calculated based on the values in the NUMBER_SOLD column. For the Joni Mitchell row,
this average is based on the NUMBER_SOLD values of 45 and 34. For the other two rows, the
average is the same as the NUMBER_SOLD value because there is only one row for each artist.

NOTE
The precision of the values returned by the AVG function depends on the column’s data
type, whether decimals are used, and how the SQL implementation averages numbers.
For example, the exact average for the Joni Mitchell row is 39.5, but because the
NUMBER_SOLD column is configured with an INT data type, only whole numbers are
used. For some implementations, the .5 is dropped and not rounded up, as shown in
my latest sample query results.

Use Value Functions
Value functions are a type of function that allow you to return a value that in some way
calculates or derives information from the data stored within your tables or from the SQL
implementation itself. Value functions are similar to set functions in the sense that they

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 233

perform some sort of behind-the-scenes action to arrive at that value. However, value functions
are different from set functions in that they do not require that data be grouped together.

SQL supports a number of value functions. Which functions are supported in which SQL
implementations can vary widely. In addition, the meaning of a function name can sometimes
vary from one implementation to the next. Still, there are some consistencies among the
various implementations, and those are the value functions on which I focus.

The value functions that I discuss fall into two categories: string value functions and
datetime value functions. In order to illustrate how these functions work, I use the SALES_
DATES table, shown in Figure 10-2.

Working with String Value Functions
A string value function allows you to manipulate character string data to produce a precise
value that is based on the original character string. When using a string value function,
you must supply the character string as a parameter of the function. That parameter is then
converted to a new value according to the purpose of that function and any other parameters
that might be specified. In this section, I introduce you to three string value functions:
SUBSTRING, UPPER, and LOWER.

Using the SUBSTRING String Value Function
The SUBSTRING string value function extracts a defined number of characters from an
identified character string in order to create a new string. That original character string can
be derived from a column or can be explicitly stated. In both cases, the character string is

Figure 10-2 Using value functions on the SALES_DATES table

COMPACT_DISC:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

Out of Africa

Leonard Cohen The Best of

Fundamental

Blues on the Bayou

DATE_SOLD:
TIMESTAMP

2002-12-22 10:58:05.120

2002-12-22 12:02:05.033

2002-12-22 16:15:22.930

2002-12-23 11:29:14.223

2002-12-23 13:32:45.547

2002-12-23 15:51:15.730

2002-12-23 17:01:32.270

2002-12-24 10:46:35.123

2002-12-24 12:19:13.843

2002-12-24 14:15:09.673

www.it-ebooks.info

http://www.it-ebooks.info/

 234 SQL: A Beginner’s Guide

passed as a parameter of the SUBSTRING function, along with a start point and, optionally,
a length specification. For example, suppose you want to return only the first 10 characters
of the values in the COMPACT_DISC column in the SALES_DATES table. You can create a
SELECT statement similar to the following:

SELECT SUBSTRING(COMPACT_DISC FROM 1 FOR 10) AS SHORT_NAME
 FROM SALES_DATES;

The SUBSTRING function includes three parameters. The first is the name of the
column, COMPACT_DISC, which identifies the source used for the character string. The next
parameter, FROM 1, indicates that the function will start counting at the first character. The
third parameter, 10, follows the FOR keyword. The FOR 10 parameter, which is optional,
indicates that up to 10 characters will be included in the new character string.

NOTE
Most implementations, including SQL Server, MySQL, and Oracle, do not use the
keywords FROM and FOR—you simply separate the parameters using commas. Also,
in Oracle, the function is named SUBSTR. Here is the same statement modified for
Oracle:

SELECT SUBSTR(COMPACT_DISC, 1, 10) AS SHORT_NAME
 FROM SALES_DATES;

If you execute this SELECT statement, you’ll receive the following query results:

SHORT_NAME

Famous Blu
Blue
Court and
Past Light
That Chris
Patsy Clin
Out of Afr
Leonard Co
Fundamenta
Blues on t

Notice that only the first 10 characters of each COMPACT_DISC value are included in the results.
For those values less than 10 characters, the full name appears.

The FROM parameter can accept a negative number or a zero as a parameter, assuming
your SQL implementation allows it. When using a negative number or a zero, keep in mind that
1 represents what you would think of as a normal starting position. The next character to the left
of 1 is 0. The character to the left of 0 is –1, and so on. The FOR parameter counts characters
starting at the starting point. If a zero or a negative number is used, the SUBSTRING function

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 235

acts as though characters actually exist in those places. For example, suppose you modify the
preceding SELECT statement as follows:

SELECT SUBSTRING(COMPACT_DISC FROM -2 FOR 10) AS SHORT_NAME
 FROM SALES_DATES;

If you execute this statement, only the first seven characters of each name would be
returned. If you use a zero instead, only the first nine characters will be returned. It is only
when you use a FROM parameter of 1 that you return exactly the number of characters (from
the character string) that are specified by the FOR parameter.

The SUBSTRING function is not limited to the SELECT clause. In fact, using it in a
WHERE clause can be quite useful when defining a search condition. For example, the
following SELECT statement uses the SUBSTRING function to return rows that start with
Blue:

SELECT COMPACT_DISC, DATE_SOLD
 FROM SALES_DATES
 WHERE SUBSTRING(COMPACT_DISC FROM 1 FOR 4) = 'Blue';

In this statement, the SUBSTRING function returns the first four characters of the
COMPACT_DISC values and compares them to the Blue value. Only two rows are included
in the query results:

COMPACT_DISC DATE_SOLD
------------------ -----------------------
Blue 2002-12-22 12:02:05.033
Blues on the Bayou 2002-12-24 14:15:09.673

Both rows in the query results have a COMPACT_DISC value that starts with Blue. No other
rows meet the search condition specified in the WHERE clause.

NOTE
The handling of datetime data varies considerably across SQL implementations, so the
results from your DBMS may look quite different with respect to the DATE_SOLD column.

Using the UPPER and LOWER String Value Functions
The UPPER and LOWER string value functions are quite similar in that they are both used
to convert characters from one case to another. The UPPER function allows you to convert a
character string to all uppercase. The LOWER function allows you to convert a string to all
lowercase. For example, suppose you want to modify the SELECT statement shown in the last
example to return all COMPACT_DISC values in uppercase. Your SELECT statement would
now include an UPPER function:

SELECT UPPER(COMPACT_DISC) AS TITLE, DATE_SOLD
 FROM SALES_DATES
 WHERE SUBSTRING(COMPACT_DISC FROM 1 FOR 4) = 'Blue';

www.it-ebooks.info

http://www.it-ebooks.info/

 236 SQL: A Beginner’s Guide

Your query results are the same as in the last example, only this time the CD titles are all in
uppercase, as shown in the following results:

Title DATE_SOLD
------------------ -----------------------
BLUE 2002-12-22 12:02:05.033
BLUES ON THE BAYOU 2002-12-24 14:15:09.673

If you had used the LOWER function, instead of the UPPER, the CD titles would all be in
lowercase, with no initial capitalization at the beginning of the words. These functions are also
quite useful for comparing data in case-sensitive implementations when you don’t know what
case was used in storing the data, or when you want to be sure data appears in a particular
case when you are inserting, updating, or when you are converting data from one database to
another.

Working with Datetime Value Functions
Datetime value functions provide information about the current date and time. Each function
returns a value based on the time or date (or both) as they are configured in the operating
system. SQL:2006 supports five datetime value functions, which are described in Table 10-1.

NOTE
SQL implementations vary widely with regard to how they implement datetime
functionality; consequently, the implementation of datetime functions also varies. For
example, SQL Server supports only the CURRENT_TIMESTAMP datetime value function.
On the other hand, Oracle supports the CURRENT_DATE, CURRENT_TIMESTAMP,
and LOCALTIMESTAMP datetime value functions, but not the CURRENT_TIME and
LOCALTIME functions. Yet MySQL supports all five of them. In addition, the exact values
generated by these functions can also vary from implementation to implementation. For
example, the query results will not always include information about the current time
zone, and some might represent time using a 24-hour clock rather than A.M. and P.M.

Table 10-1 Datetime Value Functions Supported by SQL:2006

Value Function Description

CURRENT_DATE Returns a value that represents the current date.

CURRENT_TIME Returns a value that represents the current time. The value includes information
about the current time zone, relative to Coordinated Universal Time (UCT),
which used to be called Greenwich Mean Time (GMT).

CURRENT_TIMESTAMP Returns a value that represents the current date and time. The value includes
information about the current time zone, relative to UCT.

LOCALTIME Returns a value that represents the current time.

LOCALTIMESTAMP Returns a value that represents the current date and time.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 237

Because the CURRENT_TIMESTAMP datetime value function is supported by both
SQL Server and Oracle, let’s take a closer look at implementing that one. However, keep in
mind that implementing any of the SQL datetime functions is the same process, depending on
which functions are supported by the specific SQL implementation in which you’re working.
By understanding how the CURRENT_TIMESTAMP function works, you’ll gain a better
understanding of how all functions work. However, be sure to check your implementation’s
documentation for more information on any of the functions that are supported by that product.

Depending on the SQL implementation, you can use the CURRENT_TIMESTAMP
function in a SELECT statement to simply retrieve the current timestamp information. As
you might expect with anything related to datetime functionality, the way in which you call a
function can vary. However, in some cases you might be able to use a statement as basic as the
following:

SELECT CURRENT_TIMESTAMP

This statement will retrieve the current time and date in some implementations. In other
implementations, you might have to add a FROM clause to the statement in order to retrieve
this information. For example, Oracle provides a dummy table called DUAL specifically
because it requires a FROM clause in all SELECT statements. Regardless of how you need to
write your SELECT statement, in all likelihood using a CURRENT_TIMESTAMP function
in this way is not very useful. You’ll probably make better use of datetime functions by using
them to compare data or to insert data automatically.

NOTE
Most SQL implementations have special functions for handling datetime data. For
example, SQL Server provides the getdate function to return the current date, while
Oracle provides the SYSDATE special value for the same purpose. The earliest SQL
implementations did not include any support for datetime data types, but as soon as
relational databases became popular in business applications, users demanded them.
This left vendors scrambling to add the new features, and since there was no SQL
standard to follow, wide variation across implementations was the result. Products
such as MySQL that were developed after the standard have fewer such variations. As
always, check your vendor documentation for details.

For example, suppose you wanted the SALES_DATES table (shown in Figure 10-2) to
insert the current time and date automatically in your table each time you add a new row. Your
table definition might look something like the following:

CREATE TABLE SALES_DATES
(COMPACT_DISC VARCHAR(60),
 DATE_SOLD DATETIME DEFAULT CURRENT_TIMESTAMP);

In this table definition, the DATE_SOLD column has been assigned a default value that
is based on the CURRENT_TIMESTAMP function. Each time a row is added to the table,
the datetime value is inserted into the DATE_SOLD column for that row. As a result, you can

www.it-ebooks.info

http://www.it-ebooks.info/

 238 SQL: A Beginner’s Guide

create INSERT statements that specify only the COMPACT_DISC value. The current date and
time are then automatically added to the DATE_SOLD column at the time the row is added.

Use Value Expressions
A value expression is a type of expression that returns a data value. The expression can include
column names, values, mathematical operators, keywords, or other elements that together
create a sort of formula, or expression, that returns a single value. For example, you can
combine the values in two columns to create one value, or you can perform operations on the
value in one column to create a new value.

In this section, we will look at numeric value expressions as well as the CASE and CAST
value expressions. To demonstrate how several of these expressions work, we will use the
CD_TRACKING table, shown in Figure 10-3.

Working with Numeric Value Expressions
Numeric value expressions are expressions that use mathematic operators to perform
calculations on numeric data values stored in your tables. You can use these operators to add,
subtract, multiply, and divide these values. Table 10-2 shows the four operators that you can
use to create numeric value expressions.

You can build numeric value expressions in much the same way as you build mathematical
formulas. The basic principles are the same. For example, multiplication and division take

Figure 10-3 Using value expressions on the CD_TRACKING table

CD_NAME:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

Out of Africa

Leonard Cohen The Best of

Fundamental

Blues on the Bayou

CD_CATEGORY:
CHAR(4)

FROK

CPOP

CPOP

NEWA

XMAS

CTRY

STRK

FROK

BLUS

BLUS

IN_STOCK:
INT

ON_ORDER:
INT

SOLD:
INT

19

28

12

6

14

15

8

6

10

11

16

22

11

7

14

18

5

8

6

10

34

56

48

22

34

54

26

18

21

17

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 239

precedence over addition and subtraction, and elements that should be calculated first are
enclosed in parentheses; otherwise, each operation is calculated according to precedence and
the order in which it is written. For example, the formula 2 + 2 * 5 / 4 equals 4.5; however,
the formula (2 + 2) * 5 / 4 equals 5. In the first formula, 2 is multiplied by 5, then divided by 4,
and then added to 2. In the second formula, 2 is added to 2, then multiplied by 5, and then
divided by 4.

Now let’s take a look at an example of a numeric value expression. Suppose you want to
add the IN_STOCK column to the ON_ORDER column in the CD_TRACKING table. You
can create a SELECT statement similar to the following:

SELECT CD_NAME, IN_STOCK, ON_ORDER, (IN_STOCK + ON_ORDER) AS TOTAL
 FROM CD_TRACKING

As you can see, the SELECT clause first specifies three column names: CD_NAME,
IN_STOCK, and ON_ORDER. These are then followed by a numeric value expression:
(IN_STOCK + ON_ORDER). Values from the IN_STOCK and ON_ORDER columns are
added together and included in the query results under a column named TOTAL, as shown in
the following results:

CD_NAME IN_STOCK ON_ORDER TOTAL
----------------------------- -------- -------- -----
Famous Blue Raincoat 19 16 35
Blue 28 22 50
Court and Spark 12 11 23
Past Light 6 7 13
That Christmas Feeling 14 14 28
Patsy Cline: 12 Greatest Hits 15 18 33
Out of Africa 8 5 13
Leonard Cohen The Best Of 6 8 14
Fundamental 10 6 16
Blues on the Bayou 11 10 21

For each row, a value has been added to the TOTAL column that adds together the values in
the IN_STOCK column and the ON_ORDER column.

Numeric value expressions are not limited to the SELECT clause. For example, you can
use one in a WHERE clause to specify a search condition. Suppose you want to return the

Table 10-2 Using Numeric Value Expressions to Calculate Data

Expression Operator Example

Addition + IN_STOCK + ON_ORDER

Subtraction − SOLD − (IN_STOCK + ON_ORDER)

Multiplication ∗ IN_STOCK ∗ 2

Division / SOLD / 2

www.it-ebooks.info

http://www.it-ebooks.info/

 240 SQL: A Beginner’s Guide

same results as in the previous SELECT statement but only for those CDs with a TOTAL value
greater than 25. You can modify your statement as follows:

SELECT CD_NAME, IN_STOCK, ON_ORDER, (IN_STOCK + ON_ORDER) AS TOTAL
 FROM CD_TRACKING
 WHERE (IN_STOCK + ON_ORDER) > 25

Now your search results include only four rows, as shown in the following:

CD_NAME IN_STOCK ON_ORDER TOTAL
----------------------------- -------- -------- -----
Famous Blue Raincoat 19 16 35
Blue 28 22 50
That Christmas Feeling 14 14 28
Patsy Cline: 12 Greatest Hits 15 18 33

Numeric value operators can also be combined with each other to create more complex
expressions. In the next example, I include an additional expression that calculates three sets of
values and combines them into one column in the query results:

SELECT CD_NAME, IN_STOCK, ON_ORDER, (IN_STOCK + ON_ORDER) AS TOTAL,
 SOLD, (SOLD - (IN_STOCK + ON_ORDER)) AS SHORTAGE
 FROM CD_TRACKING
 WHERE (IN_STOCK + ON_ORDER) > 25

This statement allows you to calculate how many CDs you have available (IN_STOCK
+ ON_ORDER) as compared to how many you sold. The difference is then added to the
SHORTAGE column in the query results. If you have sold more CDs than are available, a
positive number is placed in the SHORTAGE column. If, on the other hand, there are enough
CDs available, a negative number is created. The following query results show the amounts
calculated when you execute the SELECT statement:

CD_NAME IN_STOCK ON_ORDER TOTAL SOLD SHORTAGE
----------------------------- -------- -------- ----- ---- --------
Famous Blue Raincoat 19 16 35 34 -1
Blue 28 22 50 56 6
That Christmas Feeling 14 14 28 34 6
Patsy Cline: 12 Greatest Hits 15 18 33 54 21

The query results now include two calculated columns: TOTAL and SHORTAGE. All other
values (IN_STOCK, ON_ORDER, and SOLD) are taken directly from the table.

As you can see, numeric value expressions are quite flexible and can be used in many
different ways. In addition to the methods we’ve looked at so far, you can also combine
column values with specified values. For example, suppose you want to see how many CDs

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 241

you would have available if you doubled the amount you had on order for those CDs where
there are fewer than 15 available:

SELECT CD_NAME, IN_STOCK, ON_ORDER, (IN_STOCK + ON_ORDER) AS TOTAL,
 (IN_STOCK + ON_ORDER * 2) AS DOUBLE_ORDER
 FROM CD_TRACKING
 WHERE (IN_STOCK + ON_ORDER) < 15

The second numeric value expression in this statement multiplies the ON_ORDER value
by 2, adds it to the IN_STOCK value, and inserts the total into the DOUBLE_ORDER column
of the query results, as shown in the following results:

CD_NAME IN_STOCK ON_ORDER TOTAL DOUBLE_ORDER
------------------------- -------- -------- ----- ------------
Past Light 6 7 13 20
Out of Africa 8 5 13 18
Leonard Cohen The Best Of 6 8 14 22

The query results include only three rows that meet the condition of the WHERE clause.
For each of these rows, the IN_STOCK and ON_ORDER columns are calculated to provide
you with data that can be useful to you, depending on your needs. The nice part is that these
values do not have to be stored in the database. Instead, they’re calculated when you execute
the SELECT statement, rather than having to maintain tables with additional data.

Using the CASE Value Expression
A CASE value expression allows you to set up a series of conditions that modify specified
values returned by your SQL statement. You can change the way a value is represented or
calculate a new value. Each value is modified according to the condition specified within
the CASE expression. A CASE value expression includes the CASE keyword and a list of
conditions. The last condition provides a default condition if none of the previous conditions
have been met. The value expression is then closed by using the END keyword.

Let’s take a look at an example to give you a better idea of how this works. Suppose you
want to increase the number of CDs you have on order, but you want to increase the amount
for only certain CDs. In addition, you want to base how many CDs you add to the order on
the current amount. Before you actually update the table, you can look at what the new values
would be by creating a SELECT statement that queries the CD_TRACKING table, as shown
in the following example:

SELECT CD_NAME, ON_ORDER, NEW_ORDERS =
 CASE
 WHEN ON_ORDER < 6 THEN ON_ORDER + 4
 WHEN ON_ORDER BETWEEN 6 AND 8 THEN ON_ORDER + 2
 ELSE ON_ORDER
 END
 FROM CD_TRACKING
 WHERE ON_ORDER < 11;

www.it-ebooks.info

http://www.it-ebooks.info/

 242 SQL: A Beginner’s Guide

In this statement, three columns are specified: CD_NAME, ON_ORDER, and NEW_
ORDERS. The NEW_ORDERS column is the column created for the query results. It will
contain the values updated by the CASE value expression. The expression itself is made up of
the column name (NEW_ORDERS), the equals sign, the CASE keyword, two WHEN/THEN
clauses, one ELSE clause, and the END keyword. Each WHEN/THEN clause represents one
of the conditions. For example, the first clause specifies that if the ON_ORDER value is less
than 6, then 4 should be added to the value. The second WHEN/THEN clause specifies that
if the ON_ORDER value falls within the range of 6 though 8, then 2 should be added to
the value.

After the WHEN/THEN clauses, the ELSE clause specifies the final condition. If the value
does not meet the conditions defined in the WHEN/THEN clauses, the ELSE clause specifies
a default condition. In the case of the preceding SELECT statement, the ELSE clause merely
refers to the ON_ORDER column, without specifying any modifications. (It would be the
same as saying ON_ORDER + 0.) In other words, if none of the WHEN/THEN conditions are
met, the ON_ORDER value stays the same. If you were to execute the SELECT statement,
you would receive the following results:

CD_NAME ON_ORDER NEW_ORDERS
------------------------- -------- ----------
Past Light 7 9
Out of Africa 5 9
Leonard Cohen The Best Of 8 10
Fundamental 6 8
Blues on the Bayou 10 10

As you can see, the Out of Africa row is increased by 4, the Blues on the Bayou row is not
increased at all, and the other three rows are increased by 2.

In addition to modifying values, you can use a CASE value expression to rename values.
This is particularly useful if your query results include values that are not easily recognizable.
For example, suppose you want to create a query that returns data from the CD_CATEGORY
column of the CD_TRACKING table. You can rename the values in the column so that the
information returned is more understandable to users, as shown in the following SELECT
statement:

SELECT CD_NAME, CD_CATEGORY =
 CASE
 WHEN CD_CATEGORY = 'FROK' THEN 'Folk Rock'
 WHEN CD_CATEGORY = 'CPOP' THEN 'Classic Pop'
 WHEN CD_CATEGORY = 'NEWA' THEN 'New Age'
 WHEN CD_CATEGORY = 'XMAS' THEN 'Christmas'
 WHEN CD_CATEGORY = 'CTRY' THEN 'Country'
 WHEN CD_CATEGORY = 'STRK' THEN 'Soundtrack'
 WHEN CD_CATEGORY = 'BLUS' THEN 'Blues'
 ELSE NULL
 END
 FROM CD_TRACKING;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 243

NOTE
You do not have to put the various components of the CASE value expression
on separate lines, as I have done here. I do it this way to clearly show you each
component. It also makes the code more readable to anyone reviewing it.

In this SELECT statement, the different values in the CD_CATEGORY column are
renamed to more useful names. Notice that you do not need to repeat the column names to
the right of the THEN keyword. The predicate construction is assumed by the context of the
clause. When you execute this statement, you receive the following query results:

CD_NAME CD_CATEGORY
----------------------------- ------------
Famous Blue Raincoat Folk Rock
Blue Classic Pop
Court and Spark Classic Pop
Past Light New Age
That Christmas Feeling Christmas
Patsy Cline: 12 Greatest Hits Country
Out of Africa Soundtrack
Leonard Cohen The Best Of Folk Rock
Fundamental Blues
Blues on the Bayou Blues

As you can see, only user-friendly names appear in the CD_CATEGORY column. If any of
the original values had not met the condition defined in the WHEN/THEN clauses, a null value
would be inserted in the query results.

Q: Can you use a CASE value expression anywhere other than a SELECT statement?

A: Another handy use for the CASE value expression is in the SET clause of an UPDATE
statement. For example, suppose you want to update the values in the ON_ORDER
column in the CD_TRACKING table (shown in Figure 10-3). You can update those values
by specifying specific conditions in a CASE expression:

UPDATE CD_TRACKING
 SET ON_ORDER =
 CASE
 WHEN ON_ORDER < 6 THEN ON_ORDER + 4
 WHEN ON_ORDER BETWEEN 6 AND 8 THEN ON_ORDER + 2
 ELSE ON_ORDER
 END

(continued)

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 244 SQL: A Beginner’s Guide

Using the CAST Value Expression
The CAST value expression serves a much different purpose than the CASE expression.
The CAST expression allows you to change a value’s data type for a literal value or when
retrieving that value from your database. However, it does not change the data type of the
source column. This is particularly useful when working with programming languages in
which data types do not match up and you need to use a common denominator to work with
the value.

To use the CAST value expression, you must specify the CAST keyword, and, in
parentheses, provide the column name, the AS keyword, and the new data type, in that order.
To illustrate this, let’s return to the SALES_DATES table shown in Figure 10-2. The table
includes the COMPACT_DISC column and the DATE_SOLD column. The DATE_SOLD

 This statement will add 4 to the ON_ORDER values that are less than 6, and it will add 2 to
the ON_ORDER values that fall within the range of 6 through 8. Otherwise, no additional
rows will be changed.

Q: Can you reference more than one column in a CASE value expression?

A: Yes, you can reference more than one column. Suppose you want to update ON_ORDER
values, but base those updates on CD_CATEGORY values. You can create a statement
similar to the following:

UPDATE CD_TRACKING
 SET ON_ORDER =
 CASE
 WHEN CD_CATEGORY = 'CPOP' THEN ON_ORDER * 3
 WHEN CD_CATEGORY = 'BLUS' THEN ON_ORDER * 2
 ELSE ON_ORDER
 END

 In this statement, ON_ORDER values are multiplied by 3 when CD_CATEGORY values equal
CPOP, and ON_ORDER values are multiplied by 2 when CD_CATEGORY values equal
BLUS. Otherwise, no values are changed.

Q: Are there any performance implications when using a CASE value expression?

A: While there are no inherent performance issues regarding the use of CASE value
expressions, it is possible to get carried away. In general, the more complex the statement,
especially in terms of nesting and elaborate conditional logic, the more resources that will
be required to parse and execute the statement.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 245

column is configured with the TIMESTAMP data type. Suppose you want to change the
datetime values to character strings. You can use the CAST expression in your SELECT
clause, as shown in the following statement:

SELECT COMPACT_DISC, CAST(DATE_SOLD AS CHAR(25)) AS CHAR_DATE
 FROM SALES_DATES
 WHERE COMPACT_DISC LIKE ('%Blue%')

This statement converts the DATE_SOLD values from TIMESTAMP values to CHAR
values. As you can see, all you need to do is specify the CAST keyword, followed by the
parenthetical parameters that identify the source column and the new data type, along with the
AS keyword. When you execute this statement, you receive query results similar to what you
would see if you had not used CAST:

COMPACT_DISC CHAR_DATE
-------------------- -------------------
Famous Blue Raincoat Dec 22 2002 10:58AM
Blue Dec 22 2002 12:02PM
Blues on the Bayou Dec 24 2002 2:15PM

Notice that you can assign a name to the column that contains the new datetime results. In this
case, the new column name is CHAR_DATE.

NOTE
You might find that, in your SQL implementation, when a datetime value is converted,
the format changes slightly. For example, in SQL Server, a date value is expressed
numerically and a time value is expressed in a 24-hour clock (military time), but when
the value is converted to a CHAR data type, the time value is expressed in alphanumeric
characters, and the time is expressed in a 12-hour clock (A.M. and P.M.).

Use Special Values
In Chapter 6, I discuss special values that SQL supports that allow you to determine the current
users. A special value exists for each type of user. These values act as placeholders for the
actual user-related value. You can use them in expressions to return the value of the specific
user. SQL supports five special values, which are described in Table 10-3. (See Chapter 6 for
more information about the various types of SQL users.)

The special values can be used in different ways in an SQL database, such as for
establishing connections or running a stored procedure. The special value, rather than the
actual user name, is embedded in the code to allow the code to remain flexible from one
situation to another. Another way in which a special value can be used is to store user data in a
table. To illustrate this, let’s take a look at the CD_ORDERS table in Figure 10-4.

Each time a row is added to the table, a value for CURRENT_USER is inserted into the
ORDERED_BY column. This makes it handy to track which user has placed the order. If you

www.it-ebooks.info

http://www.it-ebooks.info/

 246 SQL: A Beginner’s Guide

were to look at the table definition, you would see that a default value had been defined for the
ORDERED_BY column, as shown in the following CREATE TABLE statement:

CREATE TABLE CD_ORDERS
(CDTITLE VARCHAR(60),
 ORDERED INT,
 ORDERED_BY CHAR(30) DEFAULT CURRENT_USER);

If you were to insert data into this table, you would have to specify only a CD_TITLE
value and an ORDERED value. The ORDERED_BY value would be inserted automatically,

Table 10-3 Using SQL:2006 Special Values

Value Description

CURRENT_USER Identifies the current user identifier. If the SQL-session user identifier is the current
user identifier, then CURRENT_USER, USER, and SESSION_USER all have the same
value, which can occur if the initial identifier pair is the only active user identifier/
role name pair (the pair at the top of the authentication stack).

USER Identifies the current user identifier. USER means the same thing as CURRENT_USER.

SESSION_USER Identifies the current SQL-session user identifier.

CURRENT_ROLE Identifies the current role name.

SYSTEM_USER Identifies the current operating system user who invoked an SQL module.

Figure 10-4 Using the CURRENT_USER special value in the CD_ORDERS table

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

Out of Africa

Leonard Cohen The Best of

Fundamental

Blues on the Bayou

ORDERED_BY:
CHAR(30)

Mngr

AsstMngr

Mngr

AsstMngr

Mngr

AsstMngr

AsstMngr

Mngr

Mngr

Mngr

ORDERED:
INT

16

22

11

7

14

18

5

8

6

10

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 247

Try This 10-1

and that value would be the current user identifier. If you do not specify a default value for
the ORDERED_BY column, you can use the special value to insert the user. For example, the
following INSERT statement inserts a row into the CD_ORDERS table:

INSERT INTO CD_ORDERS
VALUES ('Rhythm Country and Blues', 14, CURRENT_USER);

When you execute the statement, a value representing the current user identifier (such as
Mngr) is inserted into the ORDERED_BY column.

To determine the extent to which you can use the special values, you should review the
product documentation for your SQL implementation. You’ll find that the ways in which you
can use these values will vary from one implementation to the next; however, once you’re
comfortable with using special values in your implementation, you’ll find them a useful tool as
you become more proficient with programming SQL.

 Using Functions and Value Expressions
In this chapter, you learned about many of the functions and value expressions supported
by SQL. Now you will try out these functions and expressions by querying data from the
INVENTORY database. Specifically, you will create SELECT statements that contain the
COUNT, MIN, SUM, SUBSTRING, and UPPER functions and ones that contain numerical,
CASE, and CAST value expressions. You can download the Try_This_10.txt file, which
contains the SQL statements used in this exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. In the first statement, you will determine the number of unique ARTIST_NAME values in
the ARTISTS table. Enter and execute the following SQL statement:

SELECT COUNT(DISTINCT ARTIST_NAME) AS ARTISTS
 FROM ARTISTS;

 Your query should return a count of 18.

 3. In the next statement, you will determine the minimum number of CDs in stock, as listed in
the COMPACT_DISCS table. You’ll name the column in the query results MIN_STOCK.
Enter and execute the following SQL statement:

SELECT MIN(IN_STOCK) AS MIN_STOCK
 FROM COMPACT_DISCS;

 Your query results should include only one column and one row, and show a value of 5.
That means that five is the least number of CDs you have in stock for any one CD.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 248 SQL: A Beginner’s Guide

 4. Now you will determine the total number of CDs in stock. However, this time you will
group these totals according to the LABEL_ID values. Enter and execute the following
SQL statement:

SELECT LABEL_ID, SUM(IN_STOCK) AS TOTAL
 FROM COMPACT_DISCS
 GROUP BY LABEL_ID;

 Your query should return 10 rows, one for each LABEL_ID value. The TOTAL value for
each row represents the total number of CDs for that particular LABEL_ID group.

 5. In the preceding steps, you used set functions when querying data from the INVENTORY
database. You’ll now try a couple of value functions. The first of these is SUBSTRING. In
this SELECT statement, you’ll extract data from the PLACE_OF_BIRTH column in the
ARTISTS table. You want to extract eight characters, starting with the first character in the
string. Enter and execute the following SQL statement:

SELECT ARTIST_NAME,
 SUBSTRING(PLACE_OF_BIRTH FROM 1 FOR 8) AS BIRTH_PLACE
 FROM ARTISTS;

 Your query results should return 18 rows and include two columns: ARTIST_NAME and
BIRTH_PLACE. The BIRTH_PLACE column contains the extracted values, which are
based on the table’s PLACE_OF_BIRTH column.

 6. The next value function you’ll try is the UPPER function. In this SELECT statement,
you’ll convert the names of the CDs to all uppercase. Enter and execute the following SQL
statement:

SELECT UPPER(CD_TITLE) AS CD_NAME
 FROM COMPACT_DISCS;

 This statement should return 15 rows with only one column that lists the name of the CDs
in the COMPACT_DISCS table. The CD titles should all be in uppercase.

 7. Now you will move on to numeric value expressions. The next statement you try creates
two columns in the query results that double and triple the values in the IN_STOCK column
of the COMPACT_DISCS table. However, the statement returns values only for those rows
with an IN_STOCK value less than 25. Enter and execute the following SQL statement:

SELECT CD_TITLE, IN_STOCK,
 (IN_STOCK * 2) AS DOUBLED, (IN_STOCK * 3) AS TRIPLED
 FROM COMPACT_DISCS
 WHERE IN_STOCK < 25;

 Your SELECT statement should return nine rows that each include IN_STOCK values that
have been multiplied by 2 and by 3.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 249

 8. The next value expression you’ll try is the CASE expression. The statement will provide
updated IN_STOCK values in the TO_ORDER column of the query results. For IN_STOCK
values less than 10, the values will be doubled. For IN_STOCK values that fall within
the range of 10 through 15, 3 will be added to the values. All other IN_STOCK values will
remain the same. The statement operates only on those rows whose original IN_STOCK
value is less than 20. Enter and execute the following SQL statement:

SELECT CD_TITLE, IN_STOCK, TO_ORDER =
 CASE
 WHEN IN_STOCK < 10 THEN IN_STOCK * 2
 WHEN IN_STOCK BETWEEN 10 AND 15 THEN IN_STOCK + 3
 ELSE IN_STOCK
 END
 FROM COMPACT_DISCS
 WHERE IN_STOCK < 20;

 Your query results should include only seven rows, and the TO_ORDER column of the
query results should contain the updated values.

 9. Now you will try the CAST value expression. You will query the MUSIC_TYPES table
but will convert the data type of the TYPE_NAME column in your query results. Enter and
execute the following SQL statement:

SELECT TYPE_ID, CAST(TYPE_NAME AS CHAR(20)) AS CHAR_TYPE
 FROM MUSIC_TYPES;

 Your query should return 11 rows. The query results should include a CHAR_TYPE column
that contains the converted values.

 10. Close the client application.

Try This Summary
You should now be fairly comfortable with the various functions and value expressions that
we reviewed in this chapter. Remember that each SQL implementation supports different
functions and value expressions, usually many more than what you have seen here. In fact, in
many cases, the functions and value expressions you saw in this chapter represent only the tip
of the iceberg. Be sure to review your product documentation to find out what functions and
value expressions are supported and how they’re implemented. You’ll find them useful tools in
a variety of situations and well worth the effort you invest now.

www.it-ebooks.info

http://www.it-ebooks.info/

 250 SQL: A Beginner’s Guide

 Chapter 10 Self Test
 1. What is a set function?

 2. You’re creating a SELECT statement that queries the ARTIST_CDS table. The table
includes the ARTIST_NAME and CD_NAME columns. You want your statement to return
the total number of rows in the table. Which COUNT function should you include in your
SELECT clause?

 A COUNT(*)

 B COUNT(ARTIST_NAME)

 C COUNT(CD_NAME)

 D COUNT(ARTIST_NAME, CD_NAME)

 3. Which set function should you use to add together the values in a column?

 A MAX

 B COUNT

 C SUM

 D AVG

 4. Set functions require that the data be ____________ in some way.

 5. What are value functions?

 6. You’re using the SUBSTRING function to extract characters from the COMPACT_DISC
column of the SALES_DATES table. You want to start with the third character and extract
eight characters. What parameters should you use in the SUBSTRING function?

 7. You’re using the LOWER function on the Past Light value of the CD_NAME column. What
value will be returned?

 8. Which function returns a value that represents the current date and time as well as information
related to UCT?

 A LOCALTIMESTAMP

 B CURRENT_DATE

 C LOCALTIME

 D CURRENT_TIMESTAMP

 9. What are four types of operators that you use in a numeric value expression?

 10. You are querying data from the CD_TRACKING table. You want to add values in
the IN_STOCK column to values in the ON_ORDER column. You then want to double
the column totals. How do you set up the numeric value expression?

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 10: Working with Functions and Value Expressions 251

 11. Which value expression do you use to set up a series of conditions that modify values?

 12. You’re creating a SELECT statement that includes a CASE value expression. You want
one of the conditions to specify that any ON_ORDER values greater than 10 should be
increased by 5. How should you set up the WHEN/THEN clause?

 13. What is the last word in a CASE value expression?

 14. What is a CAST value expression?

 15. You’re querying the DATE_SOLD column in the SALES_DATES table. You want to convert
the values to a CHAR (25) data type, and you want the data displayed in the CHAR_DATE
column in the query results. How do you define the CAST value expression?

 16. Which special value can you use to identify the current SQL session user identifier?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

253

Chapter 11
Accessing Multiple
Tables

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 254 SQL: A Beginner’s Guide

Key Skills & Concepts

● Perform Basic Join Operations

● Join Tables with Shared Column Names

● Use the Condition Join

● Perform Union Operations

An important component of any relational database is the relationship that can exist between
 any two tables. This relationship allows you to tie data in one table to data in another

table. These sorts of relationships are particularly useful when you want to query related data
from more than one table and you want to retrieve that data in a meaningful way so that the
relationships between the tables are, for all practical purposes, invisible. One method that
SQL:2006 supports for querying data in this manner is to join the tables in one statement.
A join is an operation that matches rows in one table with rows in another so that columns
from both tables may be placed side by side in the query results as if they all came from a
single table. SQL defines several types of join operations. The type you can use in any given
situation depends on your SQL implementation (with regard to statements supported and how
performance might be impacted), which data you want returned, and how the tables have been
defined. In this chapter, I discuss a number of operations that combine data from multiple
tables, including joins and unions, and provide details about how they’re implemented and the
results you can expect when you use them.

Perform Basic Join Operations
One of the simplest types of joins to implement is the comma-separated join. In this type
of operation, you’re required only to supply a list of tables (separated by commas) in the
FROM clause of the SELECT statement. You can, of course, qualify the join in the WHERE
clause— which you would want to do to obtain meaningful data from the tables—but you’re
not required to do so. However, before I discuss the WHERE clause, let’s first take a look at
the comma-separated join at its most basic.

Suppose you want to display data from the CD_INVENTORY table and the
PERFORMERS table, shown in Figure 11-1. (The figure also includes the PERF_TYPE table,
which we’ll be using in the “Creating Joins with More than Two Tables” section.) You can
view the data in the CD_INVENTORY and PERFORMERS tables by querying each table
separately, or you can join the tables in one statement.

To join the two tables, you can create a SELECT statement as simple as the following one:

SELECT *
 FROM CD_INVENTORY, PERFORMERS;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 11: Accessing Multiple Tables 255

The query produces what is known as a Cartesian product table (named after French
mathematician and philosopher René Descartes), which is a list of each row in one table joined
together with each row in the other table, as shown (in part) in the following query results:

CD_NAME PERF_ID IN_STOCK PERF_ID PERF_NAME TYPE_ID
----------------------- ------- -------- ------- --------------- -------
Famous Blue Raincoat 102 12 102 Jennifer Warnes 12
Blue 101 24 102 Jennifer Warnes 12
Court and Spark 101 17 102 Jennifer Warnes 12
Past Light 105 9 102 Jennifer Warnes 12
Fundamental 104 22 102 Jennifer Warnes 12
Blues on the Bayou 103 19 102 Jennifer Warnes 12
Longing in Their Hearts 104 18 102 Jennifer Warnes 12
Luck of the Draw 104 25 102 Jennifer Warnes 12
Deuces Wild 103 17 102 Jennifer Warnes 12
Nick of Time 104 11 102 Jennifer Warnes 12
Both Sides Now 101 13 102 Jennifer Warnes 12
Famous Blue Raincoat 102 12 101 Joni Mitchell 10
Blue 101 24 101 Joni Mitchell 10
Court and Spark 101 17 101 Joni Mitchell 10
Past Light 105 9 101 Joni Mitchell 10

Actually, the preceding SELECT statement would return far more rows than are shown here.
These results represent only a partial list. Because the CD_INVENTORY table contains 11 rows

CD_NAME:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Longing in Their Hearts

Luck of the Draw

Court and Spark

Deuces Wild

Nick of Time

Fundamental

Blues on the Bayou

PERF_ID:
INT

102

Both Sides Now

101

101

101

104

104

104

104

103

103

105

IN_STOCK:
INT

12

24

17

9

22

19

18

25

17

11

13

PERF_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

William Ackerman

Bonnie Raitt

Leonard Cohen

John Barry

B.B. King

PERF_ID:
INT

101

102

103

105

107

108

109

106

104

TYPE_ID:
INT

10

12

11

15

17

18

12

16

10

TYPE_ID:
INT

10

11

12

14

16

17

18

15

13

TYPE_NAME:
CHAR(20)

Blues

Popular

New Age

Classic Pop

Classical

Rock

Soundtrack

Country

Folk

CD_INVENTORY PERFORMERS PERF_TYPE

Figure 11-1 Joining the CD_INVENTORY, PERFORMERS, and PERF_TYPE tables

www.it-ebooks.info

http://www.it-ebooks.info/

 256 SQL: A Beginner’s Guide

and the PERFORMERS table contains 9 rows, the entire query results would contain 99 rows.
Let’s take a closer look at this. The Famous Blue Raincoat row in the CD_INVENTORY table
has been joined with each row in the PERFORMERS table, which totals 9 rows. Each of the
remaining 10 rows in the CD_INVENTORY table is matched to each row in the PERFORMERS
table in the same way. As a result, there are 99 rows (11 × 9 = 99).

As you can see, these query results are not the most useful. However, you can generate
more meaningful results if you use a WHERE clause to create an equi-join (also written as
equijoin), which is a type of join that equates the values in one or more columns in the first
table to the values in one or more corresponding columns in the second table. As you might
guess from the name, the comparison operator in an equi-join is always an equal to (=)
operator. For example, you can qualify the previous SELECT statement in the following way:

SELECT *
 FROM CD_INVENTORY, PERFORMERS
 WHERE CD_INVENTORY.PERF_ID = PERFORMERS.PERF_ID;

Now your query results will include only those rows in which the value in the PERF_ID
column of the CD_INVENTORY table matches the value in the PERF_ID column of the
PERFORMERS table. Notice that you have to qualify the column names by adding the table
names. You must do this whenever columns from different tables have the same name. If you
execute this statement, you’ll receive the following query results:

CD_NAME PERF_ID IN_STOCK PERF_ID PERF_NAME TYPE_ID
---------------------- ------- -------- ------- ---------------- -------
Famous Blue Raincoat 102 12 102 Jennifer Warnes 12
Blue 101 24 101 Joni Mitchell 10
Court and Spark 101 17 101 Joni Mitchell 10
Past Light 105 9 105 William Ackerman 15
Fundamental 104 22 104 Bonnie Raitt 10
Blues on the Bayou 103 19 103 B.B. King 11
Longing in Their Hearts 104 18 104 Bonnie Raitt 10
Luck of the Draw 104 25 104 Bonnie Raitt 10
Deuces Wild 103 17 103 B.B. King 11
Nick of Time 104 11 104 Bonnie Raitt 10
Both Sides Now 101 13 101 Joni Mitchell 10

The data returned by this query is now a lot more meaningful. Each CD is matched with
the appropriate performer, and only 11 rows are displayed, rather than 99. However, even these
query results include repetitive data (the PERF_ID column). In addition, you might find that
not only do you want to eliminate duplicate columns, but you also want to display only certain
columns and perhaps qualify your search condition even further.

Let’s modify the SELECT statement we’ve been looking at by specifying column names in
the SELECT clause to limit the columns returned and adding another predicate to the WHERE
clause to limit the rows returned, as shown in the following example:

SELECT CD_INVENTORY.CD_NAME, PERFORMERS.PERF_NAME, CD_INVENTORY.IN_STOCK
 FROM CD_INVENTORY, PERFORMERS
 WHERE CD_INVENTORY.PERF_ID = PERFORMERS.PERF_ID
 AND CD_INVENTORY.IN_STOCK < 15;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 11: Accessing Multiple Tables 257

In this statement, I have specified that three columns should be included in the query
results. Notice that I’ve qualified the column names by including the table names. Notice also
that the WHERE clause includes an additional predicate, connected with the first predicate by
the AND keyword. Now any rows that are returned must also have IN_STOCK values less than
15. If you execute this statement, you’ll receive the following query results:

CD_NAME PERF_NAME IN_STOCK
-------------------- ---------------- --------
Famous Blue Raincoat Jennifer Warnes 12
Both Sides Now Joni Mitchell 13
Past Light William Ackerman 9
Nick of Time Bonnie Raitt 11

As you can see, we’ve refined the query results down to just the most essential information.
Of course, you can create all sorts of queries, depending on your needs, as long as you follow
the basic guidelines for creating a comma-separated join:

● The FROM clause must include all table names.

● The WHERE clause should define a join condition, avoiding a Cartesian product.

● The column references must be qualified when column names are shared among tables.

Aside from these guidelines, you’re free to create whatever sort of SELECT statement is
necessary to extract the information you need from the participating tables. And while using
the WHERE clause to specify the join condition was the original way to do joins in SQL,
later in this chapter you will see that there are now other syntax variations using the JOIN
keyword, which most SQL programmers prefer over the original syntax. But no matter what
syntax you use, always keep in mind that there needs to be some sort of logical connection
between the tables. This connection is often seen in the form of a foreign key, but that doesn’t
have to be the case. (For more information about foreign keys, see Chapter 4.) Tables can be
joined whether or not a foreign key exists. And although the equi-join is the most common,
you may occasionally find a different join comparison operator useful, such as less than (<) or
BETWEEN, in which case the join is referred to as a theta-join.

Using Correlation Names
As I stated earlier, you must qualify your column references by adding table names to
those columns that share a name. However, as a general policy, it’s a good idea to always
qualify column references when joining tables, whether or not it’s necessary. This makes
referencing the code at a later time much easier if the statement is fully self-documented.
However, as your queries become more complex, it can become increasingly tedious to
reenter table names every time you reference a column. Because of this, SQL supports
correlation names, or aliases, that can be used for the duration of a statement. A correlation
name is simply a shortened version of the actual table name that is used to simplify code
and make it more readable.

www.it-ebooks.info

http://www.it-ebooks.info/

 258 SQL: A Beginner’s Guide

Take, for example, the last SELECT statement that we looked at. You can recast this
statement by using correlation names for the two tables:

SELECT c.CD_NAME, p.PERF_NAME, c.IN_STOCK
 FROM CD_INVENTORY AS c, PERFORMERS AS p
 WHERE c.PERF_ID = p.PERF_ID
 AND c.IN_STOCK < 15;

The SELECT statement produces exactly the same results as the preceding statement, only
now the tables are referenced by different names, except in the FROM clause. In fact, you use
the FROM clause to define the aliases that are used in the rest of the statement. In this case, the
CD_INVENTORY table is renamed c, and the PERFORMERS table is renamed p. As a result,
c and p must be used everywhere else in the SELECT statement when referring to those tables.
Once a correlation name has been defined, you cannot use the actual table name. And yes, this
can be confusing because you use the alias in the SELECT clause, but yet it is not defined until
the FROM clause that follows the SELECT clause. However, it makes sense when you recall
that the FROM clause is always processed first.

To better understand how the renaming process works, let’s revisit the issue of how
SELECT statements are processed. As you might recall from Chapter 7, the FROM clause is
processed first and the SELECT clause is processed last. That is why the correlation names are
defined in the FROM clause. Once they are defined, all other clauses can (and must) use those
aliases when qualifying column references. The correlation names are used throughout the
remainder of the statement, but they only apply to the statement in which they are defined. If
you create a new SELECT statement, you must redefine those names in order to use them in the
new statement.

As you can see in the previous SELECT statement, a correlation name is defined
immediately after the actual table name. The new name follows the AS keyword. However,
the AS keyword is not required. In most implementations, you can also use the following
convention to rename the tables within a query:

SELECT c.CD_NAME, p.PERF_NAME, c.IN_STOCK
 FROM CD_INVENTORY c, PERFORMERS p
 WHERE c.PERF_ID = p.PERF_ID
 AND c.IN_STOCK < 15;

Notice that only the new name is specified, without the AS keyword. This makes the SQL
statement that much simpler. In fact, some implementations, such as Oracle, do not allow
you to use the AS keyword at all, even though it is part of the SQL standard. Again, this last
SELECT statement will provide the same query results that you saw in the two previous
examples. Only the statement itself has been changed.

Creating Joins with More than Two Tables
Up to this point, the examples that we’ve looked at have joined only two tables. However,
you can use a comma-separated join to display data from more than two tables. If you refer
again to Figure 11-1, you’ll see that the PERF_TYPE table is included in the illustration.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 11: Accessing Multiple Tables 259

You can, if you want, join all three tables in a single SELECT statement, as shown in the
following example:

SELECT c.CD_NAME, p.PERF_NAME, t.TYPE_NAME
 FROM CD_INVENTORY c, PERFORMERS p, PERF_TYPE t
 WHERE c.PERF_ID = p.PERF_ID
 AND p.TYPE_ID = t.TYPE_ID
 AND TYPE_NAME = 'Popular';

In this statement, the FROM clause includes all three tables. In addition, the WHERE clause
provides two equi-join conditions: one that maps the PERF_ID columns and one that maps the
TYPE_ID columns. If you execute this statement, you’ll receive the following query results:

CD_NAME PERF_NAME TYPE_NAME
----------------------- ------------- ---------
Blue Joni Mitchell Popular
Court and Spark Joni Mitchell Popular
Fundamental Bonnie Raitt Popular
Longing in Their Hearts Bonnie Raitt Popular
Luck of the Draw Bonnie Raitt Popular
Nick of Time Bonnie Raitt Popular
Both Sides Now Joni Mitchell Popular

Notice that information from all three tables is included in the results: the name of the CD,
the name of the performer, and the category of performer. Even though a relationship might
exist between the CD_INVENTORY table and the PERFORMERS table, as well as between
the PERFORMERS table and the PERF_TYPE table, your query results provide a seamless
display that hides these relationships and shows only the information that you need.

Creating the Cross Join
In addition to the comma-separated join, SQL supports another type of operation called the
cross join. The cross join is nearly identical to the comma-separated join. The only difference
is that, instead of separating column names with a comma, you use the CROSS JOIN
keywords. For example, let’s take a statement we used earlier and modify it by replacing the
comma with the CROSS JOIN keywords:

SELECT c.CD_NAME, p.PERF_NAME, c.IN_STOCK
 FROM CD_INVENTORY c CROSS JOIN PERFORMERS p
 WHERE c.PERF_ID = p.PERF_ID
 AND c.IN_STOCK < 15;

This statement returns three columns from two tables, and the WHERE clause contains
an equi-join condition. If you execute the statement, you’ll receive the same results as if you
were using a comma-separated join. Using one over the other may simply be a matter of
determining which statement your SQL implementation supports and, if both are supported,
which provides better performance. In all likelihood, it will come down to a matter of personal
preference, with little advantage of one over the other.

www.it-ebooks.info

http://www.it-ebooks.info/

 260 SQL: A Beginner’s Guide

Q: If you’re joining tables, it seems likely that in some cases you will return duplicate
rows in your query results, depending on how your SELECT statement is constructed.
How can you avoid duplicate rows?

A: As with most queries, it is possible to return duplicate rows. For example, the following
statement will return duplicate performer names and types:

SELECT P.PERF_NAME, T.TYPE_NAME
 FROM CD_INVENTORY C, PERFORMERS P, PERF_TYPE T
 WHERE C.PERF_ID = P.PERF_ID
 AND P.TYPE_ID = T.TYPE_ID;

For those performers who made more than one CD, the query results will contain a
row for each of those CDs. However, as with any other SELECT statement, you can add the
DISTINCT keyword to your SELECT clause, as shown in the following example:

SELECT DISTINCT P.PERF_NAME, T.TYPE_NAME
 FROM CD_INVENTORY C, PERFORMERS P, PERF_TYPE T
 WHERE C.PERF_ID = P.PERF_ID
 AND P.TYPE_ID = T.TYPE_ID;

This statement will return fewer rows than the previous statement (5 compared to 11),
and no rows will be duplicated. Also note that you can achieve the same results without the
DISTINCT keyword by using a GROUP BY clause that lists both columns.

Ask the Expert

Creating the Self-Join
Another type of join that you can create is the self-join, which can be either a comma-
separated join or a cross join. In a self-join, you create a join condition that references the same
table two times, essentially joining the table to itself. This is almost always done to resolve
a recursive relationship, finding other rows in the same table that are related to the selected
rows. For example, suppose you add an EMPLOYEES table to your database, as shown in
Figure 11-2. The EMPLOYEES table includes a list of employee IDs, employee names, and
the employee IDs of their managers, who are also listed in the table. For example, the manager
of Mr. Jones (EMP_ID 102) is Ms. Smith (EMP_ID 101).

To create a self-join on this table, you must create a join that treats the table as if it was
two separate tables with the same name, same columns, and same data:

SELECT a.EMP_ID, a.EMP_NAME, b.EMP_NAME AS MANAGER
 FROM EMPLOYEES a, EMPLOYEES b
 WHERE a.MNGR = b.EMP_ID
 ORDER BY a.EMP_ID;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 11: Accessing Multiple Tables 261

In this statement, each instance of the table is given a correlation name. As a result, you
now have (in this example) table a and table b. You pull the EMP_ID value and EMP_NAME
value from table a, but you pull the MANAGER value from table b. The equi-join condition is
defined in the WHERE clause by equating the MNGR value in table a with the EMP_ID value
in table b. This provides the link that treats one physical table as two logical tables. When you
execute this statement, you receive the following query results:

EMP_ID EMP_NAME MANAGER
------ ----------- -----------
102 Mr. Jones Ms. Smith
103 Mr. Roberts Ms. Smith
104 Ms. Hanson Mr. Roberts
105 Mr. Fields Mr. Jones
106 Ms. Lee Mr. Jones
107 Mr. Carver Mr. Roberts

The results include the employee ID and name of each employee, along with the name of
the employee’s manager. As you can see, the self-join can be a handy tool to use in cases such
as this where a table references itself.

Join Tables with Shared Column Names
SQL provides two methods for setting up joins that you can use when you’re working with
columns that have the same names. These two methods—the natural join and the named
column join—allow you to easily specify a join condition between two tables when one or
more columns within those tables are the same. In order to use either of these two methods, the
tables must meet the following conditions:

● The joined columns must share the same name and have compatible data types.

● The names of the joined columns cannot be qualified with table names.

EMP_NAME:
VARCHAR(60)

Mr. Jones

Ms. Smith

Ms. Lee

Mr. Carver

Mr. Fields

Ms. Hanson

Mr. Roberts

EMP_ID:
INT

101

102

103

105

107

106

104

MNGR:
INT

NULL

101

101

102

103

102

103

Figure 11-2 Self-joining the EMPLOYEES table

www.it-ebooks.info

http://www.it-ebooks.info/

 262 SQL: A Beginner’s Guide

When you’re using either the natural join or the named column join, each table must
share at least one column in common. For example, the TITLES_IN_STOCK and the TITLE_
COSTS tables, shown in Figure 11-3, have two columns that are the same: CD_TITLE and
CD_TYPE. Notice that each set of matching columns is configured with the same data type.

You can use a natural join or a named column join to join these two tables. I describe each
of these types of join operations in the next several sections, and I use the tables in Figure 11-3
to illustrate how each of these methods work.

NOTE
Not all SQL implementations support natural joins or named column joins. For example,
SQL Server does not support either of these methods, MySQL supports natural joins but
not named column joins, and Oracle supports both.

Creating the Natural Join
The natural join automatically matches rows for those columns with the same name. You do
not have to specify any sort of equi-join condition for natural joins. The SQL implementation
determines which columns have the same names and then tries to form a match. The drawback
to this is that you cannot specify which columns are matched up, although you can specify
which columns are included in the query results.

In the following example, a natural join is used to join the TITLES_IN_STOCK table to
the TITLE_COSTS table:

SELECT CD_TITLE, CD_TYPE, c.RETAIL
 FROM TITLES_IN_STOCK s NATURAL JOIN TITLE_COSTS c
 WHERE s.INVENTORY > 15;

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Luck of the Draw

Deuces Wild

Nick of Time

Blues on the Bayou

Both Sides Now

TITLES_IN_STOCK

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Longing in their Hearts

Deuces Wild

Nick of Time

Blues on the Bayou

TITLE_COSTS

Court and Spark

Fundamental

WHOLESALE:
NUMERIC(5,2)

8.00

7.50

7.95

6.00

8.25

7.25

7.50

7.45

CD_TYPE:
CHAR(20)

Popular

Folk

Blues

New Age

Blues

Popular

Popular

RETAIL:
NUMERIC(5,2)

16.99

15.99

15.99

14.99

16.99

15.99

15.99

14.99

Popular

Popular

6.95 14.99

INVENTORY:
INT

12

24

9

19

25

17

11

13

CD_TYPE:
CHAR(20)

Popular

Folk

Blues

New Age

Blues

Popular

Popular

Popular

Figure 11-3 Joining the TITLES_IN_STOCK and TITLE_COSTS tables

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 11: Accessing Multiple Tables 263

In this statement, the tables are joined through the CD_TITLE and CD_TYPE columns.
Notice that neither column name is qualified—qualified names are not permitted in natural
joins. If either of these column names had been included in the WHERE clause, they still would
not be qualified. When you execute this statement, you receive the following query results:

CD_TITLE CD_TYPE RETAIL
-------------------- ------- ------
Blues on the Bayou Blues 15.99
Deuces Wild Blues 14.99
Blue Popular 15.99

As you can see, only three rows are returned. These are the rows in which the CD_
TITLE values in both tables are equal and the CD_TYPE values are equal. In addition, the
INVENTORY values are greater than 15.

Creating the Named Column Join
Although natural joins can be handy for simple join operations, you might find that you do not
always want to include every matching column as part of the join condition. The way around
this is to use a named column join, which allows you to specify which matching columns to
include. For example, suppose you want to include only the CD_TITLE in the join condition.
You can modify the previous example as follows:

SELECT CD_TITLE, s.CD_TYPE, c.RETAIL
 FROM TITLES_IN_STOCK s JOIN TITLE_COSTS c
 USING (CD_TITLE)
 WHERE s.Inventory > 15;

In this statement, I’ve removed the NATURAL keyword and added a USING clause,
which identifies the matching columns. Notice that the CD_TYPE column name has now been
qualified, but the CD_TITLE column has not. Only the columns identified in the USING clause
are not qualified. This statement returns the same results as the preceding example, although
this does not necessarily have to be the case, depending on the data in the tables. If, however,
you include both matching columns in the USING clause, you would definitely see the same
results as you saw in the natural join. By identifying all matching columns in the USING clause,
you are performing the same function as a natural join.

Use the Condition Join
So far in this chapter, we’ve looked at comma-separated joins, cross joins, natural joins, and
named column joins. In comma-separated and cross joins, the equi-join condition is defined
in the WHERE clause. In natural joins, the equi-join condition is automatically assumed
on all matching columns. And in named column joins, the equi-join condition is placed on
any matching columns defined in the USING clause. The condition join takes an approach
different from any of these. In a condition join, the equi-join condition is defined in the
ON clause, which works in a way very similar to the WHERE clause. However, despite the
use of the ON clause, a basic condition join is similar in many ways to the previous join
operations we’ve looked at, except that, unlike the natural join and named column join,

www.it-ebooks.info

http://www.it-ebooks.info/

 264 SQL: A Beginner’s Guide

the condition join allows you to match any compatible columns from one table against those
in another table. Column names do not have to be the same. The condition join is the syntax
preferred by most SQL programmers because of its clarity, flexibility, and wide support
across SQL implementations.

A condition join can be separated into two types of joins: inner joins and outer joins. The
difference between the two is the amount of data returned by the query. An inner join returns only
those rows that meet the equi-join condition defined in the SELECT statement. In other words,
the inner join returns only matched rows. This was the original join available in SQL, and thus is
called a “standard join” by some SQL programmers, although this is a misnomer because all the
joins presented in this chapter are described in the SQL standard. An outer join, on the other hand,
returns matched rows and some or all of the unmatched rows, depending on the type of outer join.

NOTE
According to the SQL:2006 standard, natural joins and named column joins support
both inner and outer joins. However, this can vary from SQL implementation to
implementation, so be sure to check the product documentation. By default, a join is
processed as an inner join unless specifically defined as an outer join.

Creating the Inner Join
Now that you have a general overview of the condition join, let’s take a closer look at the inner
join. The inner join is the most common of the condition joins and is specified by using the
INNER JOIN keywords. However, the INNER keyword is not required. If JOIN is used alone,
an inner join is assumed. In addition to the JOIN keyword (specified in the FROM clause), you
must also define an ON clause, which immediately follows the FROM clause. Let’s take a look
at an example to see how this works.

Suppose you want to join the CD_TITLES table and the TITLES_ARTISTS table, shown
in Figure 11-4. In the following example, an inner join has been created that is based on the
TITLE_ID columns in the two tables:

SELECT t.TITLE, ta.ARTIST_ID
 FROM CD_TITLES t INNER JOIN TITLES_ARTISTS ta
 ON t.TITLE_ID = ta.TITLE_ID
 WHERE t.TITLE LIKE ('%Blue%');

The statement uses the INNER JOIN keywords to join the CD_TITLES and TITLES_
ARTISTS tables. The equi-join condition is defined in the ON clause, using the TITLE_ID
column in each table. Notice that correlation names have been defined on both tables. The
SELECT statement is further qualified by the WHERE clause, which returns only those rows
that contain Blue in the TITLE column of the CD_TITLES table. When you execute this
query, you receive the following query results:

TITLE ARTIST_ID
-------------------- ---------
Famous Blue Raincoat 2001
Blue 2002
Blues on the Bayou 2013

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 11: Accessing Multiple Tables 265

As you can see, the results include information from both tables: the TITLE column
from the CD_TITLES table and the ARTIST_ID column from the TITLES_ARTISTS table.
Although this information can be useful, it might be better for some users if they can view the
actual names of the artists, rather than numbers. The way to achieve this is to include a third
table in the join.

Let’s return to the previous example and add a second join condition to the CD_ARTISTS
table (shown in Figure 11-4). In the following example, the second condition is added
immediately after the original ON clause:

SELECT t.TITLE, a.ARTIST
 FROM CD_TITLES t INNER JOIN TITLES_ARTISTS ta
 ON t.TITLE_ID = ta.TITLE_ID
 INNER JOIN CD_ARTISTS a
 ON ta.ARTIST_ID = a.ARTIST_ID
 WHERE t.TITLE LIKE ('%Blue%');

TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

Carreras Domingo Pavarotti in Concert

Out of Africa

Leonard Cohen The Best of

Fundamental

Blues on the Bayou

Orlando

TITLE_ID:
INT

101

102

104

105

106

107

103

109

110

111

112

113

108

ARTIST:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

ARTIST_ID:
INT

2001

2002

2005

2006

Placido Domingo2009

Luciano Pavarotti2008

William Ackerman2003

Kitaro2004

Jose Carreras2007

2010

2011

2012

2013

2014

2015

John Barry

Leonard Cohen

Bonnie Raitt

B.B. King

David Motion

Sally Potter

TITLE_ID:
INT

101

102

104

105

106

107

103

109

110

111

112

113

108

ARTIST_ID:
INT

2001

2002

2005

2006

2009

2008

2003

2004

2007

2010

2011

2012

2013

2014

2015

108

108

113

2002

CD_TITLES TITLES_ARTISTS CD_ARTISTS

Figure 11-4 Joining the CD_TITLES, TITLES_ARTISTS, and CD_ARTISTS tables

www.it-ebooks.info

http://www.it-ebooks.info/

 266 SQL: A Beginner’s Guide

Notice that the INNER JOIN keywords are repeated, followed by the name of the third
table, which is then followed by another ON clause. In this clause, the equi-join condition is
defined on the ARTIST_ID columns in the TITLES_ARTISTS and CD_ARTISTS tables. Keep
in mind that you do not need to include the INNER keyword, nor do the columns specified in
the ON clause need to have the same name.

If you execute this statement, you’ll receive the following query results:

TITLE ARTIST
-------------------- ---------------
Famous Blue Raincoat Jennifer Warnes
Blue Joni Mitchell
Blues on the Bayou B.B. King

Notice that the artist names are now listed in the results. Also notice that the fact that three
tables have been used to retrieve this information is invisible to whoever views the query
results.

Creating the Outer Join
As I mentioned earlier in this chapter, an outer join returns all matched rows and some or all
unmatched rows, depending on the type of outer join you create. SQL supports three types of
outer joins:

● Left Returns all matched rows and all unmatched rows from the left table—the table to
the left of the JOIN keyword.

● Right Returns all matched rows and all unmatched rows from the right table—the table
to the right of the JOIN keyword.

● Full Returns all matched and unmatched rows from both tables.

NOTE
Because it is a relatively new feature, few SQL implementations currently support full
outer joins—Oracle and SQL Server do, but MySQL does not.

An outer join follows the same syntax as an inner join, except that, rather than using the
INNER JOIN keywords (or just the JOIN keyword), you use LEFT OUTER JOIN, RIGHT
OUTER JOIN, or FULL OUTER JOIN. Note that the OUTER keyword is optional. For
example, you can specify LEFT JOIN instead of LEFT OUTER JOIN.

The best way to illustrate the differences between the types of outer joins is to show you
examples of query results from each type. To illustrate the differences, I use the CD_INFO
table and the CD_TYPE table, shown in Figure 11-5.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 11: Accessing Multiple Tables 267

In the first example, I define an inner join on the two tables, just to show you how the
query results would normally look:

SELECT i.TITLE, t.TYPE_NAME, i.STOCK
 FROM CD_INFO i JOIN CD_TYPE t
 ON i.TYPE_ID = t.TYPE_ID;

This statement returns the following query results:

TITLE TYPE_NAME STOCK
-------------------- ----------- -----
Famous Blue Raincoat Folk Rock 19
Blue Classic Pop 28
Past Light New Age 6
Out of Africa Soundtrack 8
Blues on the Bayou Blues 11

In most cases, the inner join will provide all the information you need. But suppose you
want to include the unmatched rows from the CD_INFO table. In that case, you would create a
left outer join, as shown in the following example:

SELECT i.TITLE, t.TYPE_NAME, i.STOCK
 FROM CD_INFO i LEFT OUTER JOIN CD_TYPE t
 ON i.TYPE_ID = t.TYPE_ID;

TITLE:

VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Out of Africa

Fundamental

Blues on the Bayou

TYPE_ID:

CHAR(4)

FROK

CPOP

NEWA

STRK

NPOP

BLUS

STOCK:

INT

19

28

6

8

10

11

TYPE_ID:

CHAR(4)

FROK

CPOP

NEWA

CTRY

STRK

BLUS

JAZZ

TYPE_NAME:

CHAR(20)

Folk Rock

Classic Pop

New Age

Country

Soundtrack

Blues

Jazz

CD_INFO CD_TYPE

Figure 11-5 Joining the CD_INFO and CD_TYPE tables

www.it-ebooks.info

http://www.it-ebooks.info/

 268 SQL: A Beginner’s Guide

Notice that I’ve replaced JOIN (for INNER JOIN) with LEFT OUTER JOIN. As I
mentioned earlier, you can omit the OUTER keyword in most implementations. If you execute
this statement, you’ll receive the following query results:

TITLE TYPE_NAME STOCK
-------------------- ----------- -----
Famous Blue Raincoat Folk Rock 19
Blue Classic Pop 28
Past Light New Age 6
Out of Africa Soundtrack 8
Fundamental NULL 10
Blues on the Bayou Blues 11

As you may have noticed, the Fundamental row is now included in the query results.
Although this row doesn’t include matched columns, it is still included in the query results
because it is part of the left table. For this row, the TYPE_NAME column is assigned a null
value because no logical value can be returned for this column. The null value serves as a
placeholder.

You can also return the unmatched rows from the CD_TYPE table, which is the table to
the right of the JOIN keyword:

SELECT i.TITLE, t.TYPE_NAME, i.STOCK
 FROM CD_INFO i RIGHT OUTER JOIN CD_TYPE t
 ON i.TYPE_ID = t.TYPE_ID;

This statement is nearly the same as the preceding statement, except that RIGHT has been
specified. The statement returns the following query results:

TITLE TYPE_NAME STOCK
-------------------- ----------- -----
Famous Blue Raincoat Folk Rock 19
Blue Classic Pop 28
Past Light New Age 6
NULL Country NULL
Out of Africa Soundtrack 8
Blues on the Bayou Blues 11
NULL Jazz NULL

This time the unmatched columns from the right table are included in the results, and null
values are shown for the TITLE and STOCK column.

If you want to return all unmatched rows, you would need to modify the statement to
define a full outer join:

SELECT i.TITLE, t.TYPE_NAME, i.STOCK
 FROM CD_INFO i FULL OUTER JOIN CD_TYPE t
 ON i.TYPE_ID = t.TYPE_ID;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 11: Accessing Multiple Tables 269

This statement will return the following query results:

TITLE TYPE_NAME STOCK
-------------------- ----------- -----
Famous Blue Raincoat Folk Rock 19
Blue Classic Pop 28
Past Light New Age 6
Out of Africa Soundtrack 8
Fundamental NULL 10
Blues on the Bayou Blues 11
NULL Jazz NULL
NULL Country NULL

As you can see, all matched and unmatched rows are included in the query results. Notice that
all six rows are included from the CD_INFO table and all seven rows are included from the
CD_TYPE table.

Perform Union Operations
SQL provides yet one more method to combine data from different tables in a manner that is
a bit different from the joins shown earlier in this chapter. The UNION operator is a method
you can use to combine the results of multiple SELECT statements into a single result set,
essentially concatenating rows from one query with rows from another. In contrast with
joins, which add columns from multiple tables side by side, unions add rows to the end of
the result set. In order to use the UNION operator, each SELECT statement must produce
union-compatible columns; meaning that each must produce the same number of columns, and
corresponding columns must have compatible data types. For example, if the first column of
a SELECT statement produces a character column, then other SELECT statements combined
with it using the UNON operator must have a character data type in the first column rather
than a numeric or datetime data type.

Let’s take a look at an example to show you what I mean. Figure 11-6 shows two tables:
the CDS_CONTINUED table and the CDS_DISCONTINUED table. The tables are nearly
identical in structure but serve two different purposes, which should be obvious from the
table names.

Suppose you want to combine the data in these two tables so you can view information
from both tables. You can, of course, execute two separate SELECT statements, or you can
combine those statements into one statement that combines the information, as shown in the
following example:

SELECT *
 FROM CDS_CONTINUED
UNION
SELECT *
 FROM CDS_DISCONTINUED;

www.it-ebooks.info

http://www.it-ebooks.info/

 270 SQL: A Beginner’s Guide

As you can see, the two SELECT statements are combined using the UNION operator. If
you execute this statement, you’ll receive the following results:

CD_NAME CD_TYPE IN_STOCK
----------------------------- ------- --------
Blue CPOP 28
Blues on the Bayou BLUS 11
Court and Spark FROK 3
Famous Blue Raincoat FROK 19
Fundamental NPOP 10
Kojiki NEWA 2
Leonard Cohen The Best Of FROK 3
Orlando STRK 1
Out of Africa STRK 8
Past Light NEWA 6
Patsy Cline: 12 Greatest Hits CTRY 4
That Christmas Feeling XMAS 2

The results include 12 rows of data, six rows from each table. You can limit the results
even further by specifying search conditions in WHERE clauses. You can also specify that
your search return only specific columns, as in the following statement:

SELECT CD_TYPE
 FROM CDS_CONTINUED
UNION
SELECT CD_TYPE
 FROM CDS_DISCONTINUED;

Figure 11-6 Joining the CDS_CONTINUED and CDS_DISCONTINUED tables

CD_NAME:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Out of Africa

Fundamental

Blues on the Bayou

CD_TYPE:
CHAR(4)

FROK

CPOP

NEWA

STRK

NPOP

BLUS

IN_STOCK:
INT

19

28

6

8

10

11

CDS_CONTINUED

CD_NAME:
VARCHAR(60)

Court and Spark

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Leonard Cohen The Best of

Orlando

CD_TYPE:
CHAR(4)

FROK

NEWA

XMAS

CTRY

FROK

STRK

IN_STOCK:
INT

3

2

2

4

3

1

CDS_DISCONTINUED

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 11: Accessing Multiple Tables 271

Now when you generate your query, only values from the CD_TYPE column are displayed:

CD_TYPE

BLUS
CPOP
CTRY
FROK
NEWA
NPOP
STRK
XMAS

Notice that only 8 rows are returned, rather than 12. This is because duplicate rows are
filtered out by default. If you want all rows included in the query results, regardless of whether
there are duplicate values, you can add the ALL keyword after the UNION operator, as shown
in the following example:

SELECT CD_TYPE
 FROM CDS_CONTINUED
UNION ALL
SELECT CD_TYPE
 FROM CDS_DISCONTINUED;

This statement will return 12 rows rather than 8, with several values duplicated.
As you can see, the UNION operator is useful only in very specific cases. If you want

more control over your query results, you should use one of the several types of joins
supported by SQL.

Q: Are there any types of joins that are comparable to using a UNION operator?

A: SQL:2006 actually supports a union join that performs many of the same functions as the
UNION operator. The union join is similar to the full outer join, in terms of how query
results are consolidated. However, the full outer join allows you to specify (in the ON
clause) which columns will be matched, while a union join does not. In addition, the union
join has generally not been implemented in SQL relational database management systems
(RDBMSs), and it has been deprecated in the SQL:2006 standard, which means that it is a
candidate for deletion from future versions of SQL. So for all practical purposes, the union
join is not something with which you need to be concerned.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 272 SQL: A Beginner’s Guide

Try This 11-1

In addition, the SQL:2006 standard supports the INTERSECT and EXCEPT operators,
which have syntax similar to UNION. INTERSECT works like UNION except it returns
only rows that appear in the results of both SELECT statements. EXCEPT, on the other hand,
returns only rows that appear in the results of the first SELECT statement but not in the results
of the second one. SQL Server supports both INTERSECT and EXCEPT. Oracle and MySQL
support INTERSECT but use the operator MINUS instead of EXCEPT.

 Querying Multiple Tables
In this chapter, you have been introduced to a variety of join operations as well as the UNION
operator, which, technically, is not considered a join. Now you will have the opportunity
to practice several of these join techniques by querying data from the INVENTORY
database. Specifically, you will query some of the tables that are configured with foreign key
relationships, which are the sort of relationships that tie data from one table to data in another
table. Because you will not be changing any data, you should feel free to try out various types
of join operations, beyond what we review in this Try This exercise. You can download the
Try_This_11.txt file, which contains the SQL statements used in this Try This exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. The first type of operation you’ll perform is a comma-separated join on the ARTISTS and
ARTIST_CDS tables. The join will use the ARTIST_ID column to establish the equi-join
condition. Enter and execute the following SQL statement:

SELECT * FROM ARTISTS a, ARTIST_CDS c
 WHERE a.ARTIST_ID = c.ARTIST_ID;

 Your query results should include 19 rows and should include the ARTIST_ID columns
from both tables as well as the ARTIST_NAME, PLACE_OF_BIRTH, and COMPACT_
DISC_ID columns.

 3. You will now modify the preceding statement so that it also joins the COMPACT_DISCS
table. That way, you can display the actual name of the CDs. In addition, you will specify the
names of the columns that should be returned. Enter and execute the following SQL statement:

SELECT d.CD_TITLE, a.ARTIST_NAME, a.PLACE_OF_BIRTH
 FROM ARTISTS a, ARTIST_CDS c, COMPACT_DISCS d
 WHERE a.ARTIST_ID = c.ARTIST_ID
 AND d.COMPACT_DISC_ID = c.COMPACT_DISC_ID;

 Your query results should again include 19 rows. However, this time the results will display
only the CD_TITLE, ARTIST_NAME, and PLACE_OF_BIRTH columns.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 11: Accessing Multiple Tables 273

 4. Now let’s turn the last SELECT statement into a cross join. Enter and execute the following
SQL statement:

SELECT d.CD_TITLE, a.ARTIST_NAME, a.PLACE_OF_BIRTH
 FROM ARTISTS a CROSS JOIN ARTIST_CDS c CROSS JOIN COMPACT_DISCS d
 WHERE a.ARTIST_ID = c.ARTIST_ID
 AND d.COMPACT_DISC_ID = c.COMPACT_DISC_ID;

 You should receive the same query results as you did in the preceding SELECT statement.

 5. The next type of statement that you’ll try is a condition join. As you probably recall,
a condition join can be either an inner join or an outer join. The first type you’ll try is
the inner join. In this statement, you’ll join together three tables: COMPACT_DISCS,
COMPACT_DISC_TYPES, and MUSIC_TYPES. Enter and execute the following SQL
statement:

SELECT d.CD_TITLE, t.TYPE_NAME
 FROM COMPACT_DISCS d JOIN COMPACT_DISC_TYPES dt
 ON d.COMPACT_DISC_ID = dt.COMPACT_DISC_ID
 JOIN MUSIC_TYPES t
 ON dt.MUSIC_TYPE_ID = t.TYPE_ID;

 Your query results should include 24 rows. Only the CD_TITLE column and the TYPE_
NAME column should be displayed.

 6. Now let’s modify the last SELECT statement to create a full outer join on both join
conditions. Enter and execute the following SQL statement:

SELECT d.CD_TITLE, t.TYPE_NAME
 FROM COMPACT_DISCS d FULL JOIN COMPACT_DISC_TYPES dt
 ON d.COMPACT_DISC_ID = dt.COMPACT_DISC_ID
 FULL JOIN MUSIC_TYPES t
 ON dt.MUSIC_TYPE_ID = t.TYPE_ID;

 Your query results should now include 26 rows rather than 24. This is because the MUSIC_
TYPES table includes two rows that are unmatched: the Jazz row and the International row.
In other words, no CDs match up to either of these two music types.

 7. Close the client application.

Try This Summary
In this Try This exercise, you created comma-separated, cross, and condition joins. The
condition joins included inner and outer joins. As you can see, join operations provide a great
deal of flexibility when querying data from the tables in your database. However, they’re not
the only solution when accessing data from more than one table. A subquery will often provide
the same functionality as a join. In Chapter 12, I discuss subqueries in great detail. As you will
see, they provide yet one more way for you to access data from multiple tables.

www.it-ebooks.info

http://www.it-ebooks.info/

 274 SQL: A Beginner’s Guide

 Chapter 11 Self Test
 1. You are using a comma-separated join operation to join two tables. The first table contains

five rows and the second table contains three rows. How many rows will the Cartesian
product table contain?

 2. What constitutes an equi-join condition in a WHERE clause?

 3. Which clause contains the equi-join condition in a comma-separated join?

 4. What basic guidelines should you follow when creating a comma-separated join?

 5. You’re creating a join on two tables. You assign correlation names to each of these tables.
Which names should you use in the SELECT clause: the correlation names or the actual
table names?

 6. Which type of join is nearly identical to the comma-separated join?

 A Condition join

 B Natural join

 C Cross join

 D Named column join

 7. How many tables are contained in a self-join?

 8. What guidelines must you follow when creating natural joins or named column joins?

 9. What is the difference between a natural join and a named column join?

 10. Which type of join contains a USING clause to specify the equi-join condition?

 11. What are the two types of condition joins?

 12. What are the three types of outer joins?

 13. Which type of condition join should you use if you want to return only matched rows?

 A Inner join

 B Left outer join

 C Right outer join

 D Full outer join

 14. Which type of condition join returns all matched and unmatched rows?

 A Inner join

 B Left outer join

 C Right outer join

 D Full outer join

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 11: Accessing Multiple Tables 275

 15. Which type of join contains an ON clause?

 A Cross join

 B Comma-separated join

 C Natural join

 D Condition join

 16. A(n) ____________ operator allows you to combine separate SELECT statements into one
statement in order to join data in a query result.

 17. What keyword can you use with a UNION operator to return all rows in the query results,
regardless of whether there are duplicate values?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

277

Chapter 12
Using Subqueries to
Access and Modify
Data

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 278 SQL: A Beginner’s Guide

Key Skills & Concepts

● Create Subqueries That Return Multiple Rows

● Create Subqueries That Return One Value

● Work with Correlated Subqueries

● Use Nested Subqueries

● Use Subqueries to Modify Data

Subqueries, like joins, provide a way to access data in multiple tables with a single query.
A subquery can be added to a SELECT, INSERT, UPDATE, or DELETE statement in

order to allow that statement to use the query results returned by the subquery. The subquery
is essentially an embedded SELECT statement that acts as a gateway to data in a second
table. The data returned by the subquery is used by the primary statement to meet whatever
conditions have been defined in that statement. In this chapter, I discuss how subqueries
are used in various statements, particularly SELECT statements, and provide examples that
demonstrate how to create subqueries and what type of query results to expect.

Create Subqueries That Return Multiple Rows
In Chapter 9, I include several examples of subqueries that are used to demonstrate certain
types of predicates, such as IN and EXISTS. This chapter, in many ways, is an extension of
that discussion because of the way in which subqueries are most commonly implemented—in
the WHERE clause of a SELECT statement. An understanding of these types of subqueries
goes hand in hand with an understanding of how certain predicates are formulated to create
specific search conditions, search conditions that rely on those subqueries to return data from
a referenced table.

You can divide subqueries in a WHERE clause into two general categories: those that
can return multiple rows and those that can return only one value. In this section, I discuss
the first of these categories. In the next section, “Create Subqueries That Return One Value,”
I discuss the second category. As I expand on each subject, you’ll no doubt recognize the
statement formats from my discussion of predicates. Although this information might seem
a bit repetitive (which is why I keep it brief), it is presented here not only to provide a
cohesive overview of subqueries, but also to provide a different perspective. In other words,
rather than looking at subqueries through the perspective of the predicate, we’ll look directly
at the subquery itself.

Despite the fact that my discussion focuses on subqueries that are implemented through
the WHERE clause, the use of subqueries is not limited to that clause. Indeed, you can include

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 12: Using Subqueries to Access and Modify Data 279

subqueries in a SELECT clause or HAVING clause. However, using subqueries in a SELECT
clause is not very common. In addition, you would use subqueries in a HAVING clause only
when defining search conditions on grouped data. Even so, the principles for using subqueries
in a HAVING clause are similar to using them in a WHERE clause. For these reasons, my
discussion here focuses on using subqueries in the WHERE clause. As you become a more
advanced SQL programmer, you will likely want to try using subqueries in other places within
a SELECT statement.

Using the IN Predicate
The first type of subquery that we’ll look at is the type used within the IN predicate. As
you might recall from Chapter 9, the IN predicate compares values from a column in the
primary table to values returned by the subquery. If the column value is in the subquery
results, that row (from the primary table) is returned in the query results of the SELECT
statement. For example, suppose you want to query data from the CD_STOCK table,
shown in Figure 12-1.

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Court and Spark

STOCK:
INT

13

42

17

6

8

22

Out of Africa 29

Blues on the Bayou 27

Orlando 5

TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

After the Rain: The Soft Sounds of Erik Satie

Out of Africa

Leonard Cohen The Best of

Fundamental

Blues on the Bayou

Orlando

CD_STOCK CD_ARTISTS

ARTIST_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

William Ackerman

Kitaro

Joni Mitchell

Bonnie Raitt

Leonard Cohen

John Barry

Pascal Roge

B.B. King

David Motion

Figure 12-1 Querying the CD_STOCK and CD_ARTISTS tables

www.it-ebooks.info

http://www.it-ebooks.info/

 280 SQL: A Beginner’s Guide

Your query results should include only those rows whose CD_TITLE value matches one
of the values returned by the subquery. The subquery results should include only those rows
that contain an ARTIST_NAME value of Joni Mitchell (from the CD_ARTISTS table). The
following SELECT statement will return this data:

SELECT *
 FROM CD_STOCK
 WHERE CD_TITLE IN
 (SELECT TITLE
 FROM CD_ARTISTS
 WHERE ARTIST_NAME = 'Joni Mitchell');

Let’s take a closer look at the subquery in this statement. As you can see, it is included in
the IN predicate, after the IN keyword. The subquery is basically a SELECT statement that
includes a search condition defined in the WHERE clause:

SELECT TITLE
 FROM CD_ARTISTS
 WHERE ARTIST_NAME = 'Joni Mitchell'

If you were to execute only the subquery, you would receive the following query results:

TITLE

Blue
Court and Spark

These results are then used by the IN predicate to compare them to the CD_TITLE values
in the CD_STOCK table. When you execute the entire SELECT statement, you receive the
following results:

CD_TITLE STOCK
--------------- -----
Blue 42
Court and Spark 22

Notice that only two rows are returned from the CD_STOCK table. These rows represent
the two CDs performed by Joni Mitchell. Even though the CD_STOCK table does not include
artist information, you can still tie data from the two tables together because they include
similar columns, allowing you to use the data returned by a subquery.

NOTE
In the case of the example table shown in Figure 12-1, it is conceivable that a foreign
key would be configured on the CD_TITLE column of the CD_STOCK table to reference
the TITLE column of the CD_ARTISTS table. However, a foreign key relationship is not
required. The primary requirement that a subquery must meet is that it return results that
are logically comparable to the referencing column values. Otherwise, the subquery
serves no purpose, and no rows will be returned by the primary SELECT statement
because the condition of the IN predicate cannot be met.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 12: Using Subqueries to Access and Modify Data 281

Using the EXISTS Predicate
In some circumstances, you might want your subquery to return only a value of true or false.
The content of the data itself is unimportant, in terms of meeting a predicate condition. In
this case, you can use an EXISTS predicate to define your subquery. The EXISTS predicate
evaluates to true if one or more rows are returned by the subquery; otherwise, it evaluates
to false.

For an EXISTS predicate to be useful, the associated subquery should include a search
condition that matches values in the two tables that are being linked through the subquery.
(I explain this type of subquery in more detail in the “Work with Correlated Subqueries”
section later in this chapter.) This search condition is similar to the equi-join condition
used in certain join operations. (See Chapter 11 for information about joins and equi-join
conditions.) For example, returning to the CD_STOCK table and the CD_ARTISTS tables
(shown in Figure 12-1), we can create a SELECT statement that uses an EXISTS predicate
to query the CD_ARTISTS table:

SELECT *
 FROM CD_STOCK s
 WHERE EXISTS
 (SELECT TITLE
 FROM CD_ARTISTS a
 WHERE a.ARTIST_NAME = 'Joni Mitchell'
 AND s.CD_TITLE = a.TITLE);

In this statement, each row returned by the primary SELECT statement is evaluated
against the subquery. If the condition specified in the EXISTS predicate is true, the row is
included in the query results; otherwise, the row is omitted. When the specified condition
is true, that means at least one row has been returned by the subquery. In this case, the row
returned will include an ARTIST_NAME value of Joni Mitchell. In addition, the CD_TITLE
value in the CD_STOCK table will be the same as the TITLE value in the CD_ARTISTS
table. As a result, only two rows will be returned by the entire SELECT statement:

CD_TITLE STOCK
--------------- -----
Blue 42
Court and Spark 22

As was the case with the IN predicate, the EXISTS predicate allows you to use a subquery
to access information in another table. Even though the CD_STOCK table doesn’t include
information about the performing artists, the subquery allows you to return data that is based
on artist information.

NOTE
The manner in which an EXISTS predicate is processed can sometimes be a little unclear.
Be sure to refer to Chapter 9 for a more complete discussion of that predicate.

www.it-ebooks.info

http://www.it-ebooks.info/

 282 SQL: A Beginner’s Guide

Using Quantified Comparison Predicates
The IN and EXISTS predicates are not the only predicates that rely on the type of subqueries
that can return one or more rows for the search condition to evaluate to true. Quantified
comparison predicates—SOME, ANY, and ALL—also use subqueries that can return
multiple rows. These predicates are used in conjunction with comparison operators to
determine whether any or all returned values (from the subquery) meet the search condition
set by the predicate. The SOME and ANY predicates, which perform the same function,
check to see whether any returned values meet the search requirement. The ALL predicate
checks to see whether all returned values meet the search requirement.

When a quantified comparison predicate is used, the values in a column from the primary
table are compared to the values returned by the subquery. Let’s take a look at an example to
clarify how this works. Suppose your database includes the RETAIL_PRICES table and the
SALES_PRICES table, shown in Figure 12-2.

Now suppose that you decide to query the RETAIL_PRICES table, but you want to return
only those rows with an R_PRICE value greater than all values in the S_PRICE column in the
SALES_PRICES table, for those S_PRICE values less than 15.99. To set up this query, you
can create a statement similar to the following:

SELECT CD_NAME, R_PRICE
 FROM RETAIL_PRICES
 WHERE R_PRICE > ALL
 (SELECT S_PRICE
 FROM SALES_PRICES
 WHERE S_PRICE < 15.99);

Notice that the subquery returns only one column of data—the S_PRICE values that are
less than 15.99. The values in the R_PRICE column are then compared to the subquery results.

Figure 12-2 Querying the RETAIL_PRICES and SALES_PRICES tables

CD_NAME:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

R_PRICE:
NUMERIC(5,2)

16.99

14.99

15.99

15.99

10.99

16.99

14.99

RETAIL_PRICES

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

S_PRICE:
NUMERIC(5,2)

14.99

12.99

14.99

13.99

10.99

16.99

14.99

SALES_PRICES

AMOUNT:
INT

5

8

4

11

12

10

14

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 12: Using Subqueries to Access and Modify Data 283

If a specific R_PRICE value is greater than all the subquery results, that row is returned. When
you execute the entire SELECT statement, you receive the following results:

CD_NAME R_PRICE
------------------------------ -------
Famous Blue Raincoat 16.99
Past Light 15.99
Kojiki 15.99
Patsy Cline: 12 Greatest Hits 16.99

As you can see, only four rows are returned. For each row, the R_PRICE value is greater than
the highest price returned by the subquery, which in this case would be 14.99.

Q: You state that a SELECT clause can include a subquery. How would you include the
subquery in that clause?

A: You can include the subquery in a SELECT clause just as you would a column name. The
values returned from the subquery are inserted in the query results in the same way column
values would be inserted. For example, you can insert a subquery in a SELECT clause of a
statement that is used to query the CD_STOCK table (shown in Figure 12-1). The subquery
pulls data from the CD_ARTISTS table, as shown in the following example:

SELECT CD_TITLE,
 (SELECT ARTIST_NAME
 FROM CD_ARTISTS a
 WHERE s.CD_TITLE = a.TITLE) AS ARTIST,
 STOCK FROM CD_STOCK s;

In the main part of this statement, values are pulled from the CD_TITLE and
STOCK columns. In addition to these values, a list of artists is returned by the subquery.
The artists’ names are matched up to their CDs by using a comparison predicate to
compare values in the CD_TITLE and TITLE columns.

When using a subquery in a SELECT clause, you must be careful not to create a
subquery that returns only one value when multiple values are needed. When you return
only one value, that value might be inserted into all rows returned by the main SELECT
statement, depending on how you’ve constructed your query.

Ask the Expert

Create Subqueries That Return One Value
So far, we have looked at subqueries that can return one or more rows of data. This is fine in
many circumstances; however, there might be times when you want your subquery to return
only one value so that you can compare the values in one column with a single subquery value.
In these cases, you can use comparison operators.

www.it-ebooks.info

http://www.it-ebooks.info/

 284 SQL: A Beginner’s Guide

As you learned in Chapter 9, the comparison operators include equal to (=), not equal
to (<>), less than (<), greater than (>), less than or equal to (<=), and greater than or equal
to (>=). For example, let’s take another look at the RETAIL_PRICES and SALES_PRICES
tables (shown in Figure 12-2). Suppose you want to retrieve data from the RETAIL_PRICES
table. You want the R_PRICE values to equal the maximum price listed in the S_PRICE
column of the SALES_PRICES table. The following query allows you to return the
necessary data:

SELECT CD_NAME, R_PRICE
 FROM RETAIL_PRICES
 WHERE R_PRICE =
 (SELECT MAX(S_PRICE)
 FROM SALES_PRICES);

Notice that the subquery returns only one value, which is 16.99 in this case. As a result,
only rows with an R_PRICE value of 16.99 are returned by the SELECT statement, as shown
in the following query results:

CD_NAME R_PRICE
----------------------------- -------
Famous Blue Raincoat 16.99
Patsy Cline: 12 Greatest Hits 16.99

You do not have to use an aggregate function (such as MAX) to return a single value in
a subquery. For example, the subquery’s WHERE clause might include a condition that will
return only one value. The important point to remember is that you must be sure that your
subquery returns only one value; otherwise, you will receive an error when using a comparison
operator. However, if you’ve set up your subquery properly, you can use any of the comparison
operators to compare column values. In addition, you’re not limited to numbers. Character
strings can also be compared in comparison predicates.

NOTE
In many cases, you can use predicates such as IN with subqueries that return only
one value. However, these predicates can support only the conditions equal to (=)
or not equal to (<>), not the conditions less than (<), less than or equal to (<=),
greater than (>), or greater than or equal to (>=), all of which you can use with
comparison operators.

Work with Correlated Subqueries
In the “Using the EXISTS Predicate” section earlier in this chapter, I mention that, for the
EXISTS predicate to be useful, it should include in the subquery a search condition that
matches values in the two tables that are being linked through the subquery. To illustrate this
point, I include in that section an example SELECT statement that contains such a subquery.
I’ll repeat that statement here for your convenience:

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 12: Using Subqueries to Access and Modify Data 285

SELECT *
 FROM CD_STOCK s
 WHERE EXISTS
 (SELECT TITLE
 FROM CD_ARTISTS a
 WHERE a.ARTIST_NAME = 'Joni Mitchell'
 AND s.CD_TITLE = a.TITLE);

This statement references the CD_STOCK and CD_ARTISTS tables in Figure 12-1.
Notice that the subquery includes a predicate that matches CD_TITLE values in the CD_
STOCK table to TITLE values in the CD_ARTISTS table. This matching of values is similar
to the equi-join conditions you define when joining tables.

The reason I’ve returned to this statement is that it includes a type of subquery I have not
discussed before—the correlated subquery. A correlated subquery is one that is dependent
on the outer statement in some way. In this case, the outer statement is the main SELECT
statement that includes a SELECT clause, a FROM clause, and a WHERE clause, which
itself contains a subquery. Because that subquery references the CD_STOCK table, which is
a component of the outer statement, the subquery is dependent on that statement in order to
return data.

In most of the subquery examples we’ve looked at in this chapter, the subqueries have
stood independent of the outer statement. For example, in the following SELECT statement
(which was used as an example in the “Using the IN Predicate” section earlier in this chapter),
the subquery is not dependent on the outer statement:

SELECT *
 FROM CD_STOCK
 WHERE CD_TITLE IN
 (SELECT TITLE
 FROM CD_ARTISTS
 WHERE ARTIST_NAME = 'Joni Mitchell');

In this case, the subquery merely returns results, which are then used in an outer
statement. The subquery is evaluated (executed) just once, and the results are used by the
main statement as necessary. However, with a correlated subquery, the subquery must
often be reevaluated for each row returned by the outer statement. The correlated subquery
cannot be evaluated just once because at least one of the values changes for each row. For
example, looking again at the SELECT statement that contains the correlated subquery
(as part of the EXISTS predicate), you can see that the CD_TITLE value changes for
each row returned by the outer SELECT statement. This can have a severe impact on
performance, particularly when you are returning a large number of values. In these cases,
you might find that creating a join provides better performance than a correlated subquery,
but of course much depends on how your particular SQL implementation handles joins
and correlated subqueries.

www.it-ebooks.info

http://www.it-ebooks.info/

 286 SQL: A Beginner’s Guide

Use Nested Subqueries
Up to this point, we have looked at SELECT statements that include only one subquery.
However, a SELECT statement can contain multiple subqueries. The SQL:2006 standard
does not limit the number of subqueries that can be included in a statement, although practical
application, performance, and the limitations of the SQL implementation all play an important
role in determining what a reasonable number might be. Make certain that you refer to the
documentation for your SQL implementation to determine what restrictions might apply to the
use of subqueries.

One way you can include multiple subqueries in a SELECT statement is to include them
as different components of the statement. For example, your WHERE clause might include
two predicates, each of which contains a subquery. Another way in which multiple subqueries
can be included in a SELECT statement is to nest one subquery inside the other. These are the
types of subqueries we’ll look at in this section.

A nested subquery is one that is a component of another subquery. The “outer” subquery
acts as a primary SELECT statement that includes a subquery within one of its clauses. In
most cases, the nested subquery will be part of a predicate in the WHERE clause of the outer
subquery. Let’s take a look at an example to help clarify this concept. The example uses the
DISC_INVENTORY, DISC_ARTISTS, and DISC_TYPES tables, shown in Figure 12-3.

Q: You state that creating a join might be a better alternative to creating a correlated
subquery. How would you restate the preceding SELECT statement as a join?

A: In the preceding SELECT statement, you’ve already identified your equi-join condition
in the subquery, and you already know the names of the two tables that are being joined.
One way you can modify this statement is to use a comma-separated join, as shown in the
following example:

SELECT CD_TITLE, STOCK
 FROM CD_STOCK s, CD_ARTISTS a
 WHERE a.ARTIST_NAME = 'Joni Mitchell'
 AND s.CD_TITLE = a.TITLE;

Notice that the CD_TITLE and TITLE columns are still equated with each other.
This statement produces the same results as the statement that included the correlated
subquery, only the SQL implementation is not being forced to reprocess a subquery for
each row returned by the outer statement. Instead, the WHERE clause merely takes the
results returned by the FROM clause and applies the search conditions defined in the
two predicates. For more information about join operations, see Chapter 11.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 12: Using Subqueries to Access and Modify Data 287

Suppose that you want to display the names of CDs and the amount in stock for CDs
that are performed by blues artists. The DISC_INVENTORY table contains the names of the
CDs and the amount in stock for each one, the DISC_ARTISTS table contains the names of
the artists, and the DISC_TYPES table contains the names of the artist types. The DISC_
INVENTORY and DISC_ARTISTS tables are related through the ARTIST_ID column in each
table. The DISC_ARTISTS and DISC_TYPES tables are related through the DISC_TYPE_ID
column in each table. In order to return the information you need, you must query all three
tables, as shown in the following SELECT statement:

SELECT DISC_NAME, STOCK_AMOUNT
 FROM DISC_INVENTORY
 WHERE ARTIST_ID IN
 (SELECT ARTIST_ID
 FROM DISC_ARTISTS
 WHERE DISC_TYPE_ID IN
 (SELECT DISC_TYPE_ID
 FROM DISC_TYPES
 WHERE DISC_TYPE_NAME = 'Blues'));

In this statement, the primary SELECT statement queries the DISC_INVENTORY table.
The statement includes a subquery in an IN predicate in the WHERE clause. The subquery is
a SELECT statement that queries the DISC_ARTISTS table. The subquery, like the primary
SELECT statement, includes an IN predicate in the WHERE clause, and this predicate also
includes a subquery. As is the case with the outer subquery, the inner subquery includes a
SELECT statement. However, in this case, the statement is querying the DISC_TYPES table.

DISC_NAME:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Longing in Their Hearts

Luck of the Draw

Court and Spark

Deuces Wild

Nick of Time

Fundamental

Blues on the Bayou

ARTIST_ID:
INT

102

Both Sides Now

101

101

101

104

104

104

104

103

103

105

STOCK_AMOUNT:
INT

12

24

17

9

22

19

18

25

17

11

13

ARTIST_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

William Ackerman

Bonnie Raitt

Leonard Cohen

John Barry

B.B. King

ARTIST_ID:
INT

101

102

103

105

107

108

109

106

104

DISC_TYPE_ID:
INT

10

12

11

15

17

18

12

16

10

DISC_TYPE_ID:
INT

10

11

12

14

16

17

18

15

13

DISC_TYPE_NAME:
CHAR(20)

Blues

Popular

New Age

Classic Pop

Classical

Rock

Soundtrack

Country

Folk

DISC_INVENTORY DISC_ARTISTS DISC_TYPES

Figure 12-3 Querying the DISC_INVENTORY, DISC_ARTISTS, and DISC_TYPES tables

www.it-ebooks.info

http://www.it-ebooks.info/

 288 SQL: A Beginner’s Guide

To better understand how the entire SELECT statement works, let’s first look at the inner
subquery. If you were to execute this statement alone, it would return a value of 11, which is
the DISC_TYPE_ID value for the DISC_TYPE_NAME value of Blues. The outer subquery
uses this value in the IN predicate to return those rows with a DISC_TYPE_ID value of 11.
In this case, the only row returned is the B.B. King row, which has an ARTIST_ID value of 103.
The ARTIST_ID value is then used in the IN predicate of the primary SELECT statement
to return only those rows that contain an ARTIST_ID value of 103. If you execute the entire
SELECT statement, you’ll receive the following query results:

DISC_NAME STOCK_AMOUNT
------------------ ------------
Blues on the Bayou 19
Deuces Wild 17

As you can see, only two rows are returned. Notice that the results don’t include any
information from the DISC_ARTISTS table or the DISC_TYPES table, although these two
tables are integral to arriving at these results. If you had wanted, you could have nested
additional subqueries in your statement. Each one would have been processed in the same
manner as the subqueries shown in the previous example.

Use Subqueries to Modify Data
At the beginning of this chapter, I told you that you can use subqueries to modify data as well
as query data. We’ll now look at the three primary data modification statements—INSERT,
UPDATE, and DELETE—and how they use subqueries to modify data in your database.
For each statement, I provide an example that modifies data in the TITLE_TYPES table,
shown in Figure 12-4. Each example includes a subquery that returns data from the TITLES_
INVENTORY table. This information is used as a basis for the data modification in the TITLE_
TYPES table.

NOTE
This section focuses on the subqueries used in the INSERT, UPDATE, and DELETE
statements. For more information about the statements themselves, see Chapter 8.

Using Subqueries to Insert Data
An INSERT statement, as you no doubt recall, allows you to add data to an existing table.
You can add that data directly to the table or through a view that allows you to insert data
into the underlying table. If you use a subquery in an INSERT statement, you must include
it as one of the values defined in the VALUES clause. For example, suppose you want
to insert data into the TITLE_TYPES table. The VALUES clause should include a value
for the CD_TITLE column and the CD_TYPE column. Now suppose that you know the
TITLE_ID value (from the TITLES_INVENTORY table), but you don’t know the exact

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 12: Using Subqueries to Access and Modify Data 289

name of the CD. You can create an INSERT statement that pulls the name of the CD from
the TITLES_INVENTORY table and inserts that value into the TITLE_TYPES table, as
shown in the following example:

INSERT INTO TITLE_TYPES VALUES
((SELECT TITLE FROM TITLES_INVENTORY WHERE TITLE_ID = 108), 'Popular');

Notice that the subquery appears as one of the values in the VALUES clause. The subquery
returns the value of Both Sides Now. This value and the value Popular are inserted into the
TITLE_TYPES table.

For the most part, using a subquery in an INSERT statement is a relatively simple process.
However, you must be sure that your subquery returns only one value; otherwise, you will
receive an error. In addition, the value must be compatible with the data type and any other
constraints defined on the target column.

NOTE
Not all SQL implementations support the use of a subquery as a value in the INSERT
statement. For example, SQL Server does not allow you to insert values in this manner,
although Oracle and MySQL do.

TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Luck of the Draw

Deuces Wild

Nick of Time

Blues on the Bayou

Both Sides Now

STOCK:
INT

12

24

9

19

25

17

11

13

TITLES_INVENTORY

CD_TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Longing in their Hearts

Deuces Wild

Nick of Time

Blues on the Bayou

TITLE_TYPES

CD_TYPE:
CHAR(20)

Popular

Folk

Blues

New Age

Blues

Popular

Popular

Court and Spark Popular

Fundamental Popular

TITLE_ID:
INT

101

102

103

104

105

106

107

108

Figure 12-4 Modifying the TITLE_TYPES table

www.it-ebooks.info

http://www.it-ebooks.info/

 290 SQL: A Beginner’s Guide

Using Subqueries to Update Data
An UPDATE statement allows you to modify existing data in a table. As with an INSERT
statement, you can modify data directly or through a view, if that view is updatable. To use a
subquery in an UPDATE statement, you can include it in a predicate in the WHERE clause, as
you did with the SELECT statements we looked at earlier in this chapter. For example, if you
want to update the Both Sides Now row that was inserted in the preceding INSERT statement
example, you can create an UPDATE statement similar to the following:

UPDATE TITLE_TYPES
 SET CD_TYPE = 'Folk'
 WHERE CD_TITLE IN
 (SELECT TITLE
 FROM TITLES_INVENTORY
 WHERE TITLE_ID = 108);

In this statement, the IN predicate compares the values in the CD_TITLE column of
the TITLE_TYPES table with the value returned by the subquery. The subquery is a simple
SELECT statement that returns data from the TITLES_INVENTORY table. The subquery
here works the same way as you saw in earlier SELECT statement examples. In this case, the
subquery returns a value of Both Sides Now. This value is then used to determine which row
in the TITLE_TYPES table to update. Once this row is determined, the CD_TYPE value is
changed to Folk.

Subqueries are not limited to the WHERE clause of an UPDATE statement. You can also
use a subquery in the SET clause to provide a value for the identified column. For example,
suppose you want to once again update the Both Sides Now row that was inserted in the
preceding INSERT statement example. You can pull a value from the TITLES_INVENTORY
table to use as the new value for the TITLE_TYPES table, as shown in the following UPDATE
statement:

UPDATE TITLE_TYPES
 SET CD_TITLE =
 (SELECT TITLE
 FROM TITLES_INVENTORY
 WHERE TITLE_ID = 108)
 WHERE CD_TITLE = 'Both Sides Now';

Notice that, instead of specifying a value in the SET clause (to the right of the equals sign),
you can specify a subquery. The subquery returns a value of Both Sides Now and inserts that
value into the TITLE_TYPES table.

NOTE
In the preceding example, all we’ve done is write the same value over the existing one.
The purpose of this statement is only to demonstrate how a subquery can be used in a
SET clause. Even if a new value were being written into the row, the principles would
be the same. For example, if the title had changed in the TITLES_INVENTORY table, the
preceding statement would update the title in the TITLE_TYPES table.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 12: Using Subqueries to Access and Modify Data 291

Try This 12-1

Using Subqueries to Delete Data
A DELETE statement is similar to an UPDATE statement, in terms of how a subquery can
be used in the WHERE clause. You simply include a predicate that contains a subquery.
In the following example, I delete the Both Sides Now row that I modified in the previous
UPDATE statement example. To determine which row to delete, I use a subquery to return the
appropriate TITLE value from the TITLES_INVENTORY table:

DELETE TITLE_TYPES
 WHERE CD_TITLE IN
 (SELECT TITLE
 FROM TITLES_INVENTORY
 WHERE TITLE_ID = 108);

As you would expect, the subquery returns the value of Both Sides Now. The IN predicate
compares this value to the values in the CD_TITLE column of the TITLE_TYPES table. Every
row with matching values is deleted. In this case, only one row has a CD_TITLE value of Both
Sides Now, so that is the row that is deleted.

 Working with Subqueries
In this chapter, I discussed how you can use subqueries to query and modify data. The
subqueries we looked at, for the most part, relied on the use of predicates to define the
subquery condition. In this Try This exercise, you will create a number of SELECT statements
that include WHERE clauses. Those clauses will each include a predicate that defines a
subquery, allowing you to access data from more than one table. You will also modify
data by using an UPDATE statement that contains subqueries in the SET clause and the
WHERE clause. For this exercise, as with previous Try This exercises, you will be using the
INVENTORY database. You can download the Try_This_12.txt file, which contains the SQL
statements used in this exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. The first SELECT statement that you’ll create allows you to return the name and number of
CDs that are produced by MCA Records. Enter and execute the following SQL statement:

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE LABEL_ID IN
 (SELECT LABEL_ID
 FROM CD_LABELS
 WHERE COMPANY_NAME = 'MCA Records');

 This statement uses a subquery to return the LABEL_ID value for MCA Records, which is
stored in the CD_LABELS table. The value is then used in the IN predicate to compare it to
the LABEL_ID values in the COMPACT_DISCS table. Your query should return four rows.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 292 SQL: A Beginner’s Guide

 3. In the next statement, you will use an EXISTS predicate to define a subquery. The predicate
determines whether the COMPACT_DISCS table contains any rows with a CD_TITLE
value of Out of Africa. Enter and execute the following SQL statement:

SELECT COMPANY_NAME
 FROM CD_LABELS l
 WHERE EXISTS
 (SELECT *
 FROM COMPACT_DISCS d
 WHERE l.LABEL_ID = d.LABEL_ID
 AND CD_TITLE = 'Out of Africa');

 The statement will return the name of the company that produces the Out of Africa CD,
which in this case is MCA Records. The MCA Records row in the CD_LABELS table is the
only row that evaluates to true for the subquery in the EXISTS predicate.

 4. In the next statement you create, you’ll determine the distributor names for those CDs in
which the LABEL_ID value in the CD_LABELS table is equal to any LABEL_ID values
returned by the subquery. Enter and execute the following SQL statement:

SELECT COMPANY_NAME
 FROM CD_LABELS
 WHERE LABEL_ID = ANY
 (SELECT LABEL_ID
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 30);

 The subquery returns only those LABEL_ID values for rows that contain an IN_STOCK
value greater than 30. When you execute this statement, the names of only three companies
should be returned.

 5. Now you’ll create a SELECT statement that uses a comparison predicate to define a subquery.
The subquery returns the LABEL_ID value (from the CD_LABELS table) for Capitol Records.
That value is then compared to the LABEL_ID values in the COMPACT_DISCS table.
Enter and execute the following SQL statement:

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE LABEL_ID =
 (SELECT LABEL_ID
 FROM CD_LABELS
 WHERE COMPANY_NAME = 'Capitol Records');

 This statement should return only two rows.

 6. Now let’s redo the statement in step 5 and turn it into a comma-separated join. Remember
that you should assign correlation names to the tables to simplify the code. Also remember

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 12: Using Subqueries to Access and Modify Data 293

that the WHERE clause should include an equi-join condition that matches up LABEL_ID
values. Enter and execute the following SQL statement:

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS d, CD_LABELS l
 WHERE d.LABEL_ID = l.LABEL_ID
 AND COMPANY_NAME = 'Capitol Records';

 As you can see, this statement is a lot simpler than the subquery used in the preceding
statement, and it returns the same results.

 7. In the next statement that you’ll create, you will use a nested subquery to return values to
the outer subquery. Enter and execute the following SQL statement:

SELECT ARTIST_NAME
 FROM ARTISTS
 WHERE ARTIST_ID IN
 (SELECT ARTIST_ID
 FROM ARTIST_CDS
 WHERE COMPACT_DISC_ID IN
 (SELECT COMPACT_DISC_ID
 FROM COMPACT_DISCS
 WHERE CD_TITLE = 'Past Light'));

 The inner subquery returns the COMPACT_DISC_ID value for the Past Light CD. The
outer subquery then uses this value to determine the ARTIST_ID value for that CD. This
value is then used in the main SELECT statement, which returns one value: William
Ackerman. He is the artist on the Past Light CD.

 8. Now we’re going to move on to using subqueries in an UPDATE statement. However,
let’s first take a look at the table we’re going to update, which is the COMPACT_DISC_
TYPES table. In order to know what to update, we’re going to use values from the
COMPACT_DISCS table and the MUSIC_TYPES table to help identify the IDs used in the
COMPACT_DISC_TYPES table. Enter and execute the following SQL statement:

SELECT CD_TITLE, TYPE_NAME
 FROM COMPACT_DISCS d, COMPACT_DISC_TYPES t, MUSIC_TYPES m
 WHERE d.COMPACT_DISC_ID = t.COMPACT_DISC_ID
 AND t.MUSIC_TYPE_ID = m.TYPE_ID
 AND CD_TITLE = 'Kojiki';

 In this statement, you join three tables to return the CD_TITLE value and TYPE_NAME
value for the Kojiki CD. The CD is classified as New Age.

 9. In this step, you will update the row in the COMPACT_DISC_TYPES table that matches
the COMPACT_DISC_ID for the Kojiki CD with the MUSIC_TYPE_ID value for the

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 294 SQL: A Beginner’s Guide

New Age music type. You’ll change the music type from New Age to Classical. Enter and
execute the following SQL statement:

UPDATE COMPACT_DISC_TYPES
 SET MUSIC_TYPE_ID =
 (SELECT TYPE_ID
 FROM MUSIC_TYPES
 WHERE TYPE_NAME = 'Classical')
 WHERE COMPACT_DISC_ID =
 (SELECT COMPACT_DISC_ID
 FROM COMPACT_DISCS
 WHERE CD_TITLE = 'Kojiki')
 AND MUSIC_TYPE_ID =
 (SELECT TYPE_ID
 FROM MUSIC_TYPES
 WHERE TYPE_NAME = 'New Age');

 The statement uses a subquery in the SET clause to pull the TYPE_ID value from the
MUSIC_TYPES table. The statement also uses two subqueries in the WHERE clause of the
UPDATE statement to determine which row to update in the COMPACT_DISC_TYPES
table. The first subquery in the WHERE clause returns the COMPACT_DISC_ID value for
the Kojiki CD. The second subquery returns the TYPE_ID value for the Classical music type.

 10. Now let’s query the COMPACT_DISC_TYPES table to view the changes. Enter and
execute the following SQL statement:

SELECT CD_TITLE, TYPE_NAME
 FROM COMPACT_DISCS d, COMPACT_DISC_TYPES t, MUSIC_TYPES m
 WHERE d.COMPACT_DISC_ID = t.COMPACT_DISC_ID
 AND t.MUSIC_TYPE_ID = m.TYPE_ID
 AND CD_TITLE = 'Kojiki';

 The TYPE_NAME value should now be Classical.

 11. Finally, you will return the COMPACT_DISC_TYPES table to its original state. Enter and
execute the following SQL statement:

UPDATE COMPACT_DISC_TYPES
 SET MUSIC_TYPE_ID =
 (SELECT TYPE_ID
 FROM MUSIC_TYPES
 WHERE TYPE_NAME = 'New Age')
 WHERE COMPACT_DISC_ID =
 (SELECT COMPACT_DISC_ID
 FROM COMPACT_DISCS
 WHERE CD_TITLE = 'Kojiki')
 AND MUSIC_TYPE_ID =
 (SELECT TYPE_ID
 FROM MUSIC_TYPES
 WHERE TYPE_NAME = 'Classical');

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 12: Using Subqueries to Access and Modify Data 295

 This statement is similar to the preceding UPDATE statement that you used, only now the
New Age music type will be used (which was the original music type).

 12. Let’s check the table one more time. Enter and execute the following SQL statement:

SELECT CD_TITLE, TYPE_NAME
 FROM COMPACT_DISCS d, COMPACT_DISC_TYPES t, MUSIC_TYPES m
 WHERE d.COMPACT_DISC_ID = t.COMPACT_DISC_ID
 AND t.MUSIC_TYPE_ID = m.TYPE_ID
 AND CD_TITLE = 'Kojiki';

 The COMPACT_DISC_TYPES table should now contain the same values as it did when
you started this exercise.

 13. Close the client application.

Try This Summary
In this Try This exercise, you created several SELECT statements that contained subqueries.
These subqueries were included in predicates that permit the subqueries to return one or
more rows. Specifically, the WHERE clauses included the IN, EXISTS, and ANY predicates.
In addition, you created a SELECT statement that included a comparison predicate, which
permits the subquery to return only one row. You also created a SELECT statement that
included nested subqueries. These subqueries used the IN predicate. In addition to querying
data in the INVENTORY database, you updated the COMPACT_DISC_TYPES table by using
subqueries that accessed other tables. As you can see, subqueries provide you with a versatile
tool for accessing data in your database. However, when creating statements that include
subqueries, you should always try to determine whether a join would perform better in any
given situation.

 Chapter 12 Self Test
 1. In which types of statements can you include subqueries?

 A SELECT

 B INSERT

 C UPDATE

 D DELETE

 2. What is a subquery?

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 296 SQL: A Beginner’s Guide

 3. In which clauses of a SELECT statement can you include a subquery?

 A SELECT

 B WHERE

 C GROUP BY

 D HAVING

 4. Into what two general categories can you divide subqueries in a WHERE clause?

 5. Which types of predicates are you prevented from using with subqueries that return
multiple rows?

 A IN and EXISTS predicates

 B SOME, ANY, and ALL predicates

 C Comparison predicates

 D Quantified comparison predicates

 6. When does an EXISTS condition evaluate to true?

 7. What should be included in a subquery’s search condition when using an EXISTS
predicate?

 8. In addition to numbers, ____________ data can be compared in comparison predicates.

 9. What are the three quantified comparison predicates?

 10. Which types of predicates allow you to use subqueries that return multiple rows?

 A IN and EXISTS predicates

 B SOME, ANY, and ALL predicates

 C Comparison predicates

 D Quantified comparison predicates

 11. What is a correlated subquery?

 12. How often is a correlated subquery evaluated when a SELECT statement is processed?

 13. A(n) ____________ is a subquery that is a component of another subquery.

 14. How many subqueries can be included in a SELECT statement, as specified by the SQL
standard?

 15. Which clause in an INSERT statement can contain a subquery?

 16. How many values can a subquery return if it is used in an INSERT statement?

 17. Which clauses in an UPDATE statement can contain a subquery?

www.it-ebooks.info

http://www.it-ebooks.info/

Part III
Advanced Data Access

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

299

Chapter 13
Creating SQL-Invoked
Routines

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 300 SQL: A Beginner’s Guide

Key Skills & Concepts

● Understand SQL-Invoked Routines

● Create SQL-Invoked Procedures

● Add Input Parameters to Your Procedures

● Add Local Variables to Your Procedures

● Work with Control Statements

● Add Output Parameters to Your Procedures

● Create SQL-Invoked Functions

Prior to the release of SQL:1999, the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO) published an interim standard in 1996

that added procedures and functions, along with related language, to the existing SQL standard
as Part 4. This new publication, also referred to as SQL/PSM, or PSM-96 (PSM standing for
persistent stored module), represented the first step toward including procedural capabilities
within SQL itself. Part 4 (SQL/PSM) was revised and incorporated into the SQL:1999
standard, and revised again for the SQL:2003 standard. These procedural capabilities define,
among other components, the creation of SQL-invoked routines—specifically, SQL-invoked
procedures and SQL-invoked functions. In this chapter, we’ll take a close look at both
procedures and functions, including how to create them and how to invoke them once they’re
created. We’ll also take a look at a number of examples that demonstrate the various types of
procedures and functions and the components that make up each.

Understand SQL-Invoked Routines
I first introduced you to the concept of SQL-invoked routines in Chapter 2, where I describe
the schema objects that can exist within an SQL environment. As you might recall, an SQL-
invoked routine is a function or procedure that can be invoked from SQL. Both functions and
procedures are stored sets of predefined SQL statements that perform some sort of action on
the data in your database. For example, you can define a SELECT statement and store it as an
SQL-invoked procedure. Once you have created that procedure, you can invoke it simply by
calling its name and, if appropriate, supplying the necessary parameters.

Unlike views, all SQL-invoked routines support the use of parameters, which are values
passed to and from a routine when you invoke that routine. A function can receive input parameters
and return a value based on the expression included in the function definition. A procedure
can pass input and output parameters. Regardless of whether it’s a procedure or function,

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 301

an SQL-invoked routine can be a schema object or can be embedded in an SQL server module,
which is also a schema object. (A module is an object that contains SQL statements or routines.)

NOTE
SQL:2006 also supports a third type of SQL-invoked routine—the SQL-invoked method.
A method, which is used in user-defined types, is a type of function that performs
predefined tasks. SQL supports two types of user-defined types: structured types and
distinct types. Methods are used in structured types. The subject of structured user-defined
types is beyond the scope of the book, so I won’t be covering methods in this chapter.

Most SQL implementations support some form of the SQL-invoked routine in their
products. Within various SQL implementations, SQL-invoked procedures are often referred
to as stored procedures, and SQL-invoked functions are often referred to as user-defined
functions. Regardless of the names used, the fundamental concepts are the same, and the
basic functionality supported is similar from product to product. However, while concepts and
functionality are similar, the implementation of SQL-invoked routines can vary widely, and
the specifics of how SQL-invoked routines are created and called, differ not only between the
SQL standard and the individual product, but also between the products themselves. The main
reason for this is that many products had already implemented PSM technology prior to the
initial publication of the SQL/PSM standard in 1996. As a result, proprietary functionality has
persisted among the different implementations, with few SQL products conforming to the actual
SQL/PSM standard, or, consequently, the PSM-related portion of the SQL:2006 standard.

Despite the product differences, it is still worthwhile to have a look at the basic concepts
behind SQL-invoked routines, as they are defined in the SQL standard. The standard provides
insight into the underlying structure used by the various SQL implementations and can give you
a cohesive overview of the basic concepts shared by all products that implement SQL-invoked
procedures and functions. However, as with other SQL-related technology, you should refer to
the product documentation for your specific SQL implementation. In few cases will you be able
to use pure (standard) SQL to create an implementation-specific SQL-invoked routine.

SQL-Invoked Procedures and Functions
As I mentioned earlier, an SQL-invoked routine can be either an SQL-invoked procedure
or an SQL-invoked function (or, in the case of user data types, an SQL-invoked method).
SQL-invoked procedures and functions are similar in many ways, although there are some
basic differences. Table 13-1 provides an overview of the main differences and similarities.

The easiest way to distinguish between SQL-invoked procedures and functions is to think
of a procedure as a set of one or more stored SQL statements, similar to how a view stores a
SELECT statement (as described in Chapter 5) and to think of a function as a type of operation
that returns a value, similar to set functions such as SUM or AVG (as described in Chapter 10).

Working with the Basic Syntax
There are many similarities between the syntax used to create procedures and that used to create
functions. In fact, they’re defined as one syntactic element in SQL:2006. In addition, the syntax

www.it-ebooks.info

http://www.it-ebooks.info/

 302 SQL: A Beginner’s Guide

is, at its most basic level, similar to how procedures are created in most SQL implementations.
Let’s take a look at the syntax for each one to better understand their basic elements.

Using the CREATE PROCEDURE Statement
The first syntax we’ll look at is that for creating a procedure. At its most basic, the CREATE
PROCEDURE statement looks like the following:

CREATE PROCEDURE <procedure name>
([<parameter declaration> [{ , <parameter declaration> } . . .]])
[<routine characteristic> . . .]
<routine body>

As you can see, you must provide a name for the procedure—in the CREATE
PROCEDURE clause—followed by zero or more parameter declarations, which are enclosed
in parentheses. If no declarations are defined, you must still provide the parentheses. If
more than one declaration is defined, you must separate them using commas. Following the
parameter declarations, you have the option of defining one or more routine characteristics.
For example, you can specify whether the routine is an SQL routine or one written in another
language such as C or Java.

NOTE
The type of routine characteristics that you can define vary greatly among the SQL
implementations, not only in terms of which options are supported, but also with regard
to how they’re defined. Consequently, I will keep my discussion of these options short,
so be sure to check the product documentation for more information. For example,
the procedural extensions in Oracle are defined using a language that Oracle calls
PL/SQL, while in SQL Server and Sybase, the procedural extensions are part of a
language called Transact-SQL, both of which are significantly different from the SQL
standard. On the other hand, MySQL and DB2 generally follow the SQL standard in
defining functions and stored procedures.

Procedures Functions

Invoked from SQL statements, not from
a programming language.

Invoked from SQL statements, not from a programming
language.

Can be written in SQL or another
programming language.

Can be written in SQL or another programming language.

Invoked by using the CALL statement. Invoked as a value in an expression.

Support input and output parameters,
although neither is required.

Support input parameters, although none are required.
You cannot define output or input/output parameters for
a function. The function returns a single output value.

Table 13-1 Differences and similarities of SQL procedures and functions

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 303

After you’ve defined the procedure’s characteristics, you’re ready to add the SQL
statements, which are represented by the <routine body> placeholder. Many of the statements
you’ll use in this section will be similar to those you’ve already seen in this book. However,
the SQL/PSM standard introduced new language elements that make procedures more
dynamic. As we continue through this chapter, we’ll look at many of these elements and how
they’re used to extend the functionality of SQL-invoked procedures.

Using the CREATE FUNCTION Statement
Now let’s take a look at the statement used for creating an SQL-invoked function. As you can
see in the following syntax, a function contains a few more elements than a procedure:

CREATE FUNCTION <function name>
([<parameter declaration> [{ , <parameter declaration> } . . .]])
RETURNS <data type>
[<routine characteristic> . . .]
[STATIC DISPATCH]
<routine body>

As with procedures, you must first provide a name for your function, followed by the
parameter declaration list. Functions support only input parameters, and if none are provided,
you must still use the parentheses. If more than one input parameter is provided, you must
separate them using commas. Following the parameter declarations is the RETURNS clause.
You must provide the data type for the value that’s returned by the function. After that, you
can include any of the optional routine characteristics, depending on what options your SQL
implementation supports. Next is the STATIC DISPATCH clause. You must specify this clause
if you use a user-defined type, a reference data type, or an array data type. Because these
types are all beyond the scope of this book, you do not need to be concerned with the STATIC
DISPATCH clause at this time.

The last thing that you must include in the procedure definition is, of course, the routine
body. As with procedures, these are the SQL statements that make up the core of your
procedure. However, there is one additional element you’ll find in the routine body that is not
included in a procedure’s routine body—a RETURN statement (not to be confused with the
RETURNS clause). The RETURN statement specifies the value that will be returned by the
function. Later in this chapter, in the “Create SQL-Invoked Functions” section, I’ll discuss the
RETURN statement and other elements of the CREATE FUNCTION statement in more detail.

Create SQL-Invoked Procedures
Now that you have an overview of SQL-invoked routines and the syntax used to create them,
let’s take a closer look at how to create SQL-invoked procedures. A procedure can perform
most functions that you can perform by using SQL statements directly. In addition, procedures
can be used to pass parameters and define variables, which we’ll get into later in this chapter.
For now, let’s look at a procedure at its most basic, one that includes no parameters or special
types of SQL statements.

www.it-ebooks.info

http://www.it-ebooks.info/

 304 SQL: A Beginner’s Guide

Suppose you need to query the data in the CD_INVENTORY and CD_TYPES tables
shown in Figure 13-1. You want your query results to return the CD names and number in
stock for all New Age CDs.

To view this information, you can create a SELECT statement that joins the two tables, as
shown in the following example:

SELECT CD_TITLE, CD_STOCK
 FROM CD_INVENTORY i, CD_TYPES t
 WHERE i.CD_TYPE_ID = t.CD_TYPE_ID
 AND CD_TYPE_NAME = 'New Age';

Of course, every time you want to view this information, you would have to recreate the
SELECT statement. However, another option is to store the SELECT statement within the
schema. That way, all you need to do is call that statement whenever you want to view the
New Age CDs. One way to store the SELECT statement is within a view definition:

CREATE VIEW NEW_AGE AS
 SELECT CD_TITLE, CD_STOCK
 FROM CD_INVENTORY i, CD_TYPES t
 WHERE i.CD_TYPE_ID = t.CD_TYPE_ID
 AND CD_TYPE_NAME = 'New Age';

Once the view is created, you can use a SELECT statement to call the view, as shown in the
following statement:

SELECT * FROM NEW_AGE;

CD_TITLE:

VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Out of Africa

Fundamental

Blues on the Bayou

CD_TYPE_ID:

CHAR(4)

FROK

CPOP

NEWA

STRK

NPOP

BLUS

CD_STOCK:

INT

19

28

6

8

10

11

CD_TYPE_ID:

CHAR(4)

FROK

CPOP

NEWA

CTRY

STRK

BLUS

JAZZ

CD_TYPE_NAME:

CHAR(20)

Folk Rock

Classic Pop

New Age

Country

Soundtrack

Blues

Jazz

CD_INVENTORY CD_TYPES

Kojiki NEWA 10

Figure 13-1 Using procedures to access the CD_INVENTORY and CD_TYPES tables

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 305

However, views are very limited with regard to the types of statements and functionality
that are supported. For example, you cannot include an UPDATE statement in a view, nor
can you pass parameters to and/or from views. As a result, a better way to store this SELECT
statement is as an SQL-invoked procedure. To do this, you must create a schema object by
using the CREATE PROCEDURE statement, as shown in the following example:

CREATE PROCEDURE NEW_AGE_CDS ()
 SELECT CD_TITLE, CD_STOCK
 FROM CD_INVENTORY i, CD_TYPES t
 WHERE i.CD_TYPE_ID = t.CD_TYPE_ID
 AND CD_TYPE_NAME = 'New Age';

This statement represents the minimum amount of information that you must provide
in order to create a procedure. It includes a CREATE PROCEDURE clause that names the
procedure (NEW_AGE_CDS), a set of parentheses, and a routine body, which is the SELECT
statement. If you were defining parameters, their declarations would be enclosed in the
parentheses.

As you might well imagine, a CREATE PROCEDURE statement can be far more complex
than what you see here. However, the statement in the example represents the basic structure
on which you would build more extensive statements. Before I discuss more complicated
procedures, let’s first touch on the issue of how this statement is created in various SQL
implementations.

Earlier in the chapter, I told you that SQL implementations can vary widely with regard
to the specifics of how SQL-invoked routines are created and called. As a result, few
implementations support pure SQL when attempting to define your procedures. For example,
both SQL Server and Oracle require that you use the AS keyword before the routine body.
In addition, SQL Server does not use parentheses after the procedure name, whether or not
parameters are being defined. Oracle, on the other hand, does use the parentheses, and it also
requires some additional statements that enclose executable statements in BEGIN…END
blocks. As mentioned earlier, MySQL and DB2 closely follow the SQL standard. From this
it should be clear that you simply must consult your product documentation whenever you’re
creating a procedure to determine how the product-specific language differs from the SQL
standard.

Invoking SQL-Invoked Procedures
Once you’ve created your procedure, you can invoke (call) it by using a CALL statement. The
basic syntax for the CALL statement is as follows:

CALL <procedure name>
([<value> [{ , <value> } . . .]])

As you can see, you must identify the name of the procedure in the CALL clause and
follow that with the values (in parentheses) that are passed into the procedure as parameters.
If no parameters are defined for the procedure, you must still use the parentheses. If more than

www.it-ebooks.info

http://www.it-ebooks.info/

 306 SQL: A Beginner’s Guide

one parameter is defined for the procedure, you must separate them with commas. In addition,
you must follow these guidelines when entering values:

● Your CALL statement must include the same number of values as the number of
parameters defined in the procedure.

● The values must be entered in the same order as the order in which they are defined in the
procedure.

● The values must conform to the data types that are assigned to the parameters.

I’ll be discussing parameters in more detail in the next section, “Add Input Parameters to
Your Procedures.”

Now let’s look at an example of the CALL statement. If you want to call the procedure that
was created in the preceding example, you can use the following statement:

CALL NEW_AGE_CDS();

In this statement, the name of the procedure follows the CALL keyword. Notice the use of
parentheses even though no parameters were defined for the procedure. Had parameters been
defined, they would have been enclosed in the parentheses. When you execute this statement,
you’ll receive the same results as you would have if you had executed the SELECT statement
separately, as shown in the following query results:

CD_TITLE CD_STOCK
---------- ---------
Past Light 6
Kojiki 10

The CALL statement, like the CREATE PROCEDURE statement, can vary from SQL
implementation to implementation in how it is used and whether it is supported. In fact, you’ll
probably find that, for most implementations, you must use an EXECUTE statement, rather
than CALL, to invoke a procedure.

Add Input Parameters to Your Procedures
The NEW_AGE_CDS procedure that we looked at in the previous examples can be very
handy because it saves you having to create an SQL statement each time you want to view
information about New Age CDs. However, in order to return information about other types
of CDs, such as Blues or Country, you must create a new query or set up a procedure for the
specific type of music. But there is another alternative. You can create a procedure that does
not specifically define the music type but instead allows you to enter that type whenever you
call that procedure. That way, you need only one procedure to check any desired type of music.

To support this type of procedure, you must declare a parameter within the procedure
definition that allows the procedure to accept input values when you call it. Let’s return to
the CD_INVENTORY table and CD_TYPES table shown in Figure 13-1. If we modify the

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 307

language of the procedure we created earlier, we can create a new procedure that includes the
necessary input parameter, as shown in the following CREATE PROCEDURE statement:

CREATE PROCEDURE CDS_BY_TYPE (IN p_CD_Type CHAR(20))
 SELECT CD_TITLE, CD_STOCK
 FROM CD_INVENTORY i, CD_TYPES t
 WHERE i.CD_TYPE_ID = t.CD_TYPE_ID
 AND CD_TYPE_NAME = p_CD_Type;

In the first line of code, a parameter is defined after the CREATE PROCEDURE clause.
The parameter declaration includes the IN keyword, the name of the parameter (p_CD_Type),
and the data type for that parameter (CHAR(20)), all of which are enclosed in parentheses.

NOTE
The “p_” convention used to name the parameters is not necessary. However, I like to
use some type of naming convention to set parameters apart, making them easier to
pick out in the code.

SQL supports three types of parameters: input, output, and input/output. The three types
are represented by the parameter mode keywords IN, OUT, and INOUT, respectively. Input
parameters allow you to provide values when you invoke a procedure. Those values are then
used within the routine body when the SQL statements are executed. Output parameters
allow your procedure to provide values as a result of invoking the procedure. Input/output
parameters are those that provide the functionality of both input and output parameters. You
do not have to specify one of the parameter mode keywords when you define your parameters.
However, if you don’t specify one of the keywords, SQL assumes that you’re defining an input
parameter.

NOTE
As with many other aspects of the CREATE PROCEDURE statement, parameter
declarations can vary from product to product. In SQL Server, for example, parameter
names must be preceded by the at (@) symbol, as in @p_CD_Type, the parameter
declarations are not enclosed in parentheses, and the IN keyword is not used. Oracle,
on the other hand, does not require the at symbol and does use parentheses. Oracle
also uses the IN keyword, but it is positioned after the name of the parameter, as in
p_CD_Type IN CHAR (20).

Now let’s return to the CDS_BY_TYPE procedure that is defined in the previous CREATE
PROCEDURE statement. Once you define your input parameter, you’ll want to use it in some
meaningful way within the routine body. In this case, the p_CD_Type parameter is used in the
second predicate in the WHERE clause (CD_TYPE_NAME = p_CD_Type). This means that
the value you enter when you invoke the procedure is compared to the CD_TYPE_NAME
values of the CD_TYPES table when the SELECT statement is executed. As a result, your
query results will include CD information about the specified music type.

www.it-ebooks.info

http://www.it-ebooks.info/

 308 SQL: A Beginner’s Guide

Once you create your procedure, you can invoke it by using a CALL statement that
specifies a value for the parameter. For example, if you want to return information about Folk
Rock CDs, you can use the following CALL statement:

CALL CDS_BY_TYPE('Folk Rock');

Notice that you include the value for the parameter in parentheses after the name of the
procedure. The value must conform to the data type assigned to the parameter, which in this
case is CHAR(20). As with any other instance in which you’re working with character string
values, you must enclose the value in single quotes. When you invoke this procedure, the Folk
Rock value is inserted into the predicate in the WHERE clause and the procedure returns the
following query results:

CD_TITLE CD_STOCK
-------------------- --------
Famous Blue Raincoat 19

As you can see, you now have a procedure that you can use to return CD information
on any music type. You simply provide the name of the music type when you call the
procedure. However, procedures are not limited to only one parameter. You can include
multiple parameters in any procedure definition. For example, suppose you want to modify
the preceding procedure definition to allow you to enter an amount. You want to use that
amount to return CD information for only those CDs with a CD_STOCK value that exceeds
the specified amount. At the same time, you still want to return CD information for only the
specified music type. As a result, you need to define two parameters, as shown in the following
CREATE PROCEDURE statement:

CREATE PROCEDURE CDS_BY_TYPE (IN p_CD_Type CHAR(20), IN p_Amount INT)
 SELECT CD_TITLE, CD_STOCK
 FROM CD_INVENTORY i, CD_TYPES t
 WHERE i.CD_TYPE_ID = t.CD_TYPE_ID
 AND CD_TYPE_NAME = p_CD_Type
 AND CD_STOCK > p_Amount;

Notice that the parameter declaration clause now includes two input parameters: p_CD_
Type and p_Amount. The p_Amount parameter is configured with the INT data type. The
p_Amount parameter, like the p_CD_Type parameter, is used in a predicate in the WHERE
clause (CD_STOCK > p_Amount). As a result, the rows returned by the procedure must
include CD_STOCK values greater than the amount specified when calling the procedure.

Once you’ve created the procedure, you can call it by using a CALL statement that
includes values for both parameters, as shown in the following example:

CALL CDS_BY_TYPE('New Age', 5);

Now your CALL statement includes two values (separated by a comma) within the
parentheses. The values must be listed in the order in which the parameters are defined in
the CREATE PROCEDURE statement. When you invoke this statement, the p_C_Type is

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 309

assigned the value New Age, and the p_Amount parameter is assigned the value 5, making the
SELECT statement embedded in the procedure definition behave as though you entered the
values directly, as shown in the following example:

SELECT CD_TITLE, CD_STOCK
 FROM CD_INVENTORY i, CD_TYPES t
 WHERE i.CD_TYPE_ID = t.CD_TYPE_ID
 AND CD_TYPE_NAME = 'New Age'
 AND CD_STOCK > 5;

If you were to execute this statement, you would return the same query results as you
would if you were to execute the CALL statement using the New Age value and 5 value, as
shown in the following results:

CD_TITLE CD_STOCK
---------- --------
Past Light 6
Kojiki 10

Now let’s modify the CALL statement to see how specifying a different value might affect
the results. Suppose you use a numeric value of 8, rather than 5, as shown in the following
statement:

CALL CDS_BY_TYPE ('New Age', 8);

If you were to execute this statement, only one row would be returned:

CD_TITLE CD_STOCK
---------- --------
Kojiki 10

If you refer back to the CD_INVENTORY table in Figure 13-1, you’ll see that only the Kojiki
row is a New Age CD with a CD_STOCK value that exceeds 8, the value you specified in
your CALL statement. As you can see, using multiple parameters can provide you with a
variety of options that make procedures a useful and flexible tool that can eliminate the need to
write multiple statements that are meant to provide similar results. If you define the necessary
parameters, users simply plug in the necessary values to achieve the results they desire.

Using Procedures to Modify Data
Up to this point, the SQL-invoked procedures that we’ve looked at have contained SELECT
statements that query data. However, procedures are not limited to only SELECT statements.
You can include data modification statements such as INSERT, UPDATE, and DELETE.
Let’s return to the CD_INVENTORY table and CD_TYPES table, shown in Figure 13-1. You
might have noticed that the CD_INVENTORY table includes a row for the Fundamental CD.
The music type for that CD is New Pop, which is represented by NPOP (the value in the CD_
TYPE_ID column). You might also have noticed that there is no corresponding entry in the
CD_TYPES table for the New Pop type. You can create a procedure that allows you to insert

www.it-ebooks.info

http://www.it-ebooks.info/

 310 SQL: A Beginner’s Guide

values into that table. You simply need to define that procedure with the appropriate input
parameters and INSERT statement, as shown in the following example:

CREATE PROCEDURE INSERT_TYPE (IN p_Type CHAR(4), IN p_Name CHAR(20))
 INSERT INTO CD_TYPES VALUES (p_Type, p_Name);

Notice that the procedure definition includes two input parameters: p_Type and p_Name,
both of which are defined with the CHAR data type. These parameters are then used in
the INSERT statement, in the same way in which you would normally specify values to be
inserted into a table. Any parameter that you declare for this purpose must be defined with a
data type that is compatible with the data type defined on the column that contains the data
to be modified. Once you create the procedure, you can use a CALL statement similar to the
following example to invoke the procedure:

CALL INSERT_TYPE('NPOP', 'New Pop');

Notice that the CALL statement includes NPOP and New Pop values. These values are
passed to the two parameters defined in the INSERT_TYPE procedure. As a result, they are
inserted into the CD_TYPES table as though you had executed the INSERT statement directly.

In the same way that you create the INSERT_TYPE procedure, you can create procedures
that update and delete data by including the appropriate UPDATE and DELETE statement,
rather than an INSERT statement. Simply create the necessary input parameters and assign the
appropriate values to those parameters when you call the procedure. However, keep in mind
that the value you pass using the parameters must conform not only to the data types defined
in the parameter declarations, but also to the data types and constraints on the columns that
contain the data you’re trying to modify.

Q: Up to this point, you’ve shown us how to create SQL-invoked procedures, but not how
to modify them. Is there a way to alter or delete procedures?

A: The SQL standard supports both an ALTER PROCEDURE statement and a DROP
PROCEDURE statement. The ALTER PROCEDURE statement allows you to alter some of
the routine characteristics of the procedure, but it does not allow you to alter the procedure
body. However, the functionality supported by the ALTER PROCEDURE statement can
vary so widely from one SQL implementation to another that you’ll need to check the
product documentation to see whether the statement is supported and what you can do
with that statement. In SQL Server, for example, the ALTER PROCEDURE statement
allows you to modify most aspects of the procedure, whereas the same statement in Oracle
is used primarily to recompile the procedure to avoid runtime compiling (which saves on
runtime overhead). However, Oracle provides the CREATE OR REPLACE PROCEDURE
syntax that replaces an existing procedure (including the procedure body) or creates a new
procedure if it does not yet exist.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 311

Add Local Variables to Your Procedures
In addition to allowing you to pass parameters into a procedure, SQL also provides a way for
you to create local variables in the procedure definition that can be used within the body of
the procedure. You can think of a local variable as a type placeholder that holds a value in
memory during the execution of the statements in the routine body. Once the statements are
executed, the variable ceases to exist.

When you define a local variable, you must first declare the variable and then set an initial
value for it. You can then use that variable in the remaining block of statements. The basic
syntax for defining a variable is as follows:

DECLARE <variable name> <data type>;

As you can see, the syntax is very straightforward. You must provide a name for the variable
and assign a data type. Once you’ve declared the variable, you must then assign a value to it
before it can be referenced. (However, some implementations automatically assign a null value
to variables as they are defined.) You can use the SET statement to assign a value to a variable,
which has the following syntax:

SET <variable name> = <value expression>;

In this statement, you must first provide the variable name and then provide the value, which
can be any sort of value expression, such as a number, a character string, or a subquery.

After you’ve declared the variable and assigned it a value, you’re ready to use the variable
in your routine body. The best way to illustrate this is to show you an example of a procedure
that uses a variable. For this example, we’ll again use the CD_INVENTORY table, shown in
Figure 13-1. The following statement creates a procedure that retrieves CD information for
a specific music type:

CREATE PROCEDURE CD_AMOUNT (IN p_Type_ID CHAR(4))
 BEGIN
 DECLARE v_Amount INT;
 SET v_Amount = (SELECT AVG(CD_STOCK)
 FROM CD_INVENTORY);
 SELECT CD_TITLE, CD_STOCK

As for the DROP PROCEDURE statement, most implementations support this and
it is usually fairly straightforward. You simply provide the name of the procedure in the
statement and, depending on the SQL implementation, the RESTRICT or CASCADE
keywords, as you’ve seen them used in other DROP statements. Note that the same is true
for the ALTER FUNCTION and DROP FUNCTION statements. Although supported by
many implementations, the ALTER FUNCTION statement can vary from one product to
the next, and the DROP FUNCTION statement is fairly similar across implementations.

www.it-ebooks.info

http://www.it-ebooks.info/

 312 SQL: A Beginner’s Guide

 FROM CD_INVENTORY
 WHERE CD_TYPE_ID = p_Type_ID
 AND CD_STOCK < v_Amount;
 END;

Let’s go through this statement line by line. In the first line, we create a procedure named
CD_AMOUNT and an input parameter named p_Type_ID. The second line contains the
keyword BEGIN. The BEGIN keyword is paired with the END keyword in the last line.
Together they enclose a block of statements that are processed as a unit. We’ll take a closer
look at the BEGIN...END block later in the “Working with Control Statements” section.

The third line of the procedure definition includes a DECLARE statement that declares
the v_Amount variable, which is defined with the INT data type. The next two lines use a SET
statement to assign an initial value to the parameter. This value is derived from a subquery
that finds the average for all the CD_STOCK values. The average in this case is about 13. In
the next four lines of the procedure definition, a SELECT statement retrieves data from the
CD_INVENTORY table based on the values supplied by the parameter and variable.

Once you’ve created your procedure, you can execute it by using a CALL statement and
providing a value for the parameter, as shown in the following example:

CALL CD_AMOUNT('NEWA');

When the procedure is processed, it uses the NEWA value from the parameter and the
CD_STOCK average from the variable in the SELECT statement defined in the procedure
definition. It would be similar to executing the following statement:

SELECT CD_TITLE, CD_STOCK
 FROM CD_INVENTORY
 WHERE CD_TYPE_ID = 'NEWA'
 AND CD_STOCK < 13;

This SELECT statement, like the procedure itself, will return the following query results:

CD_TITLE CD_STOCK
---------- --------
Past Light 6
Kojiki 10

Notice that both rows contain CD_STOCK values less than the average amount (13) and both
are New Age CDs.

You’re not limited to only one variable in a procedure definition. You can create a
DECLARE statement for each variable that you want to include. You can also include multiple
variables in one statement, if those variables are assigned the same data type. For example,
suppose you want to declare several variables with an INT data type, as shown in the following
DECLARE statement:

DECLARE Var1, Var2, Var3 INT;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 313

This statement declares the Var1, Var2, and Var3 variables, and each one is assigned the INT
data type. Once you assign initial values to the variables, you can use them in the routine body
in the same way as any other local variables.

Work with Control Statements
When the SQL/PSM standard was released in 1996, it included not only language that supported
SQL-invoked routines, but language that could be used within those routines to make them more
robust. Such characteristics as grouping statements into blocks and looping statements so that
they could be executed multiple times—behavior traditionally associated with procedural type
languages—made procedures and functions even more valuable to users needing to access and
manipulate data in their databases. The SQL:2006 standard refers to these new language elements
as control statements because they affect how you can control data in SQL-invoked routines. In
this section, we’ll look at several of these control statements, including those that allow you to
group statements into a block, create conditional statements, and set up statements into a loop.

Create Compound Statements
The most basic of the control statements is the compound statement, which allows you to group
statements into a block. The compound statement starts with the BEGIN keyword and finishes
with the END keyword. Everything between the two keywords is part of the block. The compound
statement is made up of one or more individual SQL statements, which can include statements
such as DECLARE, SET, SELECT, UPDATE, INSERT, DELETE, or other control statements.

You’ve already seen an example of a compound statement in the preceding CREATE
PROCEDURE statement that defines the CD_AMOUNT procedure. (This is the example
shown in the “Add Local Variables to Your Procedures” section.) If you take another look at
that example, you’ll see that the procedure definition includes a compound statement. As you
would expect, it starts with the BEGIN keyword and finishes with the END keyword. The
block created by these keywords includes a DECLARE statement, a SET statement, and a
SELECT statement. Notice that each statement is terminated with a semicolon. Although the
BEGIN...END statement is considered one statement, the statements enclosed in the keywords
are individual statements in their own right.

NOTE
In some SQL implementations, the compound statement might not be necessary under
certain circumstances. In these cases, the semicolon terminator might be enough to
signal to the implementation that one statement has ended and another has begun.
Even those implementations that don’t require the semicolon, such as SQL Server, will
sometimes process multiple statements as a block even if the BEGIN...END construction
has not been used. When the implementation reaches the end of one statement,
it simply continues on to the next. However, as a general rule, you should use the
compound construction to keep together those statements that should be processed as
a unit. When you don’t use it, you can sometimes experience unpredictable behavior,
depending on the implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

 314 SQL: A Beginner’s Guide

You can use the compound statement wherever you need to keep SQL statements together.
That means that they can be embedded within other compound statements or within other
types of control statements. The BEGIN and END keywords do not affect how data might be
passed from one statement to the next, as in the case of parameters.

The good news about compound statements and the BEGIN...END construction is that
they’re supported by most SQL implementations, although there can be slight variations from
one product to the next, in terms of the specifics of how they’re implemented. Be sure to check
the product documentation when using these statements.

Create Conditional Statements
The next type of control statement we’ll look at is the conditional statement. This statement
determines whether a statement (or series of statements) is executed based on whether a
specified condition evaluates to true. The statement uses the IF, THEN, and ELSE keywords
to establish the conditions and define the actions to take: if the condition is met, then the SQL
statement is executed, or else another action is taken.

NOTE
The conditional statement is sometimes referred to as an IF statement, an IF...ELSE
statement, an IF...END IF statement, or an IF...THEN...ELSE statement.

Let’s take a look at an example that uses a conditional statement to define different courses
of action, depending on the condition. In the following procedure definition, I modified the
routine body of the CD_AMOUNT procedure (which we used in the preceding example) to
include a conditional statement:

CREATE PROCEDURE CD_AMOUNT (IN p_Type_ID CHAR (4))
 BEGIN
 DECLARE v_Amount INT;
 SET v_Amount = (SELECT SUM(CD_STOCK)
 FROM CD_INVENTORY
 WHERE CD_TYPE_ID = p_Type_ID);
 IF v_Amount < 20 THEN
 SELECT CD_TITLE, CD_STOCK
 FROM CD_INVENTORY
 WHERE CD_TYPE_ID = p_Type_ID;
 ELSE
 SELECT CD_TITLE, CD_STOCK
 FROM CD_INVENTORY;
 END IF;
 END;

Notice that the BEGIN...END block now includes an IF...END IF statement. The IF clause
introduces the statement and sets up the condition. For the condition to evaluate to true, the
value of the v_Amount variable must be less than 20. If the condition evaluates to true, the first
SELECT statement is executed. This is the SELECT statement that follows the THEN keyword.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 315

If the condition is false, then the second SELECT statement is executed. This is the statement that
follows the ELSE keyword. To sum this all up, if v_Amount is less than 20, the CD_TITLE and
CD_STOCK values from the CD_INVENTORY table are returned for those rows that contain
the Type ID (column CD_TYPE_ID) specified by the p_Type_ID parameter. If v_Amount is not
less than 20, the CD_TITLE and CD_STOCK values for all rows in the CD_INVENTORY table
are returned.

Once you create your procedure, you can invoke it by using a CALL statement, as you
have for previous procedures. For example, if you want to return New Age (NEWA) CDs, you
can use the following CALL statement:

CALL CD_AMOUNT(‘NEWA’);

This statement will return both New Age rows: Past Light and Kojiki. This is because the
total number of New Age CDs (16) is less than 20, so the first SELECT statement is executed.
If you had specified the Classic Pop category (CPOP) when you invoked the CD_AMOUNT
procedure, all rows would have been returned. This is because the total number of Classic Pop
CDs (28) exceeds 20. As a result the IF condition would not be met, so the ELSE statement
would be executed.

If you want to create a conditional statement that includes more than one SQL statement
in either the IF clause or the ELSE clause, you can enclose those statements in a control
statement. For example, if we add an UPDATE statement to the condition in the preceding
example and use a control statement to enclose the UPDATE and SELECT statements, your
procedure definition will look like the following:

CREATE PROCEDURE CD_AMOUNT (IN p_Type_ID CHAR (4))
 BEGIN
 DECLARE v_Amount INT;
 SET v_Amount = (SELECT SUM(CD_STOCK)
 FROM CD_INVENTORY
 WHERE CD_TYPE_ID = p_Type_ID);
 IF v_Amount < 20 THEN
 BEGIN
 UPDATE CD_INVENTORY
 SET CD_STOCK = CD_STOCK + 1
 WHERE CD_TYPE_ID = p_Type_ID;
 SELECT CD_TITLE, CD_STOCK
 FROM CD_INVENTORY
 WHERE CD_TYPE_ID = p_Type_ID;
 END;
 ELSE
 SELECT * FROM CD_INVENTORY;
 END IF;
 END;

The compound statement groups the two statements into one block of code. This way, the
tables will be updated and the results of the update will be displayed in your query results.

www.it-ebooks.info

http://www.it-ebooks.info/

 316 SQL: A Beginner’s Guide

Create Looping Statements
Now let’s take a look at another type of control statement—the looping statement. SQL
actually supports several types of looping statements. We’ll be looking at two of them: the
LOOP statement and the WHILE statement, both of which perform similar functions.

The LOOP statement uses the LOOP and END LOOP keywords to enclose a block of
statements that are executed repeatedly until the loop is explicitly ended, usually through the
use of the LEAVE keyword. Note that Oracle uses the EXIT keyword instead of LEAVE, and
SQL Server does not support the LOOP statement. Let’s take a look at an example to illustrate
how this looks. Once again using the tables in Figure 13-1, we’ll use a LOOP statement to
update the CD_INVENTORY table.

NOTE
If you created and tested the CD_AMOUNT procedure in the preceding example,
assume that the CD_INVENTORY table has been returned to its original condition
shown in Figure 13-1 and that no data has been modified.

In the following procedure definition, I include a LOOP statement that continues to update
the CD_STOCK column until it reaches an amount greater than 14:

CREATE PROCEDURE UPDATE_STOCK (IN p_Title CHAR(20))
 BEGIN
 DECLARE v_Amount INT;

Q: The condition statement in the preceding example shows only two conditions and
courses of action: the condition/action defined in the IF clause and the condition/
action defined in the ELSE clause. What if you want to include more conditions?

A: The SQL:2006 standard supports more than two condition/action constructions in a
conditional statement. If more than two are needed, you treat the IF clause and the ELSE
clause as shown in the example. The additional conditions are inserted between the two
clauses by adding an ELSE IF clause or an ELSEIF clause. The syntax for this would be
as follows:

IF <condition> THEN <action>
 ELSE IF <condition> THEN <action>
 ELSE <action>

The exact way you implement the third condition/action depends on your
implementation. In addition, not all implementations support ELSEIF, and some use
the ELSIF keyword. As always, be sure to refer to your product documentation.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 317

 SET v_Amount = (SELECT CD_STOCK
 FROM CD_INVENTORY
 WHERE CD_TITLE = p_Title);
 Loop1:
 LOOP
 SET v_Amount = v_Amount + 1;
 UPDATE CD_INVENTORY
 SET CD_STOCK = v_Amount
 WHERE CD_TITLE = p_Title;
 IF v_Amount > 14
 THEN LEAVE Loop1;
 END IF;
 END LOOP;
 END;

In this statement, the loop is first assigned a name (Loop1:), which is sometimes called
a statement label. You must include a colon with the name when you first assign it. Next you
create your loop block, which begins with the LOOP keyword and finishes with the END
LOOP keywords. Within the block are SET and UPDATE statements. These two statements
are executed until the loop is terminated. Notice that the CD_STOCK value is increased by
an increment of 1 each time the statements in the loop are executed. These two statements are
followed by an IF statement, which specifies the condition in which the loop is terminated. If
the value for the v_Amount variable exceeds 14, then the loop is terminated (LEAVE Loop1).
The IF statement is then ended with the END IF keywords.

NOTE
If you do not include the IF statement within the loop (with the LEAVE termination
operator), the loop will continue to increase the CD_STOCK value until it fills all
available storage or some other event terminates the operation. This is a common
programming error known as an infinite loop.

You can then invoke the procedure by providing the procedure name and a value for
the parameter. For example, suppose you want to update the Fundamental row in the CD_
INVENTORY table. You can invoke the procedure with the following CALL statement:

CALL UPDATE_STOCK('Fundamental');

When the procedure is executed, a value of 1 is repeatedly added to the CD_STOCK
column until the value reaches 15, and then the loop is terminated.

You can receive the same results more elegantly by using a WHILE statement. In the
following example, I modified the UPDATE_STOCK procedural definition by replacing the
LOOP statement with a WHILE statement:

CREATE PROCEDURE UPDATE_STOCK (IN p_Title CHAR(20))
 BEGIN
 DECLARE v_Amount INT;

www.it-ebooks.info

http://www.it-ebooks.info/

 318 SQL: A Beginner’s Guide

Try This 13-1

 SET v_Amount = (SELECT CD_STOCK
 FROM CD_INVENTORY
 WHERE CD_TITLE = p_Title);
 WHILE v_Amount < 15 DO
 SET v_Amount = v_Amount + 1;
 UPDATE CD_INVENTORY
 SET CD_STOCK = v_Amount
 WHERE CD_TITLE = p_Title;
 END WHILE;
 END;

NOTE
Again, if you tested the procedure created in the example preceding this one, assume
that the table has been returned to its original condition shown in Figure 13-1 and that
no data has been modified.

The WHILE statement sets up the same type of loop condition as the LOOP statement.
However, instead of using an IF statement to terminate the loop, a condition is specified in the
WHILE clause that terminates the loop automatically when the condition evaluates to false. In
this case, the parameter value for v_Amount must be less than 15 for the WHILE condition to
evaluate to true. As long as the condition evaluates to true, the SET statement and UPDATE
statement are executed. If the condition evaluates to false, the WHILE loop is terminated.
Note that many implementations, including Oracle and SQL Server, use a BEGIN block
instead of the keyword DO to enclose the statements to be repeated by the WHILE loop. One
more variance to be aware of is where the condition is evaluated in the looping logic. Some
implementations evaluate the condition at the top of the loop. Others evaluate the condition at
the bottom of the loop, which means that the statements in the loop will always execute at least
once, even if the condition is false the first time the loop is initiated.

 Creating SQL-Invoked Procedures
In this Try This exercise, you will apply what you have learned about creating SQL-invoked
procedures to the INVENTORY database. You’ll create procedures, invoke procedures,
and drop procedures. One of the procedures will include a parameter and one will include
a variable. For this exercise, even more so than most Try This exercises, you’ll need to
reference the product documentation for your SQL implementation to ensure that you take
into account the variations in how a procedure is created, called, and dropped. As I said earlier
in this chapter, procedure implementation can vary widely between the SQL standard and the
individual product. You can download the Try_This_13_1.txt file, which contains the SQL
statements used in this exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 319

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. The first procedure that you’ll create is a very basic one that queries information from the
COMPACT_DISCS, ARTIST_CDS, and ARTISTS tables. You’ll join the three tables in
order to display the CD names and artist names. Your procedure will include no parameters
or variables. Enter and execute the following SQL statement:

CREATE PROCEDURE GET_CD_ARTISTS ()
 SELECT cd.CD_TITLE, a.ARTIST_NAME
 FROM COMPACT_DISCS cd, ARTIST_CDS ac, ARTISTS a
 WHERE cd.COMPACT_DISC_ID = ac.COMPACT_DISC_ID
 AND ac.ARTIST_ID = a.ARTIST_ID;

 You should receive a message indicating that the GET_CD_ARTISTS procedure has been
created.

 3. Next, you’ll call the GET_CD_ARTISTS procedure. Enter and execute the following SQL
statement:

CALL GET_CD_ARTISTS();

 When you invoke the procedure, you should receive query results that include a list of all
the CDs and their artists.

 4. Now you’ll drop the procedure from the database. Enter and execute the following SQL
statement:

DROP PROCEDURE GET_CD_ARTISTS CASCADE;

 You should receive a message indicating that the GET_CD_ARTISTS procedure has been
dropped from the database. Note that the CASCADE keyword may not be supported by
your SQL implementation.

 5. Your next step is to create a procedure similar to the last one, only this time you’ll define a
parameter that allows you to enter the name of the CD. The SELECT statement will include
a predicate that compares the CD_TITLE value to the value in the p_CD parameter. Enter
and execute the following SQL statement:

CREATE PROCEDURE GET_CD_ARTISTS (IN p_CD VARCHAR(60))
 SELECT cd.CD_TITLE, a.ARTIST_NAME
 FROM COMPACT_DISCS cd, ARTIST_CDS ac, ARTISTS a
 WHERE cd.COMPACT_DISC_ID = ac.COMPACT_DISC_ID
 AND ac.ARTIST_ID = a.ARTIST_ID
 AND cd.CD_TITLE = p_CD;

 You should receive a message indicating that the GET_CD_ARTISTS procedure has been
created.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 320 SQL: A Beginner’s Guide

 6. Now you’ll call the GET_CD_ARTISTS procedure. The CALL statement will include
the Fundamental value to insert into the parameter. Enter and execute the following SQL
statement:

CALL GET_CD_ARTISTS('Fundamental');

 Your query results should now include only the Fundamental row.

 7. The next procedure that you’ll create is one that uses a variable to hold a number based on
the average of the IN_STOCK values. The procedure definition will include a compound
statement that groups together the other statements in the routine body. Enter and execute
the following SQL statement:

CREATE PROCEDURE GET_CD_AMOUNT ()
 BEGIN
 DECLARE v_In_Stock INT;
 SET v_In_Stock = (SELECT AVG(IN_STOCK)
 FROM COMPACT_DISCS);
 SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE IN_STOCK < v_In_Stock;
 END;

 You should receive a message indicating that the procedure has been created.

 8. Now you’ll call the procedure. Enter and execute the following SQL statement:

CALL GET_CD_AMOUNT();

 Your query results should include a list of CDs that have an IN_STOCK value less than the
average for all IN_STOCK values.

 9. Close the client application.

Try This Summary
In this Try This exercise, you created three procedures. The first procedure, GET_CD_
ARTISTS, included no parameters or variables. After you dropped that procedure, you
modified the original GET_CD_ARTISTS procedure to include a parameter. You then created
a new procedure (GET_CD_AMOUNT) that included no procedures but did include one
variable. The INVENTORY database should now contain these two procedures. Because both
procedures only retrieve SQL data, you can invoke them at any time.

Add Output Parameters to Your Procedures
Up to this point, we’ve looked only at procedures that take input parameter values. However,
SQL-invoked procedures also support output parameters. Output parameters provide a way to
create a procedure that returns a value (or multiple values).

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 321

The process of defining an output parameter is similar to that of defining an input
parameter, only you use the OUT keyword rather than IN. However, you must still provide a
parameter name and assign a data type. In addition, you must assign a value to that parameter
before the procedure ends by using a SET statement, although many implementations
automatically return null values for output parameters that were not assigned a value.

A procedure definition can include both input and output parameters (and input/output
parameters if your implementation supports them). You can also include variables or any other
elements that we’ve looked at so far in this chapter.

Now let’s take a look at an example of an output parameter. The following CREATE
PROCEDURE statement creates a procedure that includes one output parameter (but no input
parameters or variables):

CREATE PROCEDURE NEW_AGE_TOTAL (OUT p_Total INT)
 BEGIN
 SET p_Total = (SELECT SUM(CD_STOCK)
 FROM CD_INVENTORY i, CD_TYPES t
 WHERE i.CD_TYPE_ID = t.CD_TYPE_ID
 AND CD_TYPE_NAME = ‘New Age’);
 END;

The output parameter (p_Total) is assigned the INT data type. The SET statement defines
a value for the parameter. In this case, the value is equal to the total number of New Age CDs.
This is the value that is returned by the procedure when you invoke it.

The process of invoking this procedure is different from what you’ve seen so far. When
invoking a procedure with an output parameter, you must first declare a variable that is then
used in the CALL statement, as shown in the following example:

BEGIN
 DECLARE p_Total INT;
 CALL NEW_AGE_TOTAL(p_Total);
END;

In this case, I used the same name for the variable as the name of the parameter that was
defined in the procedure definition. However, the variable and parameter are not required to
have the same name, although they must be defined with the same data type.

Create SQL-Invoked Functions
Earlier in the chapter, in the “Understand SQL-Invoked Routines” section, I introduced you
to the two types of SQL-invoked routines—procedures and functions—and I described the
differences and similarities between the two. The main differences are that procedures support
the definition of input and output parameters and are invoked by using the CALL statement.
Functions, on the other hand, support the definition of input parameters only and are invoked
as a value in an expression. The function’s output is the value returned by the execution of the
function, and not through the explicit definition of an output parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

 322 SQL: A Beginner’s Guide

To create a function, you must use a CREATE FUNCTION statement. The statement is
similar to a CREATE PROCEDURE statement, except for a few critical differences:

● The input parameter definitions cannot include the IN keyword.

● A RETURNS clause must follow the parameter definitions. The clause assigns a data type
to the value returned by the function.

● The routine body must include a RETURN statement that defines the value returned by the
parameter.

NOTE
SQL Server also uses a RETURNS clause to assign a data type to the returned value,
while Oracle uses a RETURN clause for the same purpose. In both cases this clause is
followed by the AS keyword. Both SQL Server and Oracle use a RETURN statement in
the routine body to define the value returned by the parameter.

A function definition can include many of the elements that have been described
throughout this chapter. For example, you can define local variables, create compound
statements, and use conditional statements. In addition, you can define and use input
parameters in the same way you define and use input parameters in procedures (except that
you do not use the IN keyword).

Now that you have an overview of how to create a function, let’s look at an example,
which is based on the IN_STOCK_CDS and PERFORMERS tables, shown in Figure 13-2.

The following CREATE FUNCTION statement defines a function that returns the artist
name for a specified CD, as it appears in the IN_STOCK_CDS table:

CREATE FUNCTION CD_ARTIST (p_Title VARCHAR(60))
 RETURNS VARCHAR(60)
 BEGIN
 RETURN
 (SELECT ARTIST_NAME
 FROM IN_STOCK_CDS s, PERFORMERS p
 WHERE s.Title = p.Title
 AND s.Title = p_Title);
 END;

In the first line of the statement, the CD_ARTIST function and the p_Title parameter have
been defined. In the next line, the RETURNS clause assigns the VARCHAR(60) data type to
the value returned by the function. In the routine body, you can see that a RETURN statement
has been defined. The statement includes a subquery that uses the value of the input parameter
to return the name of the artist.

As you can see, defining a function is not much different from defining a procedure;
however, calling the function is another matter. Instead of using the CALL statement to invoke
the function, you use the function as you would any of the SQL predefined functions. (You
saw some of these functions in Chapter 10.) For example, suppose you want to find the name

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 323

of an artist based on the CD name and you want to know what other CDs that artist has made.
You can create a SELECT statement similar to the one shown in the following example to
retrieve the data:

SELECT TITLE, ARTIST_NAME
 FROM PERFORMERS
 WHERE ARTIST_NAME = CD_ARTIST('Blue');

The CD_ARTIST function returns the Joni Mitchell value (the artist of the Blue CD),
which is then compared to the ARTIST_NAME values. As a result, two rows are returned by
the statement, as shown in the following query results:

TITLE ARTIST_NAME
--------------- -------------
Blue Joni Mitchell
Court and Spark Joni Mitchell

Figure 13-2 Using functions to retrieve values from the IN_STOCK_CDS and PERFORMERS
tables

TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Court and Spark

STOCK:
INT

13

42

17

6

22

Out of Africa 29

Blues on the Bayou 27

Orlando 5

TITLE:
VARCHAR(60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

After the Rain: The Soft Sounds of Erik Satie

Out of Africa

Leonard Cohen The Best of

Fundamental

Blues on the Bayou

Orlando

IN_STOCK_CDS PERFORMERS

ARTIST_NAME:
VARCHAR(60)

Jennifer Warnes

Joni Mitchell

Bing Crosby

Patsy Cline

William Ackerman

Kitaro

Joni Mitchell

Bonnie Raitt

Leonard Cohen

John Barry

Pascal Roge

B.B. King

David Motion

8

www.it-ebooks.info

http://www.it-ebooks.info/

 324 SQL: A Beginner’s Guide

Try This 13-2

As you can see, functions help to simplify your queries by storing part of the code as
a schema object (in the form of an SQL-invoked routine) and then invoking that code as
necessary by calling the function as a value in your SQL statement. Functions provide you
with a wide range of possibilities for returning values that make your queries less complex
and more manageable.

 Creating SQL-Invoked Functions
In this Try This exercise, you will create a function named CD_LABEL in the INVENTORY
database. The function will provide the name of the company that publishes a specified CD.
Once you create the function, you will invoke it by using it as a value in a SELECT statement.
When you are finished, you will drop that function from your database. You can download the
Try_This_13_2.txt file, which contains the SQL statements used in this exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. You will create a function that returns the name of the company that publishes a specified
CD. The function will include an input parameter that allows you to pass the name of the
CD into the function. Enter and execute the following SQL statement:

CREATE FUNCTION CD_LABEL (p_CD VARCHAR(60))
 RETURNS VARCHAR(60)
 BEGIN
 RETURN (SELECT COMPANY_NAME
 FROM COMPACT_DISCS d, CD_LABELS l
 WHERE d.LABEL_ID = l.LABEL_ID
 AND CD_TITLE = p_CD);
 END;

 You should receive a message indicating that the CD_LABEL function has been created.

 3. Now that the function has been created, you can use it in your SQL statements as a value
in an expression. The next statement that you’ll create is a SELECT statement that returns
the name of the CD and the company that publishes the CD for those CDs published by the
same company as the specified CD. Enter and execute the following SQL statement:

SELECT CD_TITLE, COMPANY_NAME
 FROM COMPACT_DISCS d, CD_LABELS l
 WHERE d.LABEL_ID = l.LABEL_ID
 AND COMPANY_NAME = CD_LABEL ('Blues on the Bayou');

 Your query results should include a list of four CDs, all of which were published by MCA
Records, the company that publishes Blues on the Bayou.

 4. Try executing the same statement by using various names of CDs to see what results are
returned.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 325

 5. Now you can drop the CD_LABEL function from your database. Enter and execute the
following SQL statement:

DROP FUNCTION CD_LABEL CASCADE;

 You should receive a message indicating that the CD_LABEL function has been dropped
from the database.

 6. Close the client application.

Try This Summary
The Try This exercise had you create a function (CD_LABEL) that includes one parameter
(p_CD). The parameter passes the value of a CD name to the SELECT statement defined in
the RETURN statement of the parameter. The statement uses this information to determine
the name of the company that publishes the CD. You then used the CD_LABEL function in a
SELECT statement to retrieve the names of all CDs that are published by the same company
that published the specified CD. After that, you dropped the function from the database. Now
that you’ve completed this exercise, try creating other functions in the database, and then use
the functions in SELECT statements to see what sort of data you can return.

 Chapter 13 Self Test
 1. Which are types of SQL-invoked routines supported by the SQL standard?

 A CHECK Constraint

 B Function

 C Trigger

 D SQL-invoked procedure

 2. Which types of parameters can you use in an SQL-invoked function?

 A Input

 B Output

 C Input/output

 D Variable

 3. Which statement do you use to invoke an SQL-invoked procedure?

 A RETURN

 B CALL

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 326 SQL: A Beginner’s Guide

 C SET

 D DECLARE

 4. A(n) ____________ is a value passed to a statement in a procedure when you invoke that
procedure.

 5. Which types of parameters can you use in an SQL-invoked function?

 A Input

 B Output

 C Input/output

 D Variable

 6. What is another name for an SQL-invoked procedure?

 7. What are the two primary differences between procedures and functions?

 8. What information must you include in a CALL statement when invoking a procedure?

 9. Which types of statements can you include in a procedure?

 A SELECT

 B INSERT

 C UPDATE

 D DELETE

 10. Which statement do you use to assign an initial value to a variable?

 A DECLARE

 B RETURN

 C SET

 D CALL

 11. A(n) ____________ statement allows you to group SQL statements into blocks.

 12. Which keyword do you use to begin a conditional statement?

 A IF

 B BEGIN

 C THEN

 D ELSE

 13. What keyword do you use in a LOOP statement to end that loop?

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 13: Creating SQL-Invoked Routines 327

 14. What is the difference between a conditional statement and a compound statement?

 15. What are two types of looping statements?

 A BEGIN...END

 B IF...END IF

 C LOOP...END LOOP

 D WHILE...END WHILE

 16. Which type of parameter can return a value when you invoke a procedure?

 17. What step must you take when calling a procedure that includes an output parameter?

 18. How does a CREATE FUNCTION statement differ from a CREATE PROCEDURE
statement?

 19. You’re calling a procedure named GET_TOTALS. The procedure does not include any
parameters, but does include a SELECT statement that queries the CD_INVENTORY table.
What SQL statement should you use to invoke this parameter?

 20. You create a procedure named GET_CD_INFO that selects data about an artist from
the CD_INFO table. The procedure includes one input parameter. You want to call that
procedure with the value Bonnie Raitt. What SQL statement should you use to invoke the
procedure?

 21. What are two types of schema objects that you can use to store a SELECT statement?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

329

Chapter 14
Creating SQL Triggers

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 330 SQL: A Beginner’s Guide

Key Skills & Concepts

● Understand SQL Triggers

● Create SQL Triggers

● Create Insert Triggers

● Create Update Triggers

● Create Delete Triggers

Up to this point in the book, you have learned to create a number of schema objects that you
can access or invoke by using SQL statements. For example, you learned how to create

tables, views, and SQL-invoked routines. In each case, once you create these objects, you
need to take some sort of action to interact directly with them, such as executing a SELECT
statement to retrieve data from a table or using a CALL statement to invoke a procedure.
However, SQL supports objects that perform actions automatically. These schema objects,
which are known as triggers, respond to modifications made to data within a table. If a
specified modification is made, the trigger is automatically invoked, or fired, causing an
additional action to occur. As a result, you never directly invoke the trigger—taking an action
defined in the trigger implicitly causes the invocation. In this chapter, we’ll explore triggers
and how they’re used when table data is modified. We’ll also look at examples of how to
create the three basic types of triggers—insert, update, and delete—and how they can be
defined to extend your database’s functionality and help to ensure the integrity of the data.

Understand SQL Triggers
If you’ve worked around any SQL products before, you’ve no doubt seen triggers implemented
in one of your organization’s databases, or at least heard the term tossed about. Most relational
database management systems (RDBMSs) implemented triggers in their products long ago,
although it wasn’t until SQL:1999 that triggers were added to the standard. The result of the
products preceding the standard is that trigger implementations are very proprietary among the
SQL products, and thus support different types of functionality and are implemented in different
ways. For example, MySQL 5.0 does not support triggers, but the additional feature is promised
for version 5.1. On the other hand, SQL Server and Oracle currently support triggers, but SQL
Server triggers are somewhat limited in scope, compared to the SQL standard, whereas Oracle
triggers are more robust—yet neither product implements triggers according to the specifications
of the SQL standard. Despite this, there are a number of similarities among the products (such
as the use of a CREATE TRIGGER statement to create a trigger), and the implementations of
triggers in the various products share some basic characteristics, particularly that of being able to
fire automatically to perform an action secondary to the primary action that invoked the trigger.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 14: Creating SQL Triggers 331

NOTE
The functionality supported by triggers is sometimes referred to as active database. In
fact, this term is used to describe one of the optional packages that are included in the
SQL standard. The package—PKG008—defines how triggers are implemented in SQL.
(A package is a set of features to which a product can claim conformance in addition to
Core SQL.) For more information about SQL:2006 conformance, see Chapter 1.

Before we get into the specifics of how to implement triggers, let’s take a look at the
trigger itself, which, as I said, is a schema object (in the same sense as a table, view, or SQL-
invoked routine). A trigger definition defines the characteristics of the trigger and what actions
are taken when the trigger is invoked. These actions, which are specified in one or more SQL
statements (referred to as the triggered SQL statements), can include such events as updating
tables, deleting data, invoking procedures, or performing most tasks that you can perform with
SQL statements. Any limitations placed on those statements are usually the ones placed by the
SQL implementation.

Triggers are invoked when you insert data into a table, update data, or delete data. By
defining one or more triggers on a table, you can specify which data-modification actions
will cause the trigger to fire. The trigger is never invoked unless the specified action is
taken. As you can probably conclude from this, SQL supports three types of triggers: insert,
update, and delete. Each type corresponds with the applicable data modification statement.
For example, an insert trigger is fired when the INSERT statement is executed against the
specified table.

Although a trigger is a schema object, separate from table objects, it can be associated
with only one table, which you specify when you create your trigger definition. When the
applicable data modification statement is invoked against that table, the trigger fires; however,
it will not fire if a similar statement is invoked against a different table, or if a statement other
than the specified type is invoked against the same table. In this sense, a trigger can be thought
of as a table object, despite the fact that it is created at the schema level.

If a trigger fails, raising an error condition, the SQL statement that caused the trigger
to fire also fails and is rolled back. This is how triggers can be used to enforce complex
constraints—the trigger is written to perform whatever tests are necessary to verify that the
constraint conditions are met, and if not, ends by raising an error condition.

Trigger Execution Context
Before we move on to discussing how a trigger is created, I want to touch on the subject
of how triggers are executed, with regard to the trigger execution context, a type of SQL
execution context. You can think of an execution context as a space created in memory that
holds a statement process during the execution of that statement. SQL supports several types of
execution contexts, triggers being one of them.

A trigger execution context is created each time a trigger is invoked. If multiple triggers
are invoked, an execution context is created for each one. However, only one execution
context can be active in a session at any one time. This is important when a trigger in one table
causes a trigger in a second table to be fired. Let’s take a look at Figure 14-1 to help illustrate
this point.

www.it-ebooks.info

http://www.it-ebooks.info/

 332 SQL: A Beginner’s Guide

Notice that the figure contains three tables. An update trigger is defined on Table 1, and an
insert trigger is defined on Table 2. When an UPDATE statement is executed against Table 1, the
update trigger fires, creating a trigger execution context that becomes active. However, the update
trigger, which is defined to insert data into Table 2, invokes the insert trigger on Table 2 when the
first trigger attempts to insert data into that table. As a result, a second execution context is created,
which becomes the active one. When the second trigger execution has completed, the second
execution context is destroyed, and the first execution context becomes active once more. When
the first trigger execution has completed, the first trigger execution context is destroyed.

A trigger execution context contains the information necessary for the trigger to be
executed correctly. This information includes details about the trigger itself and the table
on which the trigger was defined, which is referred to as the subject table. In addition, the
execution context includes one or two transition tables, as shown in Figure 14-1. The transition
tables are virtual tables that hold data that is updated in, inserted into, or deleted from the
subject table. If data is updated, then two transition tables are created, one for the old data and
one for the new data. If data is inserted, one transition table is created for the new data. If data
is deleted, one transition table is created for the old data. The transition tables and some of the
other information in the trigger execution context are used by the SQL statements that perform
the triggered action. You’ll learn more about how this information is used in the following
section, when we look at the CREATE TRIGGER syntax.

Trigger execution context
for update trigger

Table 1

Update trigger
on Table 1

Table 2

Insert trigger
on Table 2

Table 3

Transition table
for old data

Transition table
for new data

Trigger execution context
for insert trigger

Transition table
for new data

UPDATE statement

Figure 14-1 Trigger execution contexts for two triggers

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 14: Creating SQL Triggers 333

Create SQL Triggers
Now that you have a general overview of triggers, let’s take a look at the syntax you use to
create them. Most of the syntax is concerned with defining the characteristics of the trigger,
such as the name of the trigger and the type. Only at the end of the statement do you define the
triggered SQL statements that specify the actions taken by the trigger when it is invoked.

The basic syntax for creating a trigger definition is as follows:

CREATE TRIGGER <trigger name>
{ BEFORE | AFTER }
{ INSERT | DELETE | UPDATE [OF <column list>] }
ON <table name> [REFERENCING <alias options>]
[FOR EACH { ROW | STATEMENT }]
[WHEN (<search condition>)]
<triggered SQL statements>

Let’s take a look at each line of the syntax. The first line is fairly straightforward. You
simply provide a name for the trigger following the CREATE TRIGGER keywords. In
the second line, you must designate whether the trigger is invoked before or after the data
modification statement is applied to the subject table. For example, if you’re defining an insert
trigger, you can specify whether the triggered SQL statements are executed before the data is
inserted into the subject table (by using the BEFORE keyword) or after the data is inserted into
the subject table (by using the AFTER keyword). This feature is particularly useful when one
of the tables is configured with a referential integrity constraint and cannot contain data before
that data exists in the other table. (For information about referential integrity, see Chapter 4.)
Depending on the nature of the triggered action that is defined, it may not matter whether you
designate BEFORE or AFTER because the triggered action may have no direct relation to the
data modified in the subject table.

In the third line of syntax, you specify whether the trigger is an insert, delete, or update
trigger. If it is an update trigger, you have the option of applying the trigger to one or more
specific columns. If more than one column is specified, you must separate the column names
with commas. In the next line of syntax, you must specify an ON clause that includes the name
of the subject table. This is the table on which the trigger is applied. The trigger can be applied
to only one table.

Up to this point, all the syntax we’ve looked at is required, except for specifying column
names in update trigger definitions, which is optional. However, the next several clauses are
not mandatory, but they add important capabilities to your trigger. The first of these clauses
is the REFERENCING clause. This clause allows you to specify how data that is held in
the trigger execution context is referenced within the WHEN clause or the triggered SQL
statements. We’ll look at the REFERENCING clause in more detail in the following section,
“Referencing Old and New Values.”

The next line of syntax contains the FOR EACH clause, which includes two options:
ROW or STATEMENT. If you specify ROW, the trigger is invoked each time a row is inserted,
updated, or deleted. If you specify STATEMENT, the trigger is invoked only one time for

www.it-ebooks.info

http://www.it-ebooks.info/

 334 SQL: A Beginner’s Guide

each applicable data modification statement that is executed, no matter how many rows are
affected. If you do not include this clause in your trigger definition, the STATEMENT option
is assumed, and the trigger fires only once for each statement.

Next in the syntax is the optional WHEN clause. The WHEN clause allows you to define
a search condition that limits the scope of when the trigger is invoked. The WHEN clause is
similar to the WHERE clause of a SELECT statement. You specify one or more predicates that
define a search condition. If the WHEN clause evaluates to true, the trigger fires; otherwise, no
trigger action is taken. However, this doesn’t affect the initial data modification statement that
was executed against the subject table; only the triggered SQL statements defined in the trigger
definition are affected.

Finally, the last component that your CREATE TRIGGER statement must include is one or
more SQL statements (sometimes called the trigger body) that are executed when the trigger is
invoked and, if a WHEN clause is included, that clause evaluates to true. If the trigger definition
includes more than one triggered SQL statement, or if you are using Oracle, those statements
must be enclosed in a BEGIN...END block, like those you saw in Chapter 13. However, there
is one difference from what you saw before. When used in a trigger definition, the BEGIN
keyword must be followed by the ATOMIC keyword to notify the SQL implementation that the
statements within the block must be handled as a unit. In other words, either all the statements
must be executed successfully, or none of the results of any statement executions can persist.
Without the ATOMIC keyword, it would be possible for some statements to be executed while
others fail to be executed.

NOTE
Many implementations do not support the use of the ATOMIC keyword in the BEGIN...END
block of the triggered SQL statements. This includes both SQL Server and Oracle. Also,
with Oracle, all trigger and procedure bodies must be enclosed in BEGIN…END blocks.

Aside from the issue of the ATOMIC keyword, the triggered SQL statements, including the
BEGIN...END block, can consist of almost any SQL statements, depending on the limitations
of your SQL implementation. Be sure to check the product documentation to determine what
limitations might be placed on the triggered SQL statements and how triggers are generally
created and implemented.

Referencing Old and New Values
Now let’s return to the REFERENCING clause of the CREATE TRIGGER statement. The
purpose of this clause is to allow you to define correlation names for the rows stored in the
transition tables or for the transition tables as a whole. As you’ll recall from the “Understand
SQL Triggers” section earlier in this chapter, the transition tables hold the data that has been
updated, inserted, or deleted in the subject table. The correlation names, or aliases, can then be
used in the triggered SQL statements to refer back to the data that is being held in the transition
tables. This can be particularly handy when trying to modify data in a second table based on
the data modified in the subject table. (This will be made clearer when we look at examples
later in the chapter.)

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 14: Creating SQL Triggers 335

If you refer back to the syntax in the previous section, you’ll notice that the optional
REFERENCING clause includes the <alias options> placeholder. SQL supports four options
for this clause:

● REFERENCING OLD [ROW] [AS] <alias>

● REFERENCING NEW [ROW] [AS] <alias>

● REFERENCING OLD TABLE [AS] <alias>

● REFERENCING NEW TABLE [AS] <alias>

Notice that, in the first two options, the ROW keyword is not mandatory. If you don’t
specify ROW, it is assumed. Notice too that the AS keyword is optional in all cases. However,
for the purposes of maintaining clear, self-referencing code, I recommend that you use the
complete option whenever you include it in a trigger definition.

Depending on the type of trigger (update, insert, or delete) and the FOR EACH option
(ROW or STATEMENT), you can include up to four REFERENCING options in your trigger
definition, one of each type. However, you cannot include more than one of any single type.
For example, you cannot include two OLD ROW options in your trigger definition. When
adding REFERENCING options to your trigger definition, you must follow these guidelines:

● You cannot use the NEW ROW and NEW TABLE options for delete triggers because no
new data is created.

● You cannot use the OLD ROW and OLD TABLE options for insert triggers because no old
data exists.

● You can use all four options in an update trigger because there is old data and new data
when you update a table.

● You can use the OLD ROW and NEW ROW options only when you specify the FOR
EACH ROW clause in the trigger definition.

Once you define your REFERENCING clauses and assign the appropriate aliases, you’re
ready to use those aliases in your triggered SQL statements, in the same way you used
correlation names in your SELECT statements.

Dropping SQL Triggers
Although the SQL standard does not support any sort of statement that allows you to alter
a trigger, it does support a way to delete a trigger, which you achieve by using the DROP
TRIGGER statement. As you can see in the following syntax, this statement is quite basic:

DROP TRIGGER <name>

All you need to do is provide the name of the trigger, along with the DROP TRIGGER
keywords. Because no other objects are dependent on the trigger, you do not need to specify
any additional keywords, such as CASCADE or RESTRICT. When you execute the DROP
TRIGGER statement, the trigger definition is deleted from the schema.

www.it-ebooks.info

http://www.it-ebooks.info/

 336 SQL: A Beginner’s Guide

Create Insert Triggers
So far in this chapter, I’ve provided you with background information about triggers and the
syntax used to create triggers. Now we’ll look at examples of how triggers are created and
what happens when they’re invoked. We’ll begin with the insert trigger, which, as you know,
is invoked when an INSERT statement is executed against the subject table (the table on which
the trigger has been defined). In the first example, we’ll create a trigger on the RETAIL_
INVENTORY table (subject table), shown in Figure 14-2. The trigger, when invoked, will
insert data into the INVENTORY_LOG table.

The following CREATE TRIGGER statement defines an INSERT trigger that fires after
the data is inserted into the subject table:

CREATE TRIGGER INSERT_LOG
 AFTER INSERT ON RETAIL_INVENTORY
 FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO INVENTORY_LOG (ACTION_TYPE)
 VALUES ('INSERT');
 END;

Figure 14-2 Creating an insert trigger on the RETAIL_INVENTORY table

CD_NAME:
VARCHAR (60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

R_PRICE:
NUMERIC (5,2)

16.99

14.99

15.99

15.99

10.99

16.99

14.99

RETAIL_INVENTORY

ACTION_TYPE:
CHAR (6)

INSERT

UPDATE

DELETE

INSERT

INSERT

UPDATE

UPDATE

INVENTORY_LOG

AMOUNT:
INT

5

8

4

11

12

10

14

DATE_MODIFIED:
TIMESTAMP

2002-12-22 10:58:05.120

2002-12-22 12:02:05.033

2002-12-22 16:15:22.930

2002-12-23 11:29:14.223

2002-12-23 13:32:45.547

2002-12-23 15:51:15.730

2002-12-23 17:01:32.270

2002-12-24 10:46:35.123

2002-12-24 12:19:13.843

2002-12-24 14:15:09.673

UPDATE

UPDATE

DELETE

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 14: Creating SQL Triggers 337

NOTE
As I mentioned at the beginning of the chapter, SQL implementations can vary widely
with regard to the semantics of the CREATE TRIGGER statement. For example, SQL
Server does not allow you to specify a FOR EACH clause, nor does it support the use
of the ATOMIC keyword in the BEGIN...END statement. On the other hand, the basic
Oracle trigger definition is a lot closer to the SQL standard, although Oracle also does
not support the use of the ATOMIC keyword in a trigger definition.

Let’s take a look at this statement one element at a time. In the first line, the CREATE
TRIGGER clause defines a trigger named INSERT_LOG. In the next line, the AFTER
keyword is used to specify that the triggered SQL statements will be executed after the data
has been inserted into the subject table. The AFTER keyword is followed by the INSERT
keyword, which defines the trigger as an insert trigger. Next is the ON clause, which specifies
the name of the subject table. In this case, the subject table is RETAIL_INVENTORY.

As we move through the statement, we come to the FOR EACH clause, which specifies the
ROW keyword. This clause, when used with ROW, indicates that the trigger will be invoked for
each row that is inserted into the table, rather than for each INSERT statement that is executed
against the table. Following the FOR EACH clause are the triggered SQL statements.

The triggered SQL statements include a BEGIN...END statement and an INSERT
statement. I did not need to include the BEGIN...END statement in the trigger definition
because, without it, there is only one triggered SQL statement. However, I wanted to
demonstrate how the block would be used had there been more than one statement. Notice
that the block includes the ATOMIC keyword following the BEGIN keyword. According to
the SQL standard, ATOMIC is required, although it will depend on your SQL implementation
whether the keyword is supported.

The BEGIN...END block encloses an INSERT statement that adds data to the
INVENTORY_LOG table when the trigger is invoked. Each time a row is inserted into the
RETAIL_INVENTORY table, a row is inserted into the INVENTORY_LOG table. The
INVENTORY_LOG row will contain the INSERT value for the ACTION_TYPE column.
A timestamp value is then added automatically to the DATE_MODIFIED column, which is
defined with the default CURRENT_TIMESTAMP.

You can, if you want, create other triggers on the RETAIL_INVENTORY table. For
example, you might want to create update and delete triggers that insert rows into the
INVENTORY_LOG table when the applicable data modifications are made. In that case, you
would simply create a trigger definition for each additional trigger that you need.

NOTE
The SQL standard does not place a limit on the number of triggers that can be defined
on any one table; however, SQL implementations can have many restrictions, so check
the product documentation. In addition to these limitations, various implementations
might support different ways in which multiple triggers can be implemented. For
example, SQL Server allows you to define an insert, update, and delete trigger in one
statement.

www.it-ebooks.info

http://www.it-ebooks.info/

 338 SQL: A Beginner’s Guide

Now let’s take a look at what happens when you insert a row into the RETAIL_
INVENTORY table. Suppose you want to insert information about the Fundamental CD. You
would create an INSERT statement as you would normally do, as shown in the following
example:

INSERT INTO RETAIL_INVENTORY
 VALUES ('Fundamental', 15.99, 18);

If you were to execute the statement, the row would be inserted into the RETAIL_
INVENTORY table. To verify this, you can execute the following SELECT statement:

SELECT * FROM RETAIL_INVENTORY;

The SELECT statement will return the same rows shown in the RETAIL_INVENTORY
table in Figure 14-2, plus an additional row for the Fundamental CD, exactly as you would
expect. The trigger has no effect on the data modifications you make to the RETAIL_
INVENTORY table. However, as you’ll recall from the trigger definition that was defined on
the RETAIL_INVENTORY table, the triggered SQL statements should insert data into the
INVENTORY_LOG table when the trigger is invoked, which should have occurred when
you inserted a row into the RETAIL_INVENTORY table. To verify this, you can execute the
following SELECT statement:

SELECT * FROM INVENTORY_LOG;

The query results should include not only the rows shown in the INVENTORY_LOG table
in Figure 14-2, but also an additional row that includes an ACTION_TYPE value of INSERT
and a DATE_MODIFIED value for the current date and time. Each time a row is inserted into
the RETAIL_INVENTORY table, a row is inserted in the INVENTORY_LOG table. You
could have defined your triggered SQL statements to take any sort of action, not just log events
in a log table. Depending on your needs and the database in which you work, you have a great
many possibilities for the type of actions that your triggers will support.

Create Update Triggers
Now that you’ve seen an example of an insert trigger, let’s take a look at a couple of update
triggers. The update trigger is invoked when an UPDATE statement is executed against the
subject table. As with any other type of trigger, when the trigger is invoked, the triggered SQL
statements are executed and an action is taken. To illustrate how the update trigger works,
we’ll use the TITLES_IN_STOCK and TITLE_COSTS tables shown in Figure 14-3.

The first example that we’ll look at is created on the TITLES_IN_STOCK table and
includes triggered SQL statements that update the TITLE_COSTS table, as shown in the
following CREATE TRIGGER statement:

CREATE TRIGGER UPDATE_TITLE_COSTS
 AFTER UPDATE ON TITLES_IN_STOCK
 REFERENCING NEW ROW AS New
 FOR EACH ROW

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 14: Creating SQL Triggers 339

 BEGIN ATOMIC
 UPDATE TITLE_COSTS c
 SET RETAIL = RETAIL * 0.9
 WHERE c.CD_TITLE = New.CD_TITLE;
END;

As you can see, this trigger definition is similar in many ways to the insert trigger we
looked at in the preceding example. The update trigger definition includes the name of the
trigger (UPDATE_TITLE_COSTS) and specifies the AFTER and UPDATE conditions.
The ON clause then follows the UPDATE keyword and provides the name of the target
table. Following all this is a line of code we did not see in the preceding example—a
REFERENCING clause.

The REFERENCING clause uses the NEW ROW option to define a correlation name for
the row that has been updated in the TITLES_IN_STOCK table. However, the REFERENCING
clause, and subsequently the search condition or triggered SQL statements that might refer
to the alias defined in this clause, are not directly referencing the TITLES_IN_STOCK table.
Instead, they’re referencing the transition table for new data in the trigger execution context. In
other words, the correlation name defined in the REFERENCING clause references the updated
row that is copied to the transition table. In this case, the correlation name is New. As a result,
the New correlation name can be used in the search condition in the WHEN clause or in the
triggered SQL statements to refer back to the data in the transition table.

Once you’ve defined the correlation name in the REFERENCING clause, you must use it
to qualify the column names of the modified row when they are referenced in the WHEN clause
or in the triggered SQL statements. In the CREATE TRIGGER statement in the preceding
example, you can see that the alias is used in the WHERE clause of the UPDATE statement.
Notice that the word New precedes the column name and that the two are separated by a period.

Figure 14-3 Creating an update trigger on the TITLES_IN_STOCK table

CD_TITLE:
VARCHAR (60)

Famous Blue Raincoat

Blue

Past Light

Luck of the Draw

Deuces Wild

Nick of Time

Blues on the Bayou

INVENTORY:
INT

12

24

9

19

25

17

11

TITLES_IN_STOCK

CD_TYPE:
CHAR (20)

Popular

Folk

Blues

New Age

Blues

Popular

Popular

CD_TITLE:
VARCHAR (60)

Famous Blue Raincoat

Blue

Past Light

Luck of the Drive

Deuces Wild

Nick of Time

Blues on the Bayou

WHOLESALE:
NUMERIC (5,2)

8.00

7.50

6.00

7.25

7.50

7.45

TITLE_COSTS

RETAIL:
NUMERIC (5,2)

16.99

15.99

14.99

15.99

15.99

14.99

6.95 14.99

www.it-ebooks.info

http://www.it-ebooks.info/

 340 SQL: A Beginner’s Guide

This is typical of how you would qualify a name. It is similar to the way in which you use the
qualified name c.CD_TITLE for the CD_TITLE column in the TITLE_COSTS table. If you
had specified a different NEW ROW correlation name or used the name in the WHEN clause or
in another part of the triggered SQL statement, you would still qualify the name of the column
with the alias that references the rows in the transition table or the table itself.

NOTE
SQL Server does not support the REFERENCING clause. However, it supports similar
functionality by automatically assigning the names Inserted and Deleted to the transition
tables (Inserted for new data and Deleted for old data). In addition, there are some
cases in which you must declare a variable to use values from the Inserted and Deleted
tables, rather than qualifying column names, as you do in the SQL standard. Oracle,
on the other hand, does support the REFERENCING clause, but it also automatically
assigns the names New and Old to the transition tables, which you can use in the
WHEN clause and triggered SQL statements without specifying a REFERENCING
clause. When you do use the aliases in the triggered SQL statements of an Oracle
trigger definition, you must precede the alias name with a colon, as in :New. This is not
the case for the WHEN clause, in which the alias name is used without the colon.
Also, you cannot use the keyword ROW in the REFERENCING clause of an Oracle
trigger definition.

In addition to the REFERENCING clause, the CREATE TRIGGER statement also
includes a FOR EACH clause, which specifies the ROW option. Also notice that the triggered
SQL statements include a BEGIN...END statement, which encloses an UPDATE statement. As
you can see, the UPDATE statement modifies the RETAIL value in the TITLE_COSTS table
for the CD that was updated in the TITLES_IN_STOCK table.

Now let’s take a look at what happens when you update the TITLES_IN_STOCK column.
The following UPDATE statement changes the INVENTORY value for the Famous Blue
Raincoat row:

UPDATE TITLES_IN_STOCK
 SET INVENTORY = 30
 WHERE CD_TITLE = 'Famous Blue Raincoat';

When the UPDATE statement is executed, the UPDATE_TITLE_COSTS trigger
is invoked, causing the TITLE_COSTS table to be updated. As a result, not only is the
INVENTORY value in the TITLES_IN_STOCK table changed to 30, but the RETAIL value
in the TITLE_COSTS table is reduced to 15.29 (RETAIL * 0.9). Any time you update the
TITLES_IN_STOCK table, the corresponding row or rows in the TITLE_COSTS table will be
reduced by 10 percent.

You might find that you want to limit when the triggered SQL statements are executed.
For example, you might want to reduce the price of CDs only when the inventory exceeds a
certain amount. As a result you decide to change your trigger definition to include a WHEN
clause that defines the necessary search condition. However, as I said earlier, SQL does not
support an ALTER TRIGGER statement (although Oracle supports CREATE OR REPLACE
TRIGGER syntax that can be used to completely replace an existing trigger), so you would

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 14: Creating SQL Triggers 341

need to first delete the trigger from the database. The way to do that is to use the following
DROP TRIGGER statement:

DROP TRIGGER UPDATE_TITLE_COSTS;

When you execute this statement, the trigger definition is removed from the schema and
you can now recreate the trigger with the necessary modifications. The following example
again creates the UPDATE_TITLE_COSTS trigger, but this time a WHEN clause has been
added to the statement:

CREATE TRIGGER UPDATE_TITLE_COSTS
 AFTER UPDATE ON TITLES_IN_STOCK
 REFERENCING NEW ROW AS New
 FOR EACH ROW
 WHEN (New.INVENTORY > 20)
 BEGIN ATOMIC
 UPDATE TITLE_COSTS c
 SET RETAIL = RETAIL * 0.9
 WHERE c.CD_TITLE = New.CD_TITLE;
END;

As you can see, the WHEN clause specifies that the INVENTORY value must be
greater than 20; otherwise, the triggered SQL statements will not be invoked. Notice that the
INVENTORY column name is qualified with the New correlation name in the same way that
the CD_TITLE column name is qualified in the WHERE clause of the UPDATE statement.
As a result, the WHEN clause will reference the transition table for new data in the trigger
execution context when comparing values.

Now let’s take a look at what happens when you update the TITLES_IN_STOCK table.
The following UPDATE statement changes the INVENTORY value for the Past Light row:

UPDATE TITLES_IN_STOCK
 SET INVENTORY = 25
 WHERE CD_TITLE = 'Past Light';

As you would expect, the INVENTORY value in the TITLES_IN_STOCK column is
changed to 25. In addition, because the condition specified in the WHEN clause is met
(New.INVENTORY > 20), the triggered SQL statements are executed and the TITLE_COSTS
table is updated. If you were to query the TITLE_COSTS table, you would see that the
RETAIL value for the Past Light row has been changed to 13.49.

Now let’s take a look at an UPDATE statement that sets the INVENTORY value to an
amount less than 20:

UPDATE TITLES_IN_STOCK
 SET INVENTORY = 10
 WHERE CD_TITLE = 'Past Light';

This statement will still update the INVENTORY value in the TITLES_IN_STOCK table,
but it will not cause the triggered SQL statements to be executed because the search condition
in the WHEN clause is not met. As a result, no changes are made to the TITLE_COSTS table,
although the TITLES_IN_STOCK table is still updated.

www.it-ebooks.info

http://www.it-ebooks.info/

 342 SQL: A Beginner’s Guide

Q: When describing trigger execution contexts, you discussed how one trigger can cause
another trigger to be invoked. Is there a point at which multiple triggers can become a
problem if too many are invoked?

A: Problems can arise when multiple triggers are invoked and they cause a cascading effect
from one table to the next. For example, an attempt to update one table might invoke a
trigger that updates another table. That update, in turn, might invoke another trigger that
modifies data in yet another table. This process can continue on as one trigger after the next
is invoked, creating undesirable results and unplanned data modifications. The condition
can be made even worse if a loop is created in which a trigger causes a data modification
on a table for which another trigger has fired. For example, a data modification on one table
might invoke a trigger that causes a second modification. That modification might invoke
another trigger, which in turn invokes another trigger, which invokes yet another trigger.
The last trigger might then modify data in the original table, causing the first trigger to
fire again, repeating the process over and over until the system fails or an implementation-
specific process ends the loop. The best way to prevent unwanted modifications or
trigger loops is through careful planning in the database design. Triggers should not be
implemented unless you’re sure of their impact. In addition to careful planning, you should
look to the SQL implementation to determine what sorts of safety nets might be in place
to prevent trigger looping or unwanted cascading. For example, some implementations
allow you to control whether cascading triggers are allowed, and some limit the number
of cascading triggers that can fire. Make sure that you read your product’s documentation
before creating multiple triggers in your database.

Q: Earlier, you mentioned that SQL allows you to define multiple triggers on a table.
How are triggers processed if multiple triggers are invoked?

A: In SQL, processing of multiple triggers is a concern only if the triggers are defined to fire
at the same time (BEFORE or AFTER) and if they’re the same type of trigger (INSERT,
UPDATE, or DELETE). For example, a multiple trigger scenario would exist if two or
more triggers are defined (on the same table) with the AFTER UPDATE keywords. If this
condition exists, then the triggers are invoked in the order in which they were defined.
Let’s take a look at an example to show you what I mean. If you create Trigger1 and then
create Trigger2 and then create Trigger3, Trigger1 is invoked first, then Trigger2, and
then Trigger3. The problem with this is that SQL does not define any way in which you
can change that order. For example, if you decide that you want Trigger3 invoked before
Trigger1, your only option—based on the SQL standard—is to delete Trigger1 and Trigger2
from the schema and then recreate the triggers in the order you want them invoked.
Because you did not delete Trigger3, it will move into the top spot and be the first to be
invoked because it will then be seen as the first to have been created.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 14: Creating SQL Triggers 343

Create Delete Triggers
The final type of trigger that we’ll look at is the delete trigger. As you would expect, the
delete trigger is invoked when a DELETE statement is executed against the subject table, and
as with other triggers, the triggered SQL statements are executed and an action is taken. Now
let’s take a look at an example that uses the CD_STOCK table and CD_OUT table, as shown
in Figure 14-4.

Suppose you want to create a trigger on the CD_STOCK table. You want the trigger
to insert the deleted values into the CD_OUT table. The following CREATE TRIGGER
statement uses a REFERENCING clause to allow the triggered SQL statement to know which
data to insert into the CD_OUT table:

CREATE TRIGGER INSERT_CD_OUT
 AFTER DELETE ON CD_STOCK
 REFERENCING OLD ROW AS Old
 FOR EACH ROW
 INSERT INTO CD_OUT
 VALUES (Old.CD_NAME, Old.CD_TYPE);

In this statement, you are creating a trigger named INSERT_CD_OUT. The statement is
defined with the AFTER DELETE keywords, meaning that the old values are inserted into
the CD_OUT table after they have been deleted from the CD_STOCK table. The ON clause
identifies the CD_STOCK table as the subject table.

Following the ON clause is the REFERENCING clause. The REFERENCING clause uses
the OLD ROW option to assign a correlation name of Old. Remember that you can use only
the OLD ROW and OLD TABLE options in the REFERENCING clause of a delete trigger
definition. This is because there is no new data, only the old data that’s being deleted.

Figure 14-4 Creating a delete trigger on the CD_STOCK table

CD_NAME:

VARCHAR (60)

Famous Blue Raincoat

Blue

Past Light

Out of Africa

Fundamental

Blues on the Bayou

CD_TYPE:

CHAR (4)

FROK

CPOP

NEWA

STRK

NPOP

BLUS

IN_STOCK:

INT

19

28

6

8

10

11

CD_STOCK

CD_NAME:

VARCHAR (60)

Court and Spark

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Leonard Cohen The Best of

Orlando

CD_TYPE:

CHAR (4)

FROK

NEWA

XMAS

CTRY

FROK

STRK

CD_OUT

www.it-ebooks.info

http://www.it-ebooks.info/

 344 SQL: A Beginner’s Guide

Try This 14-1

The FOR EACH clause follows the REFERENCING clause. The FOR EACH clause
uses the ROW option. As a result, a row will be inserted into the CD_OUT table for each row
deleted from the CD_STOCK table.

Next is the triggered SQL statement. Notice that in this example, a BEGIN...END
statement is not used. Because there is only one triggered statement, you do not have to use the
BEGIN...END block (except Oracle always requires a block). The triggered statement in this
case is an INSERT statement that specifies two values, each of which is based on the values
deleted from the CD_STOCK table. The Old alias is used to qualify each column name. As
a result, the deleted values can be inserted directly into the CD_OUT table.

Now let’s take a look at an example of what happens when you delete a row from the
CD_STOCK table. The following DELETE statement deletes the Past Light row from the table:

DELETE CD_STOCK
 WHERE CD_NAME = 'Past Light';

Once you execute this statement, the row is deleted and the trigger is invoked. The row
is then inserted into the CD_OUT table. You can verify the deletion by using the following
SELECT statement to view the contents of the CD_STOCK table:

SELECT * FROM CD_STOCK;

The query results from this statement should no longer include the Past Light row.
However, if you execute the following SELECT statement, you’ll see that a row has been
inserted into the CD_OUT table:

SELECT * FROM CD_OUT;

Each time a row is deleted from the CD_STOCK table, two values from that row will be
inserted into the CD_OUT table. As with other trigger definitions, you could have included
a WHEN clause in your CREATE TRIGGER statement so that the triggered SQL statements
are executed only when the search condition specified in the WHEN clause evaluates to true.
Otherwise, the statements are not executed. The row will still be deleted from the CD_STOCK
table, but nothing will be inserted into the CD_OUT table.

 Creating SQL Triggers
Throughout this chapter, we have looked at how to create the three basic types of triggers—
insert, update, and delete triggers. You will now create your own triggers (one of each of
the three types) in the INVENTORY database. The triggers will be defined to log data
modification activity that occurs in the ARTISTS table. Whenever data is modified in the
ARTISTS table, a row will be inserted into a log table, which you will create. The log table
will record the type of action taken (insert, update, delete), the ARTIST_ID value for the
modified row, and a timestamp of when the row was inserted into the table. As a result,
whenever you execute an INSERT, UPDATE, or DELETE statement against the ARTISTS
table, a row will be inserted into the new table for each row that is modified. As with other
Try This exercises in this book (particularly Chapter 13, when you created stored procedures),

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 14: Creating SQL Triggers 345

you should refer to the documentation for your SQL implementation when creating triggers
to make certain you follow that product’s standards. There are a lot of variations among the
SQL implementations. You can download the Try_This_14.txt file, which contains the SQL
statements used in this exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. Before you create the actual triggers on the ARTISTS table, you must create a table that will
log the data modifications you make to the ARTISTS table. The log table, named ARTIST_
LOG, will include three columns to record data modification events. One of the columns
will be configured with a default value that records the current date and time. Enter and
execute the following SQL statement:

CREATE TABLE ARTIST_LOG
 (ACTION_TYPE CHAR(6),
 ARTIST_ID INT,
 MOD_DATE TIMESTAMP DEFAULT CURRENT_TIMESTAMP);

 You should receive a message indicating that the table was successfully created.

 3. Now you will create an insert trigger on the ARTISTS table. The trigger definition will
include a REFERENCING clause that specifies a correlation name (New) for the new row
that is inserted into the ARTISTS table. That correlation name will then be used in the
triggered SQL statement as a value inserted into the ARTIST_LOG table. Enter and execute
the following SQL statement:

CREATE TRIGGER INSERT_LOG
 AFTER INSERT ON ARTISTS
 REFERENCING NEW ROW AS New
 FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO ARTIST_LOG (ACTION_TYPE, ARTIST_ID)
 VALUES ('INSERT', New.ARTIST_ID);
 END;

 You should receive a message indicating that the trigger was successfully created.

 4. Next you will create an update trigger. This trigger definition is similar to the one in step 3,
except that you are specifying that it is an update trigger. Enter and execute the following
SQL statement:

CREATE TRIGGER UPDATE_LOG
 AFTER UPDATE ON ARTISTS
 REFERENCING NEW ROW AS New
 FOR EACH ROW
 BEGIN ATOMIC

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 346 SQL: A Beginner’s Guide

 INSERT INTO ARTIST_LOG (ACTION_TYPE, ARTIST_ID)
 VALUES ('UPDATE', New.ARTIST_ID);
 END;

 You should receive a message indicating that the trigger was successfully created.

 5. Now you will create a delete trigger. This trigger definition is a little different than the last
two triggers because the REFERENCING clause specifies a correlation name for the old
values, rather than the new. This is because new values are not created when you delete data
from a table. The correlation name (Old) is then used in the VALUES clause of the INSERT
statement. Enter and execute the following SQL statement:

CREATE TRIGGER DELETE_LOG
 AFTER DELETE ON ARTISTS
 REFERENCING OLD ROW AS Old
 FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO ARTIST_LOG (ACTION_TYPE, ARTIST_ID)
 VALUES ('DELETE', Old.ARTIST_ID);
 END;

 You should receive a message indicating that the trigger was successfully created.

 6. Now you can begin to test the triggers that you created. The first step is to insert data into
the ARTISTS table. In this statement, values are specified for the ARTIST_ID column and
the ARTIST_NAME column, but not the PLACE_OF_BIRTH column. As a result, the
default value of Unknown will be inserted in that column. Enter and execute the following
SQL statement:

INSERT INTO ARTISTS (ARTIST_ID, ARTIST_NAME)
 VALUES (2019, 'John Lee Hooker');

 You should receive a message indicating that the row was successfully inserted into the
ARTISTS table.

 7. Now you will update the row that you just inserted by providing a value for the PLACE_
OF_BIRTH column. Enter and execute the following SQL statement:

UPDATE ARTISTS
 SET PLACE_OF_BIRTH = 'Clarksdale, Mississippi, USA'
 WHERE ARTIST_ID = 2019;

 You should receive a message indicating that the row was successfully updated into the
ARTISTS table.

 8. Your next step is to delete the row that you just created. Enter and execute the following
SQL statement:

DELETE ARTISTS
 WHERE ARTIST_ID = 2019;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 14: Creating SQL Triggers 347

 You should receive a message indicating that the row was successfully deleted from the
ARTISTS table.

 9. Now that you’ve modified data in the ARTISTS table, you will look at the ARTIST_LOG
table to verify that rows have been entered into the table to record your data modifications
of the ARTISTS table. Enter and execute the following SQL statement:

SELECT * FROM ARTIST_LOG;

 Your query results should include three rows, one for each action type (INSERT, UPDATE,
and DELETE). The rows should all have the same ARTIST_ID value (2019) and include
the current dates and times.

 10. Your next step will be to drop the triggers from the database. The first trigger that you’ll
drop is the insert trigger. Enter and execute the following SQL statement:

DROP TRIGGER INSERT_LOG;

 You should receive a message indicating that the trigger was successfully dropped from
your database.

 11. Next you will drop the update trigger. Enter and execute the following SQL statement:

DROP TRIGGER UPDATE_LOG;

 You should receive a message indicating that the trigger was successfully dropped from the
database.

 12. Now drop the delete trigger. Enter and execute the following SQL statement:

DROP TRIGGER DELETE_LOG;

 You should receive a message indicating that the trigger was successfully dropped from the
database.

 13. Finally, you will drop the ARTIST_LOG table that you created in step 2. Enter and execute
the following SQL statement:

DROP TABLE ARTIST_LOG;

 You should receive a message indicating that the table was successfully dropped from the
database.

 14. Close the client application.

Try This Summary
In this Try This exercise, you created the ARTIST_LOG table, which was set up to store
information about data modifications to the ARTISTS table. Next you created three triggers on
the ARTISTS table—an insert trigger, an update trigger, and a delete trigger. All three triggers
used REFERENCING clauses to allow you to pass the ARTIST_ID value of the modified

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 348 SQL: A Beginner’s Guide

row to the ARTIST_LOG table. After the triggers were created, you inserted, updated, and
deleted data in the ARTISTS table to test the triggers. You then viewed the contents of the
ARTIST_LOG table to verify that the data modifications had been properly recorded. After
that, you dropped the three triggers and the ARTIST_LOG table. By the time you completed
the exercise, the INVENTORY database should have been returned to the same state it was in
when you began.

 Chapter 14 Self Test
 1. What is a trigger?

 2. What are the three types of triggers?

 3. What type of actions can be performed by the triggered SQL statements?

 4. Which actions can invoke a trigger?

 A Updating data

 B Querying data

 C Deleting data

 D Inserting data

 5. When is an insert trigger invoked?

 6. A trigger can be defined on how many tables?

 A Only one

 B One or more

 C One to three

 D Any number of tables

 7. A(n) ____________ is a space created in memory that holds a trigger process during the
execution of that trigger.

 8. You insert data into Table 1, which invokes an insert trigger defined on that table. The
trigger updates information in Table 2, which invokes an update trigger defined on that
table. The update trigger deletes information in Table 3, which invokes a delete trigger
defined on that table. Which trigger execution context is active at this point?

 A The trigger execution context for the insert trigger

 B The trigger execution context for the update trigger

 C The trigger execution context for the delete trigger

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 14: Creating SQL Triggers 349

 9. If three triggers are invoked during a session, how many trigger execution contexts are
created in that session?

 10. What information is included in a trigger execution context?

 11. In which clause of the CREATE TRIGGER statement do you assign correlation names to
old and new data?

 A FOR EACH

 B ON

 C REFERENCING

 D WHEN

 12. In which clause of the CREATE TRIGGER statement do you specify whether the triggered
SQL statements are executed once for each row or once for each statement?

 A FOR EACH

 B ON

 C REFERENCING

 D WHEN

 13. You’re creating a trigger definition for an insert trigger. Which REFERENCING clauses
can you include in your CREATE TRIGGER statement?

 A REFERENCING OLD ROW AS Old

 B REFERENCING NEW ROW AS New

 C REFERENCING OLD TABLE AS Old

 D REFERENCING NEW TABLE AS New

 14. A(n) ____________ trigger allows you to specify the column names of a subject table.

 15. What keywords can you use to designate whether the triggered SQL statements are
executed before or after the data modification statement is applied to the subject table?

 16. You’re creating an update trigger on the CD_INVENTORY table. The table includes a
column named IN_STOCK. You want the triggered SQL statements to be executed only
when the IN_STOCK value of the updated row exceeds 20. Which clause should you
include in your CREATE TRIGGER statement to restrict when the statements are executed?

 A WHERE

 B HAVING

 C FOR EACH

 D WHEN

www.it-ebooks.info

http://www.it-ebooks.info/

 350 SQL: A Beginner’s Guide

 17. What statement must you include in your CREATE TRIGGER statement if the trigger
definition includes more than one triggered SQL statement?

 18. Which statement can you use to delete a trigger from the schema?

 19. What SQL statement do you use to alter a trigger definition?

www.it-ebooks.info

http://www.it-ebooks.info/

351

Chapter 15
Using SQL Cursors

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 352 SQL: A Beginner’s Guide

Key Skills & Concepts

● Understand SQL Cursors

● Declare a Cursor

● Open and Close a Cursor

● Retrieve Data from a Cursor

● Use Positioned UPDATE and DELETE Statements

As we have looked at different aspects of SQL throughout this book, we have used direct
 invocation to create and access various data objects. Direct invocation, or interactive SQL,

is a type of data access method that supports the ad hoc execution of SQL statements, usually
through some sort of client application. For example, you can use SQL Server Management
Studio or Oracle’s iSQL*Plus to interact directly with your SQL database. However, direct
invocation generally represents only a small percentage of all database use. A far more
common method used to access SQL databases is embedded SQL, a data access model in
which SQL statements are embedded in an application programming language, such as C,
Java, and COBOL. To support embedded SQL, the SQL standard allows you to declare cursors
that act as pointers to specific rows of data in your query results. This chapter explains why
cursors are used and how cursors can be declared, opened, and closed within an SQL session.
You’ll also learn how to retrieve data using the cursor so that your programming language can
work with SQL data in a format that the application can process.

Understand SQL Cursors
One of the defining characteristics of SQL is the fact that data in an SQL database is managed
in sets. In fact, query results returned by SELECT statements are often referred to as result sets.
These result sets are each made up of one or more rows extracted from one or more tables.

When working with SQL data interactively, having data returned in sets rarely presents a
problem because you can normally scroll through the query results to find the information you
need. If the size of the results is too great to easily skim through, you can narrow the focus of
your query expression to return a more manageable result set. However, most data access is
through means other than direct invocation (despite the fact that we access data interactively
throughout the book). One of the most common methods, embedded SQL, accesses data
through SQL statements embedded in an application program. The data elements returned
by the SQL statements are used by the outer programming language—the host language—to
support specific application processes.

The problem we run into with this arrangement is that the application programming
languages are generally not equipped to deal with data returned in sets. As a result, an impedance

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 15: Using SQL Cursors 353

mismatch exists between SQL and the programming languages. Impedance mismatch refers to
differences between SQL and other programming languages. As you might recall from Chapter 3,
one example of impedance mismatch is the way in which SQL data types differ from data types
in other programming languages. These differences can lead to the loss of information when an
application extracts data from an SQL database. Another example of impedance mismatch is the
fact that SQL returns data in sets but other programming languages cannot handle sets. Generally,
they can process only a few pieces of data (a single record) at the same time. The way in which
SQL deals with this type of impedance mismatch is through the use of cursors.

A cursor serves as a pointer that allows the application programming language to deal
with query results one row at a time, much like the way these programming languages handle
records from traditional (flat) data files. Although the cursor can traverse all the rows of a
query result, it focuses on only one row at a time. A cursor still returns a full result set, but
allows the programming language to call only one row from that set. For example, suppose
your query results are derived from the following SELECT statement:

SELECT PERFORMER_NAME, PLACE_OF_BIRTH
 FROM PERFORMERS;

The query results from this statement will return all rows from the PERFORMERS table,
which includes the PERFORMER_NAME column and the PLACE_OF_BIRTH column.
However, your application programming language can deal with only one row at a time, so
the cursor is declared as an embedded SQL statement within the application programming
language. The cursor is then opened, much like the way these application languages open files,
and a row is retrieved from the query results. Figure 15-1 illustrates how a cursor acts as a
pointer to retrieve only one row of data.

In this case, the row that is retrieved through the cursor is the Bing Crosby row. However,
you can retrieve any row from the query results, and you can continue to retrieve rows, as long
as they’re retrieved one at a time and the cursor remains open. Once you close the cursor, you
cannot retrieve any more rows from the query results.

Declaring and Opening SQL Cursors
Most application programming languages support the use of cursors to retrieve data from an
SQL database. The cursor language is embedded in the programming code in much the same
way you would embed any SQL statement. When using a cursor in a programming language,
you must first declare the cursor—similar to how you would declare a variable—and then
use the declaration name (the name you’ve assigned to the cursor) in other embedded SQL
statements to open the cursor, retrieve individual rows through the cursor, and close the cursor.

NOTE
You can also use cursors in SQL client modules, which are sets of SQL statements that
can be called from within an application programming language. Client modules,
along with embedded SQL and interactive SQL, provide one more method to invoke
SQL statements. Because client modules are not implemented as widely as embedded
SQL, I focus on using cursors in embedded SQL. For more information about SQL client
modules, see Chapter 17.

www.it-ebooks.info

http://www.it-ebooks.info/

 354 SQL: A Beginner’s Guide

Although declaring a cursor is pivotal in using that cursor in your application, the
declaration alone is not enough to extract data from an SQL database. In fact, full cursor
functionality is supported through the use of four SQL statements, each of which are
embedded in the application programming language, or host language. The following
descriptions provide an overview of these four statements:

● DECLARE CURSOR Declares the SQL cursor by defining the cursor name, the
cursor’s characteristics, and a query expression that is invoked when the cursor is opened.

● OPEN Opens the cursor and invokes the query expression, making the query results
available to FETCH statements.

● FETCH Retrieves data into variables that pass the data to the host programming
language or to other embedded SQL statements.

● CLOSE Closes the cursor. Once the cursor is closed, data cannot be retrieved from the
cursor’s query results.

The four statements are called from within the host language. Figure 15-2 illustrates how
the cursor-related statements are used. The embedded SQL statements are shown in the boxes
that are shaded gray.

As you can see, you must first declare the cursor, and then you open it. Once you’ve
opened the cursor, you can use the FETCH statement to retrieve rows of data. You can use this
statement as many times as necessary, usually within some sort of looping structure defined by
the host language. Once you’ve retrieved the necessary data, you should close the cursor.

Figure 15-1 Using a cursor to access the PERFORMERS table

PERFORMER_NAME:
VARCHAR (60)

Jennifer Warnes

Joni Mitchell

William Acherman

Kitaro

Bing Crosby

Patsy Cline

Jose Carreras

Luciano Pavarotti

Placido Domingo

PLACE_OF_BIRTH:
VARCHAR (60)

Seattle, Washington, USA

Fort MacLeod, Alberta, Canada

Germany

Toyohashi, Japan

Tacoma, Washington, United States

Winchester, Virginia, United States

Barcelona, Spain

Modena, Italy

Madrid, Spain

Cursor

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 15: Using SQL Cursors 355

NOTE
For most application programming languages, an embedded SQL statement is
preceded by EXEC SQL. This signals to a preprocessor that the following statement
is SQL and must be processed separately from the host language. The preprocessor,
provided by the RDBMS vendor, analyzes the SQL code and converts it into a form that
can be used by the SQL implementation. The host language is compiled in the normal
way. For more information about embedded SQL, see Chapter 17.

Declare a Cursor
The first statement that we’ll look at is the DECLARE CURSOR statement. The cursor must be
declared before you can use the cursor to retrieve data. You can declare a cursor at any point in your
application code, as long as it’s declared before the cursor is referenced by any other statements.

DECLARE CURSOR statement

Host language statements

Host language statements

Repeated FETCH
statements within a
host language
looping structure

OPEN statement

FETCH statement

Host language statements

CLOSE statement

Host language statements

Host language statements

Figure 15-2 Embedding cursor-related SQL statements

www.it-ebooks.info

http://www.it-ebooks.info/

 356 SQL: A Beginner’s Guide

NOTE
Many programmers prefer to declare all cursors and variables at the beginning of the
program so that all declarations are kept together. The cursors and variables can then
be referenced at any point in the program.

The syntax for a cursor declaration includes many elements, as shown in the following
syntax:

DECLARE <cursor name>
[SENSITIVE | INSENSITIVE | ASENSITIVE]
[SCROLL | NO SCROLL] CURSOR
[WITH HOLD | WITHOUT HOLD]
[WITH RETURN | WITHOUT RETURN]
FOR <query expression>
[ORDER BY <sort specification>]
[FOR { READ ONLY | UPDATE [OF <column list>] }]

NOTE
Oracle uses the keyword IS instead of FOR preceding the query expression in the cursor
declaration.

As you can see, most of the elements that make up the declaration are optional. And as
always, you need to check the documentation for your SQL implementation to see which ones
are supported. We’ll look at these elements in greater detail in the following section. For now,
let’s focus on those elements that are required. To do so, we can synthesize the syntax down to
the following basic elements:

DECLARE <cursor name> CURSOR FOR <query expression>

This syntax shows only those parts of the cursor declaration that are mandatory. As you
can see, this is a much more manageable chunk of code. All you’re required to provide is a
name for the cursor and the query expression that is invoked when the cursor is opened. The
name must be different from the name of any other cursor declared within the same program.
The query expression is basically a SELECT statement, as you have seen throughout this book.

That’s all there is to the basic syntax. In the following section, we’ll take a look at each
of the optional elements that make up the cursor declaration. After that, we’ll look at some
examples.

Working with Optional Syntax Elements
If you refer back to the full syntax for a cursor declaration (shown in the previous section),
you’ll see that the majority of the elements are optional. In this section, we’ll look at each of
these elements. Later in the chapter, after we’ve completed this discussion, you might find that
you’ll want to refer back to this section for details about specific options.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 15: Using SQL Cursors 357

Cursor Sensitivity
The first optional element of the DECLARE CURSOR statement that we’ll look at is cursor
sensitivity, which is represented with the following syntax:

[SENSITIVE | INSENSITIVE | ASENSITIVE]

Cursor sensitivity is concerned with statements outside the cursor that affect the same rows
as those returned by the cursor. For example, suppose your cursor returns rows from the CDS_
IN_STOCK table. While the cursor is open, another statement within the same transaction
deletes some of the same rows in the CDS_IN_STOCK table that were returned by the cursor.
Whether or not the cursor can see these deletions depends on the cursor sensitivity.

As you can see in the syntax, SQL supports three cursor sensitivity options:

● SENSITIVE Significant changes made by statements outside the cursor immediately
affect the query results within the cursor.

● INSENSITIVE Significant changes made by statements outside the cursor do not affect
the query results within the cursor.

● ASENSITIVE Cursor sensitivity is implementation-defined. Significant changes may or
may not be visible within the cursor.

If no cursor sensitivity option is specified, ASENSITIVE is assumed, in which case the
SQL implementation can take whatever action it has been designed to take.

NOTE
Some SQL implementations provide initialization or system parameters that alter the
behavior of cursors. For example, Oracle provides the CURSOR_SHARING initialization
parameter that specifies which kind of SQL statements can share the same cursors. As
always, you should consult the documentation for your particular implementation.

Cursor Scrollability
The next optional element in the DECLARE CURSOR statement that we’ll look at is cursor
scrollability, as shown in the following syntax:

[SCROLL | NO SCROLL]

Scrollability is directly tied to the FETCH statement and the options that the FETCH
statement can use to retrieve data. If the SCROLL option is specified, the FETCH statement
can be defined with one of several options that extend its ability to move through the query
results and return specific rows. The SCROLL option allows the FETCH statement to skip
around through the query results as needed to retrieve the specific row. If NO SCROLL is
specified in the cursor declaration, the FETCH statement cannot make use of the additional
scrolling options and can retrieve only the next available row from the query results. If neither
option is specified, NO SCROLL is assumed. For more information about the FETCH options,
see the “Retrieve Data from a Cursor” section later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

 358 SQL: A Beginner’s Guide

Cursor Holdability
The next item that we’ll look at in the DECLARE CURSOR syntax is related to cursor
holdability, as shown in the following syntax:

[WITH HOLD | WITHOUT HOLD]

Cursor holdability refers to a characteristic in cursors that is concerned with whether
a cursor is automatically closed when the transaction in which the cursor was opened is
committed. A transaction is an atomic unit of work. This means that all statements within the
transaction must succeed or none of them can have any effect. If some statements within a
transaction are executed and then one statement fails, all executed statements are rolled back
and the database remains unchanged. (Transactions are discussed in more detail in Chapter 16.)

SQL provides two options that allow you to define cursor holdability: WITH HOLD and
WITHOUT HOLD. If you specify WITH HOLD, your cursor will remain open after you
commit the transaction, until you explicitly close it. If you specify WITHOUT HOLD, your
cursor will be automatically closed when the transaction is committed. If neither option is
specified, WITHOUT HOLD is assumed and your cursor is automatically closed.

NOTE
Even if your cursor is defined as a WITHOUT HOLD cursor—whether explicitly or by
default—it is still generally considered good practice to explicitly close your cursor when
it is no longer needed. This can free up system resources, and it helps to ensure that
your code is clearly self-documenting. In SQL Server, a cursor must be deallocated after
it is closed in order to free up all of its resources.

The advantage of defining a holdable cursor (one that is defined with the WITH HOLD
option) is that there might be times after a transaction is committed when you want your cursor
to persist in order to maintain its position within the query results returned by that cursor.
Closing a cursor and reopening it can often make it difficult to restore conditions, including the
cursor’s position in the query results, to exactly what they were when you first closed the cursor.

Cursor Returnability
Cursor returnability, the next option we’ll look at in the cursor declaration definition, uses the
following syntax:

[WITH RETURN | WITHOUT RETURN]

The returnability option applies only to cursors that are opened in an SQL-invoked
procedure. As you’ll recall from Chapter 13, an SQL-invoked procedure is a type of routine
that is invoked by using the CALL statement. The CALL statement is an SQL statement that
invokes procedures and allows you to pass parameter values to those procedures. If the cursor
is not opened within a procedure, the returnability option has no effect.

As the syntax shows, SQL supports two returnability options: WITH RETURN and
WITHOUT RETURN. If you specify WITH RETURN, the cursor is considered a result

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 15: Using SQL Cursors 359

set cursor. If you then open the cursor within an SQL-invoked procedure, the cursor’s result
set is returned to the procedure’s invoker, which might be another SQL-invoked routine
or a host language program. If you specify WITHOUT RETURN, the cursor’s result set is
returned in the normal manner, whether or not it is opened with an SQL-invoked procedure.
If neither option is specified, WITHOUT RETURN is assumed.

Cursor Ordering
The DECLARE CURSOR statement includes an optional ORDER BY clause, as shown in the
following syntax:

[ORDER BY <sort specification>]

You’ll no doubt recognize this clause from Chapter 7, when we looked at the basic clauses
of the SELECT statement. You might recall from that discussion that the ORDER BY clause
can be used when directly invoking SQL, but not in an embedded SQL statement, unless that
statement is contained within a cursor declaration.

The ORDER BY clause allows you to sort the query results returned by your query
specification. In the clause, you can specify which columns form the basis for sorting the rows.
Care must be taken regarding performance because a cursor with an ORDER BY may force
the SQL engine to retrieve and sort the entire result set before the first row can be returned,
and this can be a performance disaster for very large result sets. If you use an ORDER BY
clause, your cursor’s SELECT statement cannot contain a GROUP BY clause or a HAVING
clause. In addition, the SELECT clause portion of the statement cannot specify the DISTINCT
keyword or use a set function.

If your ORDER BY clause includes calculated columns in the query results (such as
COLUMN_A + COLUMN_B), you should define an alias for the result column, as in
(COLUMN_A + COLUMN_B) AS COLUMN_TOTALS. In addition, you can also use the
ASC and DESC keywords for any column included in the sort specification to specify that the
column be sorted in ascending or descending order, respectively, with ASC being the default.
(For more information about the ORDER BY clause, see Chapter 7.)

Cursor Updatability
The last optional element of the DECLARE CURSOR statement that we’ll look at is cursor
updatability, as shown in the following syntax:

[FOR { READ ONLY | UPDATE [OF <column list>] }]

Cursor updatability refers to the ability to use an UPDATE or DELETE statement to
modify data returned by the cursor’s SELECT statement. As you can see from the syntax, you
must use the FOR keyword along with the READ ONLY or UPDATE option. Let’s first go
over the READ ONLY option. If you specify READ ONLY, you cannot execute an UPDATE
or DELETE statement against the query results returned by the cursor’s SELECT statement.
On the other hand, if you specify UPDATE, you can execute the statements. If you specify
neither option, UPDATE is assumed, unless another option overrides the UPDATE default.

www.it-ebooks.info

http://www.it-ebooks.info/

 360 SQL: A Beginner’s Guide

NOTE
In some cases, even if no updatability option is specified, the cursor will be defined as
a read-only cursor because other options might prevent the cursor from being updated.
For example, if you specify the INSENSITIVE option, the cursor will be read-only. The
same is true if you specify an ORDER BY clause or SCROLL keyword.

You’ll notice that the UPDATE option also allows you to specify which columns in the
underlying table can be updated. To do this, you must include the OF keyword, followed by
one or more column names. If more than one column is specified, the column names must be
separated by commas. If you do not specify any column names (with the OF keyword), the
UPDATE option applies to all columns in the underlying table.

Creating a Cursor Declaration
Now that we’ve looked at each component of the DECLARE CURSOR statement, let’s take a
look at a few examples that help illustrate how to declare a cursor. For these examples, we’ll
use the CD_INVENTORY table, shown in Figure 15-3.

Figure 15-3 Declaring cursors on the CD_INVENTORY table

COMPACT_DISC:
VARCHAR (60)

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

CATEGORY:
VARCHAR (15)

Vocal

Vocal

Instrumental

Instrumental

Vocal

Vocal

Vocal

PRICE:
NUMERIC (5,2)

16.99

14.99

15.99

15.99

14.99

16.99

14.99

ON_HAND:
INT

13

42

17

6

8

32

22

Carreras Domingo Pavarotti in Concert

After the Rain: The Soft Sounds of Erik Satie Instrumental 16.99 21

Out of Africa Instrumental 16.99 29

Leonard Cohen The Best of Vocal 15.99 12

Fundamental Vocal 15.99 34

Blues on the Bayou Vocal 14.99 27

Orlando Instrumental 14.99 5

Vocal 15.99 27

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 15: Using SQL Cursors 361

The first example that we’ll review is a basic cursor declaration that includes only
the required elements plus an ORDER BY clause, as shown in the following DECLARE
CURSOR statement:

DECLARE CD_1 CURSOR
 FOR
 SELECT *
 FROM CD_INVENTORY
 ORDER BY COMPACT_DISC;

In this statement, I’ve declared a cursor named CD_1 and defined a SELECT statement.
The cursor name follows the DECLARE keyword. After the cursor name, I’ve included
the CURSOR keyword and the FOR keyword. The only additional element is the SELECT
statement, which includes an ORDER BY clause. The statement returns all rows and columns
from the CD_INVENTORY table. The rows are then ordered according to the values in the
COMPACT_DISC column. Because I did not specify the ASC or DESC keyword, the rows are
returned in ascending order.

NOTE
In Chapter 7, when discussing the SELECT statement, I explain that, although an asterisk
can be used to return all columns from a table, it is a better practice to identify each
column that you want returned. This is especially important in embedded SQL because
the host language relies on certain values—a specified number in a specified order—
being returned from the database. If the database should change, your application
may not operate properly, and the application code would have to be modified. For the
examples in this chapter, I often use an asterisk to simplify the code and conserve space,
but know that, in the real world, I would usually specify each column.

The ORDER BY clause is an important element because the order in which the rows
are returned affects which rows are retrieved when using a FETCH statement. (I discuss the
FETCH statement later in the chapter, in the “Retrieve Data from a Cursor” section.) This is
especially true if defining a scrollable cursor, such as the one in the following example:

DECLARE CD_2 SCROLL CURSOR
 FOR
 SELECT *
 FROM CD_INVENTORY
 ORDER BY COMPACT_DISC
 FOR READ ONLY;

Notice that I’ve added two new elements to this statement: the SCROLL keyword and the
FOR READ ONLY clause. The SCROLL keyword signals to the FETCH statement that the
cursor is scrollable. As a result, additional options can be used within the FETCH statement
that extend how your application can move through the cursor results. The FOR READ
ONLY clause indicates that neither an UPDATE nor a DELETE statement can be used to
modify data returned by the cursor. However, this clause is not necessary. Because the cursor

www.it-ebooks.info

http://www.it-ebooks.info/

 362 SQL: A Beginner’s Guide

declaration includes the SCROLL keyword and the SELECT statement includes an ORDER
BY clause, the cursor is automatically limited to read-only operations. The use of either of
these two options—or the use of the INSENSITIVE option—automatically overrides the
cursor’s default updatability.

The next type of read-only declaration that we’ll look at also includes the INSENSITIVE
keyword, as shown in the following example:

DECLARE CD_3 SCROLL INSENSITIVE CURSOR
 FOR
 SELECT *
 FROM CD_INVENTORY
 ORDER BY COMPACT_DISC
 FOR READ ONLY;

The CD_3 cursor declaration is exactly like the CD_2 cursor declaration except that CD_3
has also been defined as an insensitive cursor. This means that no modifications made to the
data in the underlying table while the cursor is open will be reflected in the query results
returned by the cursor. Of course, if you close the cursor and then reopen it, any modifications
that had been made when the cursor was originally open will be reflected in the data returned
by the reopened cursor.

The three preceding cursor declarations that we’ve looked at have all been read-only.
Now let’s take a look at an updatable cursor. In the following cursor declaration, the SELECT
statement again returns all rows and columns from the CD_INVENTORY table:

DECLARE CD_4 CURSOR
 FOR
 SELECT *
 FROM CD_INVENTORY
 FOR UPDATE;

Notice that this DECLARE CURSOR statement does not include the SCROLL keyword,
the INSENSITIVE keyword, or an ORDER BY clause, any of which would have prevented us
from creating an updatable cursor. We could have specified the NO SCROLL and SENSITIVE
options, but they’re not necessary. Also notice, however, that the cursor declaration does
include the FOR UPDATE clause. The clause is also not necessary in this particular
statement because the cursor is, by default, updatable, since it contains no options to limit the
updatability.

However, if you want your cursor to be updatable only for a certain column, you must
include the FOR UPDATE clause, along with the column name, as shown in the following
example:

DECLARE CD_5 CURSOR
 FOR
 SELECT *
 FROM CD_INVENTORY
 FOR UPDATE OF COMPACT_DISC;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 15: Using SQL Cursors 363

Now the FOR UPDATE clause includes the OF keyword and the column name,
COMPACT_DISC. If you were to try to modify data in the cursor results in columns other
than the COMPACT_DISC column, you would receive an error.

Once you’ve declared your cursor, you can open it and retrieve data from the query results.
However, as you have seen in the preceding cursor declarations, the actions that you can take
are limited to the restrictions defined with the DECLARE CURSOR statement.

Open and Close a Cursor
The process of opening a cursor is very straightforward. You need to provide only the keyword
OPEN and the name of the cursor, as shown in the following syntax:

OPEN <cursor name>

For example, to open the CD_1 cursor, you invoke the following SQL statement:

OPEN CD_1;

You cannot open a cursor until you have declared it. Once you’ve declared it, you can open
it anywhere within your program. The SELECT statement within the cursor is not invoked until
you actually open the cursor. That means that any data modifications made between the time the
cursor is declared and the time the cursor is opened are reflected in the query results returned by
the cursor. If you close the cursor and then reopen it, data modifications that took place between
the time you close it and the time you reopen it are reflected in the new query results.

Once you have finished using your cursor, you should close it so that you can free up
system resources. To close a cursor, you can use the CLOSE statement, as shown in the
following syntax:

CLOSE <cursor name>

The CLOSE statement does nothing more than close the cursor, which means that the
query results from the cursor’s SELECT statement are released. For example, to close the
CD_1 cursor, use the following SQL statement:

CLOSE CD_1;

Once you close the cursor, you cannot retrieve any more rows from the cursor’s query
results. In other words, you cannot use a FETCH statement to retrieve data from a closed
cursor. If you reopen the cursor, you can again retrieve data, but you will get a new result set
and (assuming no scrolling options) will start with the first row in the query results, which can
mean retrieving rows that have already been processed by a prior invocation of the cursor.

Retrieve Data from a Cursor
So far, you’ve learned how to declare a cursor, open it, and then close it. However, these
actions alone do not allow you to retrieve any of the data that is provided by the cursor. In
order to do that, you must use a FETCH statement.

www.it-ebooks.info

http://www.it-ebooks.info/

 364 SQL: A Beginner’s Guide

Before we take a look at the syntax for the FETCH statement, let’s briefly review the
purpose of a cursor and its related statements. As I said earlier, one of the problems with
embedding SQL statements in a programming host language is the impedance mismatch. One
form of that mismatch is that SQL returns data in sets and traditional application programming
languages cannot handle sets of data. In general, they can deal only with individual values.
In order to address this form of impedance mismatch, you can use cursors to retrieve data
one row at a time—regardless of how many rows are returned—from which you can extract
individual values that can be used by the host language.

As you have seen, a cursor declaration includes a SELECT statement that returns a set
of data. The OPEN statement executes the SELECT statement, and the CLOSE statement
releases the query results from the SELECT statement. However, it is the FETCH statement
that identifies individual rows within that set of data and extracts individual values from those
rows, which are then passed to host variables. A host variable is a type of parameter that
passes a value to the host language.

One or more FETCH statements can be executed while a cursor is open. Each statement
points to a specific row in the query results, and values are then extracted from those rows. The
following syntax shows the basic elements that make up the FETCH statement:

FETCH [[<fetch orientation>] FROM]
<cursor name> INTO <host variables>

As you can see by the syntax, you must specify the FETCH keyword, the name of the
cursor, and an INTO clause that identifies the host variables that will receive the values
returned by the FETCH statement. These values are derived from the query results that are
generated by the cursor’s SELECT statement when that cursor is opened. If your FETCH
statement includes more than one host variable, you must separate the variables with commas.

In addition to the mandatory components of the FETCH statement, the syntax also
includes the optional <fetch orientation> placeholder and the FROM keyword. If you specify
a fetch orientation option in your FETCH statement, you must include the FROM keyword, or
you can specify FROM without the fetch orientation.

SQL supports six fetch orientation options that identify which row is selected from the
cursor’s query results. Most of these options are available only if you declare the cursor as
scrollable. A scrollable cursor, as you’ll recall, is one that extends the ability of the FETCH
statement to move through the cursor’s query results. A cursor is scrollable if the cursor
declaration includes the SCROLL keyword. If you include a fetch orientation in your FETCH
statement, you can choose from one of the following options:

● NEXT Retrieves the next row from the query results. If you use NEXT in your first
FETCH statement after you open your cursor, the first row in the query results will be
returned. A second FETCH NEXT statement will return the second row.

● PRIOR Retrieves the row directly preceding the one that had last been retrieved. If
you use PRIOR in your first FETCH statement after you open the cursor, no row will be
returned because no row precedes the first row.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 15: Using SQL Cursors 365

● FIRST Retrieves the first row from your cursor’s query results, regardless of how many
FETCH statements have been executed since opening the cursor.

● LAST Retrieves the last row from your cursor’s query results, regardless of how many
FETCH statements have been executed since opening the cursor.

● ABSOLUTE <value> Retrieves the row specified by the <value> placeholder.
The value must be an exact numeric, although it can be derived from a host variable.
The numeric identifies which row is returned by the FETCH statement. For example,
ABSOLUTE 1 returns the first row, ABSOLUTE 2 returns the second row, and
ABSOLUTE -1 returns the last row.

● RELATIVE <value> Retrieves the row specified by the <value> placeholder, relative
to the cursor’s current position. If you use RELATIVE in the first FETCH statement
after you open the cursor, RELATIVE 1 returns the first row from the cursor’s query
results, and RELATIVE -1 returns the last row. However, if the cursor is not at the
beginning of the query results, as it is when you first open the cursor, RELATIVE 1
and RELATIVE -1 return rows relative to the cursor position as it was left after the last
executed FETCH statement.

Whenever you open a cursor, the cursor points to the beginning of the query results. The
FETCH statement moves the cursor to the row designated by the fetch orientation option. If
no option is specified, NEXT is assumed, and the cursor always points to the next row in the
query results.

To help illustrate how the fetch orientation options work, let’s take another look at a cursor
we declared earlier in the chapter:

DECLARE CD_2 SCROLL CURSOR
 FOR
 SELECT *
 FROM CD_INVENTORY
 ORDER BY COMPACT_DISC
 FOR READ ONLY;

Notice that the SCROLL keyword is specified and that the SELECT statement retrieves all
rows and columns from the CD_INVENTORY table. Also notice that the SELECT statement
includes an ORDER BY clause that sorts the query results in ascending order according to the
values in the COMPACT_DISC column. This is important because the FETCH statements
move through the rows in the query results in the order specified by the ORDER BY clause,
regardless of how rows are ordered in the underlying table.

Now let’s take another look at the query results returned by the SELECT statement in the
CD_2 cursor. The query results, in the form of a virtual table, are shown in Figure 15-4. Notice
that the illustration includes pointers that represent the various types of FETCH statements
(based on their fetch orientation). In each case, the pointer is based on a FETCH statement that
is the first to be executed after the cursor has been opened.

www.it-ebooks.info

http://www.it-ebooks.info/

 366 SQL: A Beginner’s Guide

Notice that the FETCH FIRST and FETCH NEXT pointers each point to the After
the Rain row. This is the first row in the cursor’s query results. FETCH FIRST will
always point to this row, assuming the data in the underlying tables doesn’t change.
FETCH NEXT will always point to the first row whenever it is the first FETCH statement
executed after the cursor is opened. In addition, the FETCH LAST pointer will always
point to the That Christmas Feeling row. However, the FETCH PRIOR pointer doesn’t
point to any row. It points instead to a space prior to the first row of the query results. This
is because PRIOR cannot retrieve a row if it is used in the first FETCH statement after the
cursor is opened.

Now let’s take a look at the FETCH ABSOLUTE 5 pointer. As you can see, it points to the
Court and Spark row, which is the fifth row in the cursor’s query results. FETCH ABSOLUTE 5

Figure 15-4 The query results (virtual table) returned by the CD_2 cursor

FETCH ABSOLUTE 5

FETCH LAST

FETCH RELATIVE 10

FETCH PRIOR

FETCH NEXT

COMPACT_DISC

Famous Blue Raincoat

Blue

Past Light

Kojiki

That Christmas Feeling

Patsy Cline: 12 Greatest Hits

Court and Spark

CATEGORY

Vocal

Vocal

Instrumental

Instrumental

Vocal

Vocal

Vocal

PRICE

16.99

14.99

15.99

15.99

14.99

16.99

14.99

ON_HAND

13

42

17

6

8

32

22

Carreras Domingo Pavarotti in Concert

After the Rain: The Soft Sounds of Erik Satie Instrumental 16.99 21

Out of Africa Instrumental 16.99 29

Leonard Cohen The Best of Vocal 15.99 12

Fundamental Vocal 15.99 34

Blues on the Bayou Vocal 14.99 27

Orlando Instrumental 14.99 5

Vocal 15.99 27

FETCH FIRST

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 15: Using SQL Cursors 367

will always return this row. On the other hand, FETCH RELATIVE 10 points to the Orlando
row, which is the tenth row in the cursor’s query results. However, if RELATIVE were used in a
FETCH statement other than the first one, FETCH RELATIVE 10 would probably be pointing to
a different row.

As you can see, the six fetch orientation options provide a great deal of flexibility in
moving through a cursor’s query results. Keep in mind, however, that most of these options can
be used in read-only cursors only, such as the CD_2 cursor we’ve been looking at. The only
option that can be used for updatable cursors is NEXT, which is the default fetch orientation.
Now let’s take a look at a few examples of FETCH statements so you can see how they can be
used to retrieve data from your cursor’s query results.

The first FETCH statement that we’ll look at uses the NEXT fetch orientation option to
retrieve a row from the CD_2 cursor:

FETCH NEXT
 FROM CD_2
 INTO :CD, :Category, :Price, :On_Hand;

The statement identifies the fetch orientation and the cursor name. As you’ll recall, the
NEXT keyword is optional because NEXT is the default fetch orientation. The statement
also includes the INTO clause, which identifies the host variables that will receive values
returned by the FETCH statement. There are four host variables to match the number of
values returned by the FETCH statement. The number of variables must be the same as the
number of columns returned by the cursor’s SELECT statement, and the variables must be
listed in the same order as the columns returned. Notice that the host variables are separated
by commas and their names begin with colons. According to the SQL standard, host variables
must begin with a colon, although this can vary from one SQL implementation to the next.

Now that you’ve seen how a FETCH NEXT statement works, you can create any FETCH
statement for whichever fetch orientation you want to specify. Simply replace one option
with the other. For example, the following FETCH statement uses the ABSOLUTE fetch
orientation:

FETCH ABSOLUTE 5
 FROM CD_2
 INTO :CD, :Category, :Price, :On_Hand;

Notice that with the ABSOLUTE option, as with the RELATIVE option, you must
specify a numeric value. In this case, the cursor will retrieve the fifth row from the
cursor’s query results. The ABSOLUTE, FIRST, and LAST options are the only fetch
orientation options that will always return the same row from the cursor’s query results,
assuming that the data in the underlying table has not changed. On the other hand, the
NEXT, PRIOR, and RELATIVE options return rows based on the cursor’s last position.
As a result, you want to be certain to design your cursors and your FETCH statements
with positioning in mind.

www.it-ebooks.info

http://www.it-ebooks.info/

 368 SQL: A Beginner’s Guide

Use Positioned UPDATE and DELETE Statements
Once you fetch a row from the query results of an updatable cursor, you might then want
your application to update or delete that row. To do so, you must use a positioned UPDATE
or DELETE statement. The positioned UPDATE and DELETE statements contain a special
WHERE clause that references the opened cursor. Let’s take a look at each of these two
statements to show you how you can use them to modify data returned by your cursor.

Using the Positioned UPDATE Statement
The positioned UPDATE statement is, for the most part, the same as a regular UPDATE
statement, except that it requires a special WHERE clause, as shown in the following syntax:

UPDATE <table name>
 SET <set list>
 WHERE CURRENT OF <cursor name>

Q: You mention that a cursor’s SELECT statement is not executed until the cursor is opened.
How does this affect special values such as CURRENT_USER or CURRENT_TIME?

A: Because a cursor’s SELECT statement is not executed until the cursor is opened, special
values are not assigned values until the cursor is opened, not when the cursor is declared.
For example, if you include the CURRENT_TIME special value in your cursor’s SELECT
statement and declare that cursor at the beginning of your program code, the time assigned
to the CURRENT_TIME value is the time when the cursor is opened, not the time when
the cursor is declared. In addition, if you close and then reopen the cursor, the CURRENT_
TIME value is that time when you again open the cursor, not when it was first opened.

Q: You state that host variables are a type of parameter that is used in embedded SQL.
How do host variables differ from other types of parameters?

A: For all practical purposes, a host variable is just like any other parameter. The main
distinction is that a host variable is used in embedded SQL to pass values between the host
language and SQL. The only other real distinction is that a colon must be added to the name
of the variable. The reason that a colon must be included when used in an embedded SQL
statement is to indicate that the name is a host variable and not a column. As a result, you
can use variable names that are meaningful to your application without worrying about
accidentally naming a variable the same as a column name. The colon has nothing to do with
the variable itself, only in distinguishing it as a variable. A colon must also be used in SQL
client modules. However, values are passed to modules through parameters, rather than host
variables. Module parameters are essentially the same thing as host variables; only the names
are different. If you were to refer to all of them as parameters, you would not be far off.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 15: Using SQL Cursors 369

A regular UPDATE statement, as you no doubt recall, contains the UPDATE clause and
the SET clause, just as you see in the syntax for a positioned UPDATE statement. However,
in a regular UPDATE statement the WHERE clause is optional, while in a positioned
UPDATE statement it is required. In addition, the WHERE clause must be defined with the
CURRENT OF option, which identifies the opened cursor. By using the CURRENT OF
option, you’re telling your application to use the values returned by the most recent FETCH
statement for the referenced cursor. For example, if your cursor is pointing to the Past
Light row of the CD_INVENTORY table (the row most recently returned by the FETCH
statement), it is that row that is being referenced by the WHERE clause of the positioned
UPDATE statement.

Let’s take a look at an example to demonstrate how this works. In the following set of SQL
statements, we declare the CD_4 cursor, open that cursor, fetch a row from the cursor’s query
results, update that row, and close the cursor:

DECLARE CD_4 CURSOR
FOR
 SELECT *
 FROM CD_INVENTORY
 FOR UPDATE;

OPEN CD_4;

FETCH CD_4
 INTO :CD, :Category, :Price, :On_Hand;

UPDATE CD_INVENTORY
 SET ON_HAND = :On_Hand * 2
 WHERE CURRENT OF CD_4;

CLOSE CD_4;

I added some blank lines to improve readability, but of course they are not necessary, and
if you include them, your SQL engine will simply ignore them. The first statement declares
the CD_4 cursor and defines a SELECT statement that returns all rows and columns from
the CD_INVENTORY table. Next, we open the cursor and then fetch the next row, which in
this case is the first row, Famous Blue Raincoat. After we fetch the row, we use a positioned
UPDATE statement to double the amount of the ON_HAND value for that row. Notice that
the UPDATE statement includes a WHERE clause that contains the CURRENT OF option,
which identifies the CD_4 cursor. After we update the row, we close the cursor.

NOTE
Keep in mind that the statements shown in the preceding example would be embedded
in a host language, so they are not likely to be grouped so closely together and there
would likely be other host language elements, such as variable declarations, looping
structures, and conditional statements.

www.it-ebooks.info

http://www.it-ebooks.info/

 370 SQL: A Beginner’s Guide

In the preceding example, we were able to update the ON_HAND column because it was
implicitly included in the FOR UPDATE clause of the cursor’s SELECT statement. When no
column names are specified, all columns are updatable. However, let’s look at another example
that explicitly defines a column. In the following set of SQL statements, I’ve declared the
CD_5 cursor and used it to try to update a row in the CD_INVENTORY table:

DECLARE CD_5 CURSOR
FOR
 SELECT *
 FROM CD_INVENTORY
 FOR UPDATE OF COMPACT_DISC;

OPEN CD_5;

FETCH CD_5
 INTO :CD, :Category, :Price, :On_Hand;

UPDATE CD_INVENTORY
 SET ON_HAND = :On_Hand * 2
 WHERE CURRENT OF CD_5;

CLOSE CD_5;

As you can see, the cursor declaration specifies the COMPACT_DISC column in the FOR
UPDATE clause. If you try to execute the UPDATE statement, you will receive an error indicating
that the ON_HAND column is not one of the columns specified in the cursor declaration.

Using the Positioned DELETE Statement
The positioned DELETE statement, like the positioned UPDATE statement, requires a
WHERE clause that must include the CURRENT OF option. (A regular DELETE statement,
as you’ll recall, does not require the WHERE clause.) A positioned DELETE statement uses
the following syntax:

DELETE <table name>
WHERE CURRENT OF <cursor name>

As you can see, you need to define a DELETE clause that identifies the table and a WHERE
clause that identifies the cursor. The WHERE clause in a positioned DELETE statement works
just like the WHERE clause in a positioned UPDATE statement: The row returned by the last
FETCH statement is the row that is modified. In this case, the row is deleted.

Now let’s look at an example of a positioned DELETE statement. The following SQL
statements declare the CD_4 cursor, open the cursor, return a row from the cursor, delete that
row, and close the cursor:

DECLARE CD_4 CURSOR
FOR
 SELECT *

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 15: Using SQL Cursors 371

Try This 15-1

 FROM CD_INVENTORY
 FOR UPDATE;

OPEN CD_4;

FETCH CD_4
 INTO :CD, :Category, :Price, :On_Hand;

DELETE CD_INVENTORY
 WHERE CURRENT OF CD_4;

CLOSE CD_4;

You should be familiar with most of these statements. The only new one is the positioned
DELETE statement. This statement deletes the row returned by the FETCH statement, which
is the Famous Blue Raincoat row. Once the row is deleted, the cursor is closed using a CLOSE
statement. As stated previously, it is always a good idea to explicitly close cursors when they
are no longer needed.

 Working with SQL Cursors
In this chapter, we looked at how to declare cursors, open those cursors, retrieve data from them,
and then close them. In addition, we reviewed positioned UPDATE and DELETE statements.
However, as I said earlier, cursors are used primarily in embedded SQL, which makes it difficult
to fully test cursor functionality if you’re limited to directly invoking SQL statements (as we are
in this Try This exercise). Ideally, it would be best to embed the cursor-related SQL statements
in a host language, but that is beyond the scope of this book. What complicates this issue even
further is the fact that different SQL implementations support the use of cursors in an interactive
environment in different ways, which can make it difficult to directly invoke cursor-related
statements. Still, you should be able to execute most cursor-related statements interactively, but
know that cursors are designed for use in embedded SQL and SQL client modules, so you might
have to modify the statements a great deal in order to execute them. You can download the
Try_This_15.txt file, which contains the SQL statements used in this exercise.

NOTE
Ideally, it would be good to walk you through each step of declaring and opening
a cursor, retrieving data, and closing a cursor, but because of the nature of direct
invocation, we will use fewer steps and larger blocks of statements.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. The first cursor that you’ll declare and access is a basic read-only cursor that retrieves data
from the COMPACT_DISCS table. The first thing you’ll notice in the set of statements

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 372 SQL: A Beginner’s Guide

you’ll be creating is that you’ll declare a variable named v_CD_NAME. You’ll need
to create this variable in order to fully test the FETCH statement. Keep in mind that,
depending on the situation, the host language, and the product, you may or may not use
this method for defining your variable. Also notice that the variable name in the FETCH
statement is not preceded by a colon. This is because you’ll be using direct invocation to
execute these statements and, for most implementations, the name of the variable in the
FETCH statement will have to be the same as the name you declared at the beginning of
this set of statements.

As with any SQL statement, you will find that the exact language you use to create
statements varies from one product to the next. In addition, the fact that you’re invoking
the statements directly, rather than embedding the statements, can lead to other variations
between SQL and the implementation (such as not using a colon in the variable name). For
example, if you execute these statements in SQL Server, you’ll have to precede your variable
names with the at (@) character. Oracle deviates from the standard even more. In Oracle,
you declare the cursor and variable in one block of statements. In addition, the CURSOR
keyword precedes the name of the cursor, and you must use the IS keyword, rather than
FOR. You must also enclose the OPEN, FETCH, and CLOSE statements in a BEGIN...END
block. You will also find that not all SQL options are supported in all SQL implementations,
and many products include additional features not defined in the SQL standard. Be sure to
check your product’s documentation before trying to declare and access any cursors.

Now let’s create the cursor-related statements. Enter and execute the following SQL
statements:

DECLARE v_CD_NAME VARCHAR (60);

DECLARE CD_cursor_1 CURSOR
 FOR
 SELECT CD_TITLE
 FROM COMPACT_DISCS
 ORDER BY CD_TITLE ASC;

OPEN CD_cursor_1;

FETCH CD_cursor_1 INTO v_CD_NAME;

CLOSE CD_cursor_1;

In these statements, you first declared a variable named v_CD_NAME. Next, you declared a
cursor named CD_cursor_1. The cursor definition contained a SELECT statement that was
qualified with an ORDER BY clause. Because you included the ORDER BY clause, your
cursor was read-only. After you declared the cursor, you opened it, fetched a row from the
cursor’s query results, and then closed the cursor. The FETCH statement returned the value
After the Rain: The Soft Sounds of Erik Satie, which could have then been used in some
other operation, had you embedded these statements. After you executed the statements, you
should have received a message saying that the statements were executed successfully.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 15: Using SQL Cursors 373

 3. Now you will declare and access a second cursor. This time you will specify that the cursor
is insensitive and scrollable. In addition, you will specify that the cursor is read-only,
although this clause is optional because you’re making the cursor scrollable and insensitive.
You will also fetch the last row from the cursor’s query results, rather than the first. Enter
and execute the following SQL statements:

DECLARE v_CD_NAME VARCHAR(60);

DECLARE CD_cursor_2 SCROLL INSENSITIVE CURSOR
 FOR
 SELECT CD_TITLE
 FROM COMPACT_DISCS
 ORDER BY CD_TITLE ASC
 FOR READ ONLY;

OPEN CD_cursor_2;

FETCH LAST FROM CD_cursor_2 INTO v_CD_NAME;

CLOSE CD_cursor_2;

 This time the FETCH statement retrieved the value That Christmas Feeling because LAST
was specified. This value was inserted into the v_CD_NAME variable. After you executed
the statements, you should have received a message saying that the statements were
executed successfully.

 4. Your next cursor will be updatable, which means that it cannot include an ORDER BY
clause and cannot be defined as insensitive or scrollable. Because the cursor is updatable,
you will also create an UPDATE statement that doubles the value of the IN_STOCK
column for the row returned by the FETCH statement. Enter and execute the following SQL
statements:

DECLARE v_CD_NAME VARCHAR(60);

DECLARE CD_cursor_3 CURSOR
 FOR
 SELECT CD_TITLE
 FROM COMPACT_DISCS
 FOR UPDATE;

OPEN CD_cursor_3;

FETCH CD_cursor_3 INTO v_CD_NAME;

UPDATE COMPACT_DISCS
 SET IN_STOCK = IN_STOCK * 2
 WHERE CURRENT OF CD_cursor_3;

CLOSE CD_cursor_3;

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 374 SQL: A Beginner’s Guide

 Notice that your UPDATE statement includes a WHERE clause that contains the
CURRENT OF option, which specifies the CD_cursor_3 cursor. This clause is mandatory.
Because no ORDER BY clause was used, the first row in your cursor’s query results was
Famous Blue Raincoat. This is the row that was updated. After you executed the statements,
you should have received a message indicating that a row had been updated.

 5. Now let’s take a look at the COMPACT_DISCS table to verify that the change you made is
correct. Enter and execute the following SQL statement:

SELECT * FROM COMPACT_DISCS;

 The IN_STOCK value of the Famous Blue Raincoat row should now be 26, double its
original amount.

 6. Let’s return the database to its original state. Enter and execute the following SQL
statement:

UPDATE COMPACT_DISCS
 SET IN_STOCK = 13
 WHERE COMPACT_DISC_ID = 101;

 You should receive a message indicating that the row has been updated.

 7. Close the client application.

Try This Summary
In this Try This exercise, you declared and accessed three cursors, two that were read-only and
one that was updatable. For all three cursors you declared a variable. The variable was then
used in the FETCH statement to receive the value returned by that statement. For the updatable
cursor, you created an UPDATE statement that modified the IN_STOCK value for the row
returned by the FETCH statement. After you updated the COMPACT_DISCS table, you
updated it once more to return the database to its original state. Because no other changes were
made to the database, your data should be as it was before you started this exercise.

 Chapter 15 Self Test
 1. What is a cursor?

 2. Which invocation methods support the use of cursors?

 3. What form of impedance mismatch is addressed through the use of cursors?

 4. A(n) ____________ serves as a pointer that allows the application programming language
to deal with query results one row at a time.

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 15: Using SQL Cursors 375

 5. When using cursors in embedded SQL, what is the first step you must take before you can
retrieve data through that cursor?

 A Fetch the cursor.

 B Declare the cursor.

 C Close the cursor.

 D Open the cursor.

 6. What are the four cursor-related statements that you can embed in a host language?

 7. Which options can be used only in read-only cursor declarations?

 A SCROLL

 B WITH HOLD

 C ORDER BY

 D INSENSITIVE

 8. What are the required elements of a DECLARE CURSOR statement?

 9. What cursor type does not see changes made by statements outside the cursor?

 10. Which option should you use in a cursor declaration to extend the retrieving capabilities of
a FETCH statement?

 A WITHOUT HOLD

 B ASENSITIVE

 C SCROLL

 D FOR UPDATE

 11. Cursor ____________ refers to a characteristic in cursors that is concerned with whether
a cursor is automatically closed when the transaction in which the cursor was opened is
committed.

 12. You’re creating a cursor declaration. The SELECT statement includes an ORDER BY
clause. Which clauses cannot be included in the SELECT statement?

 A SELECT

 B HAVING

 C GROUP BY

 D WHERE

 13. What option should you include in a cursor declaration to define that cursor as holdable?

www.it-ebooks.info

http://www.it-ebooks.info/

 376 SQL: A Beginner’s Guide

 14. Your cursor declaration includes a FOR UPDATE clause that does not specify any columns.
Which columns in the underlying table can be updated?

 15. What SQL statement should you use if you want to open the CD_ARTISTS cursor?

 16. Which SQL statement executes the SELECT statement in a cursor?

 17. A(n) ____________ statement retrieves rows from a cursor’s query results once you open
that cursor.

 18. What type of cursor allows you to use all the fetch orientation options in a FETCH statement?

 19. Which fetch orientation option should you use in a FETCH statement if you want to be sure
to retrieve the first row in a cursor’s query results?

 A PRIOR

 B NEXT

 C ABSOLUTE -1

 D FIRST

 20. What clause is required in a positioned UPDATE statement in order to update a row
returned by the most recent FETCH statement?

www.it-ebooks.info

http://www.it-ebooks.info/

377

Chapter 16
Managing SQL
Transactions

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 378 SQL: A Beginner’s Guide

Key Skills & Concepts

● Understand SQL Transactions

● Set Transaction Properties

● Start a Transaction

● Set Constraint Deferability

● Create Savepoints in a Transaction

● Terminate a Transaction

In Chapter 4, I spend a considerable amount of time discussing data integrity and the methods
supported by SQL to ensure that integrity. These methods include the creation of constraints,
domains, and assertions, all of which are used by your database in one way or another to
ensure that your SQL data remains valid. However, these methods alone are not always enough
to maintain the integrity of that data. Take, for example, the situation that can arise when more
than one user tries to access and modify data in the same table at the same time, or when their
actions overlap and impact the same data. Actions may be taken by one user based on data that
is no longer valid as a result of actions taken by the other user. Data might become inconsistent
or inaccurate, without either user knowing that a problem exists. To address situations of this
type, SQL supports the use of transactions to ensure that concurrent actions do not impact the
validity of the data that is seen by any one user. In this chapter, I describe how transactions are
implemented in an SQL environment and how you can control their behavior. You will learn
how to set transaction properties, start transactions, terminate them, and use other options that
extend their functionality.

Understand SQL Transactions
Relatively few databases exist in which only one user is trying to access data within that
database at any given point in time. For the most part, databases are used by different types of
users for many different purposes, and often these users are trying to access the same data at
the same time. The greater the number of users, the greater the likelihood that problems will
arise when users attempt to view or modify the same data at the same time. However, problems
can arise even if only two users are accessing data at the same time, depending on the nature
of their operations. For example, one user might view data in a table, take some sort of action
based on that data, then return to the table to verify the data once more. However, if another
user updates that table between the two times that the first user views it, the first user will see
different data the second time, and might even notice that the action taken by the second user
invalidated the change they made after they viewed the table the first time. For example,

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 16: Managing SQL Transactions 379

the first user might notice that a customer’s phone number is incorrect and apply the correction.
However, a second user might be looking at the same customer’s data, and while updating the
customer’s credit status, might inadvertently put the old phone number back into the database
record (because the data they were looking at contained the old number), overlaying the change
that the first user made.

To address these sorts of data inconsistencies, SQL uses transactions to control the actions
of individual users. A transaction is a unit of work that is made up of one or more SQL
statements that perform a related set of actions. For example, your application might use a
transaction to change the number of CDs in stock. The process of updating the applicable table
or tables and reporting the updated information back to you is treated as a single transaction.
The transaction might include a number of SQL statements, each performing a specific task.

In order for a set of actions to qualify as a transaction, it must pass the ACID test. ACID is
an acronym commonly used when referring to the four characteristics of a transaction:

● Atomic This characteristic refers to the all-or-nothing nature of a transaction. Either all
operations in a transaction are performed or none are performed. If some statements are
executed, the results of these executions are rolled back if the transaction fails at any point
before it is completed. Only when all statements are executed properly and all actions
are performed, is a transaction complete and the results of that transaction applied to the
database.

● Consistent The database must be consistent at the beginning and at the end of the
transaction. In fact, you can think of a transaction as a set of actions that takes the database
from one consistent state to another. All rules that define and constrain the data must be
applied to that data as a result of any changes that occur during the transaction. In addition,
all structures within the database must be correct at the end of the transaction.

● Isolated Data that might temporarily be in an inconsistent state during a transaction
should not be available to other transactions until the data is once again consistent. In other
words, no user should be able to access inconsistent data during a transaction implemented
by another user when the data impacted by the transaction is in an inconsistent state. In
addition, for a transaction to be isolated, no other transactions can affect that transaction.

● Durable Once the changes made by a transaction are committed, those changes must
be preserved, and the data should be in a reliable and consistent state, even if hardware or
application errors occur.

If any problems arise at any time during a transaction, the entire transaction is rolled back
and the database is returned to the state it was in before the transaction started. Any actions
that were taken are undone and the data is restored to its original state. If the transaction
is successfully completed, all changes are implemented. Throughout the entire process,
regardless of whether the transaction is successfully completed or must be rolled back, the
transaction always ensures the integrity of the database.

SQL supports a number of statements related to transaction processing. You can use these
statements to begin and end transactions, set their properties, defer constraint enforcement

www.it-ebooks.info

http://www.it-ebooks.info/

 380 SQL: A Beginner’s Guide

during the transaction, and identify places within a transaction that act as stopping points
when you roll back transactions. Throughout the rest of this chapter, we’ll examine how each
of these statements is used within a transaction. However, before we go into a more detailed
discussion of the statements, I want to provide you with a brief overview of each one in order
to give you a better understanding of how transactions work.

The SQL:2006 standard defines seven statements related to transaction processing:

● SET TRANSACTION Sets the properties of the next transaction to be executed.

● START TRANSACTION Sets the properties of a transaction and starts that transaction.

● SET CONSTRAINTS Sets the constraint mode within a current transaction. The
constraint mode refers to whether a constraint is applied immediately to data when that
data is modified or whether the application of the constraint is deferred until later in the
transaction.

● SAVEPOINT Creates a savepoint within a transaction. A savepoint marks a place within
the transaction that acts as a stopping point when you roll back a transaction.

● RELEASE SAVEPOINT Releases a savepoint.

● ROLLBACK Terminates a transaction and rolls back any changes to the beginning of
the transaction or to a savepoint.

● COMMIT Terminates a transaction and commits all changes to the database.

Although we’ll be looking at all seven statements in more detail, some of them are pivotal
in understanding the nature of a transaction. Let’s take a look at Figure 16-1 to help illustrate
this point.

SET TRANSACTION

START TRANSACTION
Database at
beginning of
transaction

SQL statements

Successful
statement execution

Unsuccessful
statement execution

ROLLBACK

COMMIT
Database
updated

Figure 16-1 A basic SQL transaction

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 16: Managing SQL Transactions 381

Notice that the figure includes four of the SQL transaction-related statements: SET
TRANSACTION, START TRANSACTION, COMMIT, and ROLLBACK. If a SET
TRANSACTION statement is used, it is executed before the transaction begins. After that, a
START TRANSACTION statement begins the transaction.

NOTE
As you’ll see later in this chapter, it would be rare in a pure SQL environment that
you would want to use both the SET TRANSACTION and START TRANSACTION
statements because both statements set the same properties. However, you’ll find that
SQL implementations vary with regard to which transaction-related statements they
support and how they implement those statements. Specific differences are pointed out
throughout this chapter.

When you start the transaction, the database is in its original state—the data is consistent
and correct. Next the SQL statements within the transaction are processed. If this process
is successful, a COMMIT statement is executed. The COMMIT statement causes the SQL
implementation to update the database and terminate the transaction. If the statement-execution
process is not successful, a ROLLBACK statement is executed, and the implementation
returns the database to its original state. An unsuccessful execution does not necessarily mean
that the statements have failed. A ROLLBACK statement can be executed according to the
conditions of a WHERE clause, a predefined error, or whatever other conditions are defined
within the transaction. The point is, under certain circumstances, the ROLLBACK statement is
executed and under other circumstances, the COMMIT statement is executed.

Set Transaction Properties
The first statement that we’ll look at in detail is the SET TRANSACTION statement. The SET
TRANSACTION statement allows you to configure several of the properties associated with
transaction processing. You can execute this statement only when no transactions are active
(or in the case of Oracle, only as the first statement after a COMMIT or ROLLBACK). When
you do use a SET TRANSACTION statement, the settings configured within the statement are
applied only to the next transaction that is initiated. The settings do not carry over from one
transaction to the next.

The SET TRANSACTION statement is not required in order to initiate a transaction. If
the statement is not executed, the transaction uses either the default settings or the settings
supplied in the subsequent START TRANSACTION statement. If the SET TRANSACTION
statement is executed, the transaction uses the settings specified in that statement. If the
statement is executed but not all settings are defined, the transaction uses the defaults for the
undefined settings. Regardless of which settings are configured, none of them are applicable to
any transaction except the first one initiated after the SET TRANSACTION is executed.

Now let’s take a look at the syntax used for a SET TRANSACTION statement. At its most
basic, the syntax looks like the following:

SET [LOCAL] TRANSACTION <mode> [{ , <mode> } . . .]

www.it-ebooks.info

http://www.it-ebooks.info/

 382 SQL: A Beginner’s Guide

The first thing you might notice about this syntax is the optional keyword LOCAL. The
LOCAL keyword applies only to transactions that encompass multiple SQL implementations.
If you’re working with these sorts of transactions, you can use the LOCAL option to apply
settings to the local portion of the transaction. To be able to use the LOCAL option, the
transaction must have been initiated on an SQL server other than the one where the local
transaction settings are configured.

NOTE
The subject of encompassing transactions and local settings is beyond the scope of
this book. I mention them here only to provide you with a complete picture of the SET
TRANSACTION statement. As a beginning SQL programmer, you will most likely not
be concerned with encompassing transactions. Furthermore, support of encompassing
transactions varies across SQL implementations. For example, Oracle does not support
them, and while MySQL does, it uses the terms global and session.

Returning to the SET TRANSACTION syntax, you can see that the only other type of
option you need to specify is the one represented by the <mode> placeholder. There are three
types of transaction modes you can specify:

● Access level

● Isolation level

● Diagnostics size

You must specify one or more transaction modes. If you specify more than one, you must
separate them with commas. In addition, you cannot include more than one of any type of
transaction mode. For example, you can specify an access level and an isolation level, but you
cannot specify two isolation levels.

The SET TRANSACTION statement supports two access level options: READ ONLY
and READ WRITE. If you select the READ ONLY option, you cannot include any statements
within the transaction that modify the database. This includes statements that modify data
(such as the UPDATE statement) and statements that modify the database structure (such as
the CREATE TABLE statement). If you select the READ WRITE option, you can execute
both types of statements in your transaction. As you will see in the next section, “Specifying
an Isolation Level,” the default access level depends on the isolation level. However, if no
isolation level and no access level are specified, the default access level is READ WRITE.

Specifying an Isolation Level
When you create a SET TRANSACTION statement, you can specify zero or one isolation
levels. An isolation level defines how isolated a transaction will be from the actions of other
transactions. A SET TRANSACTION statement supports four isolation level options:

● READ UNCOMMITTED

● READ COMMITTED

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 16: Managing SQL Transactions 383

● REPEATABLE READ

● SERIALIZABLE

The isolation levels are listed from least restrictive to most restrictive, with the READ
UNCOMMITTED option being less effective in terms of isolating data, and the SERIALIZABLE
option the most effective. If no isolation level is specified, SERIALIZABLE is assumed.

NOTE
Support for isolation levels varies across SQL implementations. For example,
Oracle supports only the READ COMMITTED and SERIALIZABLE options, while SQL
Server supports all four of the options defined in the SQL Standard, plus it adds a
new one called SNAPSHOT that provides read consistency for all statements in a
transaction as of the start of the transaction.

Data Phenomena
The best way to understand isolation levels is to take a look at the basic types of phenomena
that can occur to data, depending on how isolated one transaction is from another. In general,
three types of phenomena can occur:

● Dirty reads

● Nonrepeatable reads

● Phantom reads

The type of data phenomena that you might experience during a transaction depends on
which isolation level you configure for your transaction. However, before we get into any
more specifications about isolation levels, let’s take a look at these three types of phenomena.

Dirty Reads The first phenomenon that we’ll look at is the dirty read. A dirty read can
occur when one transaction modifies data, a second transaction sees those modifications
before they’re actually committed to the database, and the first transaction rolls back the
modifications, returning the database to its original state. However, the second transaction,
having read the modified data, might have taken action based on the incorrect data. To
help illustrate the concept of a dirty read, let’s take a look at Figure 16-2, which shows two
transactions operating concurrently.

When Transaction 1 first begins, it reads the table in its original state. The transaction
then updates the table, changing the STOCK value of each row. After those changes are made,
Transaction 2 is initiated and reads the updated data. For example, Transaction 2 will see that
the STOCK value for the Past Light row is 11. Based on that information, Transaction 2 takes
some sort of action, such as ordering additional Past Light CDs. After Transaction 2 has read the
table data, Transaction 1, for one reason or another, rolls back the update, and the database is
returned to its original state. As a result, the Past Light row actually has a STOCK value of 22,
even though Transaction 2 thinks that it has a value of 11. Transaction 2, then, is said to have
experienced a dirty read.

www.it-ebooks.info

http://www.it-ebooks.info/

 384 SQL: A Beginner’s Guide

Nonrepeatable Reads The next phenomenon that can occur when concurrent transactions
are initiated is the nonrepeatable read. The nonrepeatable read can occur when one transaction
reads data from a table, another transaction then updates that data, and the first transaction
rereads the data, only to discover that the data has changed. As a result, the first read is not
repeatable. Let’s take a look at Figure 16-3 to better understand this concept.

When Transaction 1 is initiated, it reads the data in the table. At that point, the transaction
might be involved in other processes or is waiting for a response from a user. For example,
the user might receive a call from a manager who is trying to find out how many copies of a
particular CD are in stock. The user checks for that information. The manager then puts the
user on hold for a short time, so the user must wait to complete the transaction. During that
time, Transaction 2 is initiated and it updates the table. After the update, Transaction 1 again
reads the data (the manager returns to the phone) and finds different information from the first
read, resulting in a nonrepeatable read.

Phantom Reads The last phenomenon that we’ll look at is the phantom read. Although
similar to the nonrepeatable read, the phantom read has some subtle differences, which
are factors when trying to determine an isolation level. A phantom read can occur when a
transaction reads a table based on some sort of search condition, then a second transaction
updates the data in the table, and then the first transaction attempts to reread the data, only this
time different rows are returned because of how the search condition is defined. To clarify this,
let’s take a look at Figure 16-4.

Figure 16-2 Concurrent transactions resulting in a dirty read

CD_NAME

Famous Blue Raincoat

Past Light

Court and Spark

STOCK

13

42

22

CD_NAME

Famous Blue Raincoat

Past Light

Court and Spark

STOCK

12

26

11

CD_NAME

Famous Blue Raincoat

Past Light

Court and Spark

STOCK

13

42

22

Transaction 1
begins

Transaction 1
updates table

Transaction 1
rolls back

update

Transaction 2
begins and
reads table

Transaction 2
takes action

based on dirty
read

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 16: Managing SQL Transactions 385

When Transaction 1 is initiated, it reads the data in the table by executing a SELECT
statement that queries the data. The statement includes a WHERE clause that returns only
those rows with a STOCK value greater than 20. That means that the Court and Spark row and
the Past Light row are returned. After Transaction 1 retrieves (reads) the data, Transaction 2
begins and updates the table. Now when Transaction 1 rereads the data (using the same search
criteria), only the Famous Blue Raincoat row is returned because it is now the only row with a
STOCK value greater than 20. As a result, the transaction has experienced a phantom read; the
rows that it’s reading are not the same rows as it saw earlier.

Choosing an Isolation Level
Now that you have an overview of the type of data phenomena that you can run into when
you have concurrent transactions, you should be better equipped to choose an isolation level
for your transaction. The important point to remember is that the more restrictive the isolation
level, the more types of phenomena you can eliminate.

Let’s take a look at the READ UNCOMMITTED isolation level, the least restrictive of
the four levels. A transaction that’s configured with this option may experience any of the data
phenomena that we’ve looked at (dirty read, nonrepeatable read, and phantom read). As you
can imagine, this is normally not a desirable state. In fact, if you define a transaction with the
READ UNCOMMITTED option, the transaction cannot include statements that modify data.
These transactions, by default, have a READ ONLY access level, and you cannot specify a

Figure 16-3 Concurrent transactions resulting in a nonrepeatable read

CD_NAME

Famous Blue Raincoat

Past Light

Court and Spark

STOCK

13

42

22

CD_NAME

Famous Blue Raincoat

Past Light

Court and Spark

STOCK

12

26

11

CD_NAME

Famous Blue Raincoat

Past Light

Court and Spark

STOCK

12

26

11

Transaction 1
begins and
reads table

Transaction 1
reads values
different from

first read

Transaction 2
begins and

updates table

www.it-ebooks.info

http://www.it-ebooks.info/

 386 SQL: A Beginner’s Guide

READ WRITE level. (All other isolation levels have a default access level of READ WRITE.)
You should use the READ UNCOMMITTED isolation level only for transactions that generate
approximate information, such as some types of statistical data in which the results are not
critical in terms of precise accuracy.

The READ COMMITTED isolation level is only slightly more restrictive than READ
UNCOMMITTED. The READ COMMITTED option prevents dirty reads, but nonrepeatable
reads and phantom reads can still occur. The next option, REPEATABLE READ, is even
more restrictive than READ COMMITTED. It prevents dirty reads and nonrepeatable reads,
but does not prevent phantom reads. The only option that prevents all three types of data
anomalies is SERIALIZABLE.

A transaction that is defined with the SERIALIZABLE isolation level fully isolates that
transaction from all other transactions. As a result, the transaction is said to be serializable,
meaning that it interacts with concurrent transactions in a way that orders transactions
sequentially so that one transaction cannot impact the other. This does not mean that one
transaction must close before another can open, but it does mean that the results of those
transactions have to be the same as the results of operations that do operate one at a time.
As long as no serializable transaction can influence another serializable transaction, the
transactions are in conformance to the SERIALIZABLE isolation level.

Figure 16-4 Concurrent transactions resulting in a phantom read

CD_NAME

Famous Blue Raincoat

Past Light

Court and Spark

STOCK

13

42

22

CD_NAME

Famous Blue Raincoat

Out of Africa

Court and Spark

STOCK

42

13

11

CD_NAME

Famous Blue Raincoat

Out of Africa

Court and Spark

STOCK

42

13

11

Transaction 1
begins and

returns rows
based on
search

condition

Transaction 1
returns

different rows
based on same

search
condition

Transaction 2
begins and

updates table

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 16: Managing SQL Transactions 387

Table 16-1 provides an overview of the phenomena that can occur for each isolation level.
For example, notice that, for the READ UNCOMMITTED option, it’s possible that all three
data anomalies can occur.

As you can see from the table, the SERIALIZABLE isolation level provides the greatest
data protection, and the READ UNCOMMITTED isolation level provides the least protection.
This is why SERIALIZABLE is the default isolation level if no other level is defined.

NOTE
You may be wondering why you don’t simply use the SERIALIZABLE isolation level for
all transactions. There is a trade-off: the more restrictive the isolation level, the greater
the effect on performance, so although you want to be sure to use an isolation level
restrictive enough to meet your needs, you don’t want to define a level that’s more
restrictive than necessary.

Specifying a Diagnostics Size
As you’ll recall from the SET TRANSACTION syntax, one type of transaction mode that you
can define is the diagnostics size. The diagnostics size refers to a diagnostics area that is used
for conditions raised when an SQL statement is executed. A condition is a warning, exception,
or other type of message generated by a statement execution. The diagnostics size actually
refers to the number of conditions that will be stored for the execution of an SQL statement.
For example, if the diagnostics size is 10, up to 10 conditions will be stored for the executed
statement. If more than 10 conditions are raised for that statement, only 10 conditions are
saved to the diagnostics area.

NOTE
You cannot assume that any specific conditions will be saved to the diagnostics area
if more conditions are raised than the number defined by the diagnostics size. For
example, if the diagnostics size is 15 and your statement raises 20 conditions, you
cannot assume that the first 15 or last 15 conditions will be recorded. For more
information on how conditions are handled for your particular SQL implementation,
see the product documentation. Incidentally, the use of SET TRANSACTION to set
diagnostics size is not supported by SQL Server, Oracle, MySQL, or most other current
SQL implementations.

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No

Table 16-1 Possible Data Anomalies for Isolation Levels

www.it-ebooks.info

http://www.it-ebooks.info/

 388 SQL: A Beginner’s Guide

If you do not specify a diagnostics size in your SET TRANSACTION statement, the SQL
implementation determines the size of the diagnostics area.

Creating a SET TRANSACTION Statement
Now that you’ve looked at the various components of the SET TRANSACTION statement, let’s
take a look at a couple of examples. The first example defines a transaction with an access level
of READ ONLY, an isolation level of READ UNCOMMITTED, and a diagnostics size of 5:

SET TRANSACTION
 READ ONLY,
 ISOLATION LEVEL READ UNCOMMITTED,
 DIAGNOSTICS SIZE 5;

Notice that the transaction modes are separated by commas. Also notice that the isolation
level option includes the keywords ISOLATION LEVEL, and the diagnostics size option
includes the keywords DIAGNOSTICS SIZE. The transaction is configured with the least
restrictive isolation level, which is why the access level must be READ ONLY. You cannot
define a READ WRITE access level for this statement. Because the isolation level is READ
COMMITTED, the statement does not have to specify the READ ONLY access level—it would
have been assumed. However, including it causes no problems and better documents the code.

In the next example, the SET TRANSACTION statement defines a transaction with an access
level of READ WRITE, an isolation level of SERIALIZABLE, and a diagnostics size of 8:

SET TRANSACTION
 READ WRITE,
 ISOLATION LEVEL SERIALIZABLE,
 DIAGNOSTICS SIZE 8;

Because SERIALIZABLE is the default isolation level, you do not have to specify it in
your SET TRANSACTION statement. In addition, because the READ WRITE access level
is the default level for serializable transactions, you do not have to specify that either. Your
statement, then, might have looked like the following:

SET TRANSACTION
 DIAGNOSTICS SIZE 8;

This SET TRANSACTION statement will produce the same results as the preceding one.
As you can see, the SET TRANSACTION statement is a relatively simple statement

to execute. However, be sure to check the documentation for your SQL implementation
to determine the exact syntax used to set transaction properties. For example, SQL Server
supports a SET TRANSACTION ISOLATION LEVEL statement that allows you to set only
the isolation level. You cannot set the access level or diagnostics size. Oracle, on the other
hand, supports a SET TRANSACTION statement that allows you to set a transaction’s access
and isolation level (but not a diagnostics size) and assign the transaction to a rollback segment,
while MySQL allows you to set only the isolation level.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 16: Managing SQL Transactions 389

Start a Transaction
In SQL:2006, a transaction can be started either implicitly or explicitly. A transaction starts
implicitly when certain types of SQL statements are executed, such as the SELECT, DELETE,
UPDATE, and CREATE TABLE statements. These types of statements must be executed
within the context of a transaction. If a transaction is not active, one is initiated.

Transactions can also be initiated explicitly by using the START TRANSACTION statement.
The START TRANSACTION statement serves two purposes: to set the transaction’s properties,
and to initiate the transaction. In terms of setting the properties, the START TRANSACTION
statement works just like the SET TRANSACTION statement. You can set the access level, the
isolation level, and the diagnostics size. As for initiating a transaction, you simply execute the
START TRANSACTION statement.

The syntax for the START TRANSACTION statement is similar to the SET
TRANSACTION statement, as you can see in the following syntax:

START TRANSACTION <mode> [{ , <mode> } . . .]

After you specify the START TRANSACTION keywords, you must specify one or more
transaction modes. As with the SET TRANSACTION statement, you can include only one
mode for each type.

Now let’s take a look at an example that defines an access level of READ ONLY, an
isolation level of READ UNCOMMITTED, and a diagnostics size of 5:

START TRANSACTION
 READ ONLY,
 ISOLATION LEVEL READ UNCOMMITTED,
 DIAGNOSTICS SIZE 5;

As you can see, this looks almost identical to a SET TRANSACTION statement. The
transaction modes are applied in the same way, and if more than one transaction mode
is specified, they’re separated with commas. The basic difference between a START
TRANSACTION statement and a SET TRANSACTION statement is that the START
TRANSACTION statement will initiate the transaction as well as set its properties.

NOTE
The START TRANSACTION statement was added to SQL with the release of SQL:1999.
As a result, not all SQL implementations support a START TRANSACTION statement or
any statement that explicitly initiates a transaction. Transactions in Oracle, for example,
can only be initiated implicitly. On the other hand, SQL Server supports a BEGIN
TRANSACTION statement, but it does not allow you to define any transaction modes.

www.it-ebooks.info

http://www.it-ebooks.info/

 390 SQL: A Beginner’s Guide

Set Constraint Deferability
There can be times in a transaction when you want to modify data in a table that temporarily
violates a constraint placed on that table. For example, you might have a table that includes a
column configured with the NOT NULL constraint. It is possible that, during the course of the
transaction, you want to insert a row in the table but don’t yet have a value for the NOT NULL
column. For this reason, the SQL standard allows you to define a constraint as deferrable.
That means that the constraint does not have to be applied to the data immediately (when the
modifying SQL statement is executed); it can be postponed until a later point in a transaction,
such as after you were able to insert a value into the NOT NULL column.

If a constraint is defined as deferrable, you can use the SET CONSTRAINTS statement
within the transaction to defer the application of the constraint or to apply the constraint
immediately. (Defining a constraint as deferrable doesn’t automatically defer the application
of that constraint. You must still explicitly defer it within the transaction.) If you explicitly
defer a constraint, you can then temporarily violate the deferred constraint until the constraint
is explicitly applied or the transaction ends. For a better understanding of how this works, let’s
take a look at Figure 16-5.

In this illustration, you’ll notice that, after the transaction has been started, you can set the
constraints to deferred. You don’t have to defer the constraints right after the transaction starts,
but you must defer them before executing any SQL statements that could violate the constraints.
Once the applicable SQL statements have been executed and you’re sure that no SQL data
violates any of the deferred constraints, you can then apply the constraints to the applicable
data. If the constraints are violated at this point, the transaction is considered unsuccessful and
any updates are rolled back. Otherwise, the updates are committed to the database.

Q: Does it matter whether your transaction includes data definition language (DDL)
statements or data manipulation language statements?

A: SQL allows you to include both types of statements in your transaction, but this is not the
case for all SQL implementations. Some implementations do not allow you to mix the two
types of statements in a single transaction. Other products allow you to mix the two types of
statements, but limit which statements can be combined in one transaction. And still other
implementations do not allow data definition language statements to be executed within
the context of a transaction. For example, Oracle implicitly ends any current transaction
when it encounters a DDL statement, and never handles DDL as part of a transaction. The
restrictions that various implementations place on mixing statement types can vary widely.
The reason for this is that the interactions between the two types of statements can be
complicated, so each implementation determines what statement mixtures it will support
in its own database environment. Be sure to check the product documentation to determine
what types of statements can be included in a transaction and how they can be mixed.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 16: Managing SQL Transactions 391

In order to defer or apply the constraints within a transaction, you must use the SET
CONSTRAINTS statement, as shown in the following syntax:

SET CONSTRAINTS { ALL | <constraint names> }
{ DEFERRED | IMMEDIATE }

As you can see from the syntax, you must choose from two sets of options. The first set of
options allows you to specify the deferrable constraints that will be affected by the statement.
If the statement should apply to all deferrable constraints, you can use the ALL keyword;
otherwise, you must list the constraint names, separated by a column. You can specify only
deferrable constraints in the SET CONSTRAINTS statement.

The next set of options you must specify is whether to defer the application of the
identified constraints (DEFERRED) or to apply them immediately (IMMEDIATE). You should
defer constraints before you insert or modify data, and you should apply constraints after
you’ve modified that data.

Normally, you will use the SET CONSTRAINTS statement in sets of two: one statement
to defer the constraints and the other to apply them. However, you don’t actually need to use
the SET CONSTRAINTS statement to apply them because all constraints are applied before
the transaction commits, whether or not the constraints have been explicitly applied. However,
it is generally good practice to document all actions, so be sure to explicitly apply your
constraints.

SET TRANSACTION

START TRANSACTION
Database at
beginning of
transaction

SET CONSTRAINTS (DEFERRED)

SQL statements

SET CONSTRAINTS (IMMEDIATE)

Successful
statement execution

Unsuccessful
statement execution

ROLLBACK

COMMIT Database
updated

Figure 16-5 Deferring constraints in a transaction

www.it-ebooks.info

http://www.it-ebooks.info/

 392 SQL: A Beginner’s Guide

Now let’s take a look at an example of a SET CONSTRAINTS statement that defers
CONSTRAINT_1 and CONSTRAINT_2:

SET CONSTRAINTS CONSTRAINT_1, CONSTRAINT_2 DEFERRED;

As you can see, all you need to do is list the names of the constraints and the DEFERRED
keyword. If you wanted your statement to apply to all deferrable constraints, you could have
used the ALL keyword in place of the constraint names.

Once you execute all the statements you need to execute, with regard to the deferred
constraints, you can then apply the constraints to the new and modified data. To apply the
constraints, use the following SET CONSTRAINTS statement:

SET CONSTRAINTS CONSTRAINT_1, CONSTRAINT_2 IMMEDIATE;

The only difference between this statement and the one that preceded this is that the
IMMEDIATE keyword is used rather than DEFERRED.

NOTE
In order for you to use the SET CONSTRAINTS statement, your SQL implementation
must support both the statement (or a similar statement) and deferrable constraints. If
you cannot define deferrable constraints in your SQL database, the statement is not very
useful. Oracle currently supports the SET CONSTRAINTS statement, but MySQL and
SQL Server do not.

Create Savepoints in a Transaction
Often when you’re setting up your transactions, you’ll find that the set of actions you need to
perform is straightforward and easily treated as a unit. However, there might be times when
some of your transactions are not as simple as others and different degrees of complexity
between actions makes treating them as one unit a little more difficult, even though you still
want to keep them all within the same transaction. One way to deal with this type of situation
is through the use of savepoints, which are designated markers within your transaction that act
as rollback points for portions of your transaction.

NOTE
Support for savepoints varies across SQL implementations. Oracle and MySQL
support the SAVEPOINT statement, but SQL Server uses a SAVE TRANSACTION
statement instead.

Say, for example, that the first part of your transaction contains relatively straightforward
code that, although not particularly complicated, can still demand a heavy load on your
system’s performance. Now suppose that later in your transaction you must perform more
complex actions, actions that are more likely to cause a rollback than the first set of actions.
However, you don’t want your rollbacks to cause you to lose the work performed by the
first set of actions because of the hit on performance. If you insert a savepoint between the

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 16: Managing SQL Transactions 393

two sets of actions and then the second set needs to be rolled back, it will roll back only to
the savepoint, rather than to the beginning of the transaction, thus making it unnecessary to
perform the first set of actions over again. To help illustrate how savepoints work, let’s take a
look at Figure 16-6.

As you can see from the diagram, a savepoint can be inserted wherever you want to
preserve a set of actions. Any changes made prior to the savepoint are preserved. In this case,

Figure 16-6 Deferring constraints in a transaction

SET TRANSACTION

SQL statements

START TRANSACTION

Successful
statement execution

Unsuccessful
statement execution

ROLLBACK

SAVEPOINT

Database at
beginning of
transaction

SQL statements

Database
rolled back to
first savepoint

Successful
statement execution

Unsuccessful
statement execution

ROLLBACK

SAVEPOINT
Database rolled
back to second

savepoint

SQL statements

Successful
statement execution

Unsuccessful
statement execution

ROLLBACK

COMMIT
Database

updated to final
point

www.it-ebooks.info

http://www.it-ebooks.info/

 394 SQL: A Beginner’s Guide

two savepoints have been defined, each after a set of SQL statements have been successfully
executed. If a rollback is necessary at any point after the savepoint has been defined, the
database can be rolled back to that savepoint, without having to go back to the beginning of
the transaction, and the actions prior to the savepoint will not have to be repeated. In addition,
SQL allows you to name savepoints so that, if necessary, you can roll back the transaction to a
specific savepoint, rather than to the one directly preceding the rollback. As a result, you can
be more specific about which operations to preserve and which to roll back in the event that
problems arise in your transaction.

NOTE
As you’ll see in the “Terminate a Transaction” section later in this chapter, a transaction
is rolled back to a savepoint only if the savepoint is identified in the ROLLBACK
statement. Otherwise, the entire transaction is rolled back, the transaction is terminated,
and the database is returned to its original state before the transaction was initiated.

Creating a savepoint in your transaction is very simple, as shown in the following syntax:

SAVEPOINT <savepoint name>

All you need to do is use the SAVEPOINT keyword, followed by a name for the savepoint. For
example, to create a savepoint named SECTION_1, you would use the following statement:

SAVEPOINT SECTION_1;

Once the savepoint is created, you can use the SECTION_1 name to identify the savepoint
later in your transaction.

Releasing a Savepoint
After some operations within a transaction, you might find that you want to release a
savepoint. If a savepoint is released, you can no longer roll back the transaction to that
savepoint. Releasing a savepoint removes it from the transaction. In addition, all savepoints
defined subsequent to the released savepoint are also released. This means that if your
transaction includes three savepoints and you release the first savepoint, all three are removed
from the transaction. The syntax used to release a savepoint is as follows:

RELEASE SAVEPOINT <savepoint name>

As you can see, this statement is similar to the SAVEPOINT statement. For example, to
release the savepoint created in the preceding example, you would use the following statement:

RELEASE SAVEPOINT SECTION_1;

When you execute this statement, the SECTION_1 savepoint is removed from the transaction,
along with any other savepoints defined subsequent to the SECTION_1 savepoint. Releasing
savepoints is a fairly new addition to the SQL standard, so most SQL implementations do not
support it as yet.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 16: Managing SQL Transactions 395

Terminate a Transaction
Earlier in this chapter, you learned that a transaction can be initiated either explicitly or
implicitly. The same thing is true for ending a transaction. You can explicitly commit or roll
back a transaction, which then terminates the transaction, or the transaction is terminated
implicitly when circumstances force that termination.

In SQL, there are four primary circumstances that will terminate a transaction:

● A ROLLBACK statement is explicitly defined in the transaction. When the statement
is executed, actions are undone, the database is returned to the state it was in when the
transaction was initiated, and the transaction is terminated. If the ROLLBACK statement
references a savepoint, only the actions taken after the savepoint are undone, and the
transaction is not terminated.

● A COMMIT statement is explicitly defined in the transaction. When the statement is executed,
all transaction-related changes are saved to the database, and the transaction is terminated.

● The program that initiated the transaction is interrupted, causing the program to abort. In
the event of an abnormal interruption, which can be the result of hardware or software
problems, all changes are rolled back, the database is returned to its original state, and the
transaction is terminated. A transaction terminated in this way is similar to terminating a
transaction by using a ROLLBACK statement.

● The program successfully completes its execution. All transaction-related changes
are saved to the database, and the transaction is terminated. Once these changes are
committed, they cannot be rolled back. A transaction terminated in this way is similar to
terminating a transaction by using a COMMIT statement.

As you can see, the ROLLBACK and COMMIT statements allow you to explicitly
terminate a transaction, whereas a transaction is terminated implicitly when the program
ends or is interrupted. These methods of termination ensure that data integrity is maintained
and the database is protected. No changes are made to the database unless the transaction
is complete.

Now let’s take a closer look at the two statements that you can use to explicitly end
a transaction.

Committing a Transaction
Once all the statements have been executed in a transaction, the transaction must be
terminated. The preferable type of termination is one that commits all the changes to the
database. After all, why try to make changes if you don’t want to commit them? To explicitly
commit the changes and end the transaction, you must use the COMMIT statement, as
shown in the following syntax:

COMMIT [WORK] [AND [NO] CHAIN]

www.it-ebooks.info

http://www.it-ebooks.info/

 396 SQL: A Beginner’s Guide

At its most basic, the COMMIT statement requires only the COMMIT keyword. All other
statement elements are optional. If you want, you can include the WORK keyword, which is
simply a carryover from earlier versions of SQL. In other words, COMMIT and COMMIT
WORK perform the same function. The only reason to use the WORK keyword is if your SQL
implementation requires it.

The next optional element in the COMMIT statement is the AND CHAIN clause, which
is not widely supported in current SQL implementations. The clause tells the system to start
a new transaction as soon as the current transaction ends. The new transaction uses the same
transaction modes as the current transaction. If you use the AND CHAIN option, you do not
need to use the SET TRANSACTION or the START TRANSACTION statements for the next
transaction unless you want to specify different modes.

Rather than specify AND CHAIN in your COMMIT statement, you can specify AND NO
CHAIN, which tells your system not to start a new transaction based on the settings of the
current transaction. If AND NO CHAIN is specified, a new transaction will not be initiated
automatically when the current transaction is terminated. You must start a new transaction by
using an implicit method or explicit method. If neither the AND CHAIN clause nor the AND
NO CHAIN clause is specified, AND NO CHAIN is assumed.

In all likelihood, your commit statement will look like the one in the following example:

COMMIT;

As you can see, the COMMIT keyword is the only required element. However, if you want a
new transaction to be initiated after the current one, you should use the following COMMIT
statement:

COMMIT AND CHAIN;

If you don’t want a new transaction to be initiated, do not include the AND CHAIN clause.

Rolling Back a Transaction
Although the goal of any transaction is to commit the changes made by the statements in
that transaction, there will no doubt be times when you want to roll back those changes.
To be able to control these rollbacks, you must use a ROLLBACK statement to undo
changes and terminate the transaction, or to undo changes back to a specified savepoint.
The following syntax shows the various elements that can be included in a ROLLBACK
statement:

ROLLBACK [WORK] [AND [NO] CHAIN]
[TO SAVEPOINT <savepoint name>]

The first line of syntax is very similar to the COMMIT statement. You must specify the
ROLLBACK keyword. In addition, you can specify WORK, AND CHAIN, or AND NO
CHAIN, all of which work the same way they did in the COMMIT statement, with AND NO
CHAIN once again being the default.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 16: Managing SQL Transactions 397

However, the ROLLBACK statement, unlike the COMMIT statement, includes the
optional TO SAVEPOINT clause. The TO SAVEPOINT clause specifies a savepoint that is
used if changes have to be rolled back. This applies to any changes made after the specified
savepoint. If you include the TO SAVEPOINT clause in your ROLLBACK statement,
the transaction will be rolled back to the savepoint, but it will not be terminated. If the
TO SAVEPOINT clause is not included, all changes are rolled back and the transaction is
terminated.

The most basic type of ROLLBACK statement is one that includes no optional elements,
as in the following example:

ROLLBACK;

You could have included the WORK keyword and the AND NO CHAIN clause, and
the statement would have performed the same function. If you want a new transaction to
be initiated when the current transaction is terminated, you must specify the AND CHAIN
clause. Keep in mind, however, that you cannot specify the AND CHAIN clause and the TO
SAVEPOINT clause because AND CHAIN relies on the transaction being terminated in order
to start a new transaction.

If you do specify the TO SAVEPOINT clause, you must include the name of the savepoint.
For example, the following ROLLBACK statement specifies the SECTION_1 savepoint:

ROLLBACK TO SAVEPOINT SECTION_1;

If this statement is executed, all changes that occurred after the SECTION_1 savepoint was
created are rolled back to the state the database was in when the SAVEPOINT statement was
executed. Even if other savepoints were created after the SECTION_1 savepoint, changes are
still rolled back to SECTION_1.

Q: Are there any performance implications to using transactions?

A: Indeed there are. The DBMS must carefully log the effects of every SQL statement inside
a transaction so that changes can be rolled back when needed. And it is possible to fill
the memory areas set aside for tracking transactions. To counter this, SQL programmers
sometimes break processes that apply lots of changes to the database into multiple
transactions using commits. Check your DBMS documentation to see if there are
restrictions on using commits during program loops, particularly when cursors are open.

Ask the Expert

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 398 SQL: A Beginner’s Guide

Try This 16-1 Working with Transactions
In this Try This exercise you will create several transactions that execute statements against
the INVENTORY database. For each transaction, you will explicitly start the transaction and
execute one or more SQL statements. For this exercise, you will work with the COMMIT
statement and ROLLBACK statement in separate transactions because you’re working with
directly invoked SQL (in your client application). However, if you were initiating transactions
from within an application programming language, you would no doubt be using COMMIT and
ROLLBACK together in some sort of conditional structure. In that way, certain results would
cause the transaction to roll back, and other results would cause the transaction to commit,
depending on how you set up the conditions in the programming language. However, for this
exercise, we keep them separate so that you can effectively run through these steps. You can
download the Try_This_16.txt file, which contains the SQL statements used in this exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. The first transaction that you’ll create uses a START TRANSACTION statement to set the
isolation level to READ UNCOMMITTED, retrieves information from the ARTISTS table,
and then commits the transaction. Enter and execute the following SQL transaction:

Q: Earlier in the chapter, you state that statements such as the SELECT, DELETE,
UPDATE, and CREATE TABLE statements must be executed within the context of
a transaction. However, we have not been using transactions in the examples and Try
This exercises throughout the book. When are transactions used?

A: Throughout the book, we have been using interactive SQL (direct invocation) to
communicate with the database. Most of the SQL statements that we have been executing
within this environment have been done within the context of a transaction, even though
you weren’t aware of that happening. For most SQL implementations, each SQL statement
is considered its own transaction, a processing mode that is often called autocommit.
When you execute the statement, a transaction is initiated. If the statement is successful,
any changes made are committed to the database and the transaction is terminated, in
much the same way as if you had executed a COMMIT statement. If the statement is not
successful, the changes are rolled back, the database is returned to the state it was in when
the statement was first executed, and the transaction is terminated, as though you executed
a ROLLBACK statement. Although interactive SQL tends to treat each statement as its own
transaction, you can usually execute transaction-related statements in this environment.
However, which statements you can execute and what options they support vary from
product to product, so make sure you check the documentation. In general, it is not
necessary to specifically define a transaction in interactive SQL.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 16: Managing SQL Transactions 399

START TRANSACTION
 ISOLATION LEVEL READ UNCOMMITTED;

SELECT *
 FROM ARTISTS;

COMMIT;

 The transaction should return all the rows and columns from the ARTISTS table.

 3. The next transaction that you’ll create also uses a START TRANSACTION statement to
set the isolation level. But this time you’ll be setting the level to SERIALIZABLE. Because
SERIALIZABLE is the default, you aren’t required to define it; however, for the purposes
of this exercise, we’re going to include it. After you start the transaction, you’ll attempt to
update the COMPACT_DISCS table by increasing the IN_STOCK value by 2 for all rows
with a LABEL_ID value equal to 832. After the UPDATE statement, you’ll roll back the
transaction so that no data is modified in the database. Enter and execute the following SQL
transaction:

START TRANSACTION
 ISOLATION LEVEL SERIALIZABLE;

UPDATE COMPACT_DISCS
 SET IN_STOCK = IN_STOCK + 2
 WHERE LABEL_ID = 832;

ROLLBACK;

 You should receive some sort of message acknowledging the termination of the transaction.

 4. Now you’ll confirm that the update you attempted in the preceding step was indeed rolled
back. Enter and execute the following SQL statement:

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE LABEL_ID = 832;

 The SELECT statement should return the following query results:

CD_TITLE IN_STOCK
---------------------------- --------
That Christmas Feeling 8
Patsy Cline 12 Greatest Hits 32
Out of Africa 29
Blues on the Bayou 27

 The IN_STOCK values shown in these results are what were contained in the COMPACT_
DISCS table before you executed the transaction. If the transaction had not been rolled
back, each of these values would have been increased by 2.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 400 SQL: A Beginner’s Guide

 5. Now you’re going to add a savepoint to the transaction we created in the previous step. You
want to be sure to reference the savepoint in the ROLLBACK statement. You will also add a
SELECT statement before the savepoint. Enter and execute the following SQL transaction:

START TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE LABEL_ID = 832;

SAVEPOINT SECTION_1;

UPDATE COMPACT_DISCS
 SET IN_STOCK = IN_STOCK + 2
 WHERE LABEL_ID = 832;

ROLLBACK TO SAVEPOINT SECTION_1;

 Now your transaction will roll back only to the point preceding the UPDATE statement. In
addition, because your transaction included a SELECT statement, you should receive the
query results that you received in the previous step.

 6. In the preceding transaction, the SELECT statement came before the savepoint, which
means that the SELECT statement was executed before the UPDATE statement. If the
transaction did not roll back the update, the query results would not reflect the correct
information. As a result, you should verify that the UPDATE statement was rolled back.
Enter and execute the following SQL statement:

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE LABEL_ID = 832;

 Your query results should show the same IN_STOCK values as the query results returned in
the previous two steps.

 7. Close the client application.

Try This Summary
In this Try This exercise, you created and initiated three transactions. In the first one, you
simply queried data and committed the transaction. In the next two, you updated data and
then rolled back the updates. However, as you saw in the third transaction, it is possible to
roll back a transaction to a specified savepoint. This allows you to protect certain portions of
your transaction without having to reprocess statements that have been executed successfully.
Because you rolled back the updates that you made, the INVENTORY database should have
been left in the same state it was in when you began this exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 16: Managing SQL Transactions 401

 Chapter 16 Self Test
 1. Which transaction characteristic refers to the all-or-nothing nature of a transaction?

 A Atomic

 B Consistent

 C Isolated

 D Durable

 2. A(n) ____________ is a unit of work that is made up of one or more SQL statements that
perform a related set of actions.

 3. What statement can you use to explicitly initiate a transaction?

 4. Which SQL statements will terminate a transaction?

 A SAVEPOINT

 B SET TRANSACTION

 C ROLLBACK

 D COMMIT

 5. What are the three types of transaction modes that you can specify in a SET
TRANSACTION statement?

 6. Which access level options can you include in a START TRANSACTION statement?

 A READ ONLY

 B UPDATE

 C LOCAL

 D READ WRITE

 7. Two concurrent transactions are active in your system. The first transaction modifies data in
a table. The second transaction sees those modifications before they’re actually committed
to the database. The first transaction then rolls back the modifications. Which type of data
phenomenon has occurred?

 A Phantom read

 B Repeatable read

 C Dirty read

 D Nonrepeatable read

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 402 SQL: A Beginner’s Guide

 8. A(n) ____________ read can occur when a transaction reads a table based on some sort of
search condition, then a second transaction updates the data in the table, and then the first
transaction attempts to reread the data, but this time different rows are returned because of
how the search condition is defined.

 9. What type of constraint can you specify in a SET CONSTRAINTS statement?

 10. Which isolation level fully isolates one transaction from another transaction?

 11. You’re using a SET TRANSACTION statement to configure transaction modes. You want
to ensure that no nonrepeatable reads and no dirty reads can occur within that transaction.
However, you’re not concerned about phantom reads. Which isolation level should you use?

 A READ UNCOMMITTED

 B READ COMMITTED

 C REPEATABLE READ

 D SERIALIZABLE

 12. You’re setting up a transaction that defers the application of the CK_CD_STOCK constraint
until you execute several SQL statements. After you execute the statements, you want
to explicitly apply the constraint to the changes you made to the database. What SQL
statement should you use to apply the constraints?

 13. A(n) ____________ is a designated marker within your transaction that acts as a rollback
point for a portion of your transaction.

 14. You want to create a savepoint named svpt_Section2. What SQL statement should you use?

 15. You create a transaction that includes four savepoints: Section1, Section2, Section3, and
Section4. Near the end of the transaction, after all four savepoints, you define a RELEASE
SAVEPOINT that specifies the Section2 savepoint. Which savepoint or savepoints are
removed from the transaction when the RELEASE SAVEPOINT statement is executed?

 A Section1

 B Section2

 C Section3

 D Section4

 16. What circumstances will terminate a transaction?

 17. You’re creating a ROLLBACK statement in your transaction. You want the rollback to undo
changes back to the svpt_Section2 savepoint. What SQL statement should you use?

 18. You’re creating a COMMIT statement in your transaction. After the transaction is
terminated, you want a new transaction to be initiated. The new transaction should be
configured with the same transaction modes as the first transaction. How should you create
your COMMIT statement?

www.it-ebooks.info

http://www.it-ebooks.info/

403

Chapter 17
Accessing SQL Data
from Your Host
Program

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 404 SQL: A Beginner’s Guide

Key Skills & Concepts

● Invoke SQL Directly

● Embed SQL Statements in Your Program

● Create SQL Client Modules

● Use an SQL Call-Level Interface

Throughout this book, you have been performing Try This exercises and testing examples by
using a client application to work interactively with your SQL database. For example, you might

have been using SQL Server Management Studio to access a SQL Server database, SQL*Plus or
iSQL*Plus to access an Oracle database, or perhaps the MySQL Command Line Client to access a
MySQL database. This method of data access is referred to as direct invocation, or interactive SQL.
The SQL:2006 standard also provides for the use of other types of data access, including embedded
SQL, SQL client modules, and the call-level interface (CLI); however, the types of data access
supported by an SQL implementation often vary from product to product. Some, for example, do
not support embedded SQL, and few support SQL client modules. In this chapter, I introduce you
to the four types of data access methods and explain how they can be used to retrieve and modify
data in your SQL database. Because SQL and CLI are the two methods most commonly used by
programs to access SQL data, I cover these two topics in greater detail than direct invocation and
SQL client modules, although I do provide a foundation in all four access types.

Invoke SQL Directly
If you’ve gotten this far in the book, you should already be very comfortable with interactive
SQL. By using your client application, which comes with most database management
products, you’ve been able to create ad hoc SQL statements that return immediate results to
the application. These results are normally displayed in a window separate from where you
executed your SQL statement. For example, let’s take a look at Figure 17-1, which shows
SQL Server Management Studio. Notice that the top window includes a SELECT statement
and the bottom window includes the query results from executing that statement. Most direct
invocation client applications behave in a manner similar to this.

The types of SQL statements supported by the direct invocation method can vary from one
SQL implementation to the next. Although most implementations will allow you to execute
basic types of statements, such as SELECT or UPDATE, they might not allow you to execute
statements specific to another method of data access. For example, some implementations
might not allow you to declare a cursor within an interactive environment.

Despite the differences among SQL implementations, the SQL standard does define which
types of statements should be supported in an interactive environment. These include SELECT,

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 405

INSERT, UPDATE, and DELETE statements and statements related to schema definitions,
transactions, connections, and sessions. You should also be able to declare temporary tables in
an interactive environment. In fact, nearly any actions critical to the maintenance of data and
of the underlying database structure should be supported by direct invocation.

One of the main advantages to interactive SQL—in addition to the ability to execute ad
hoc statements—is the elimination of any impedance mismatch. As you’ll recall from earlier
discussions, an impedance mismatch can occur because of differences in data types between
SQL and application programming languages and in how query results (result sets) are handled
between SQL and those languages. However, interactive SQL is a pure SQL environment,
which means that only the data types supported by the implementation can be used, and result
sets pose no problems to the client application because you can simply scroll through query
results. It is also common for application developers to use interactive SQL to test the SQL
statements they intend to embed in other modules. Even so, direct invocation represents only
a small percentage of users. You’ll find that most data access is through embedded SQL and
CLI-type mechanisms, and some through SQL client modules, but relatively few users rely
solely on interactive SQL.

Figure 17-1 SQL Server Management Studio (SQL Server 2005 and 2008)

www.it-ebooks.info

http://www.it-ebooks.info/

 406 SQL: A Beginner’s Guide

Embed SQL Statements in Your Program
In Chapter 15, when I discuss SQL cursors, I introduce you to embedded SQL. As you’ll
recall from that discussion, embedded SQL refers to SQL statements that are interspersed in
some type of application programming language. The SQL statements are blended into the
host language to allow the source program to be able to access and modify SQL data and the
underlying database structure.

According to the SQL:2006 standard, you can embed SQL statements in the following
programming languages:

● Ada

● C

● COBOL

● Fortran

● MUMPS

● Pascal

● PL/I

Although the standard supports embedded SQL statements in these languages, SQL
implementations rarely support embedding statements in all these languages. An
implementation might be limited to only one or two programming languages, and some
implementations might not support embedded SQL at all (although most implementations
provide embedded SQL for at least one language). In addition, many implementations support
embedded SQL in languages other than those specified in the SQL standard. For example,
Oracle offers SQLJ, which supports embedded SQL in Java programs.

When a program contains embedded SQL statements, it must be compiled in a manner
different from regular programs. Figure 17-2 illustrates the process followed when compiling
these programs.

As you can see from the figure, we start with a program file that contains the host
programming language and the embedded SQL statements. Before the program is compiled, it
is submitted to a precompiler that is specific to the host programming language and the SQL
implementation. The precompiler strips the SQL statements out of the host language code,
often converting them into comments to document the original statements, and replaces them
with calls to vendor-supplied library routines that access the SQL statements. As a result, two
files are created, one for the host language and one for the SQL statements.

Once a file is created for the host language, the source program is compiled in its normal
way, as would be expected from a specific language. The output from the host language
compiler is the object code, which is linked to various library routines. From this, an
executable program is generated that links to the application plan. The application plan is
created by a bind utility that validates and optimizes the SQL statements. The plan contains the
SQL statements and information that the program needs to access the database.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 407

Creating an Embedded SQL Statement
When you develop a program that contains embedded SQL, you must follow specific
conventions that determine how the SQL code is added to the program. These conventions are
based on a combination of special SQL language elements and the requirements of the host
programming language. In order to be used in a host language, an embedded SQL statement
must conform to the following guidelines:

● Each SQL statement must begin with a qualified prefix.

● Each SQL statement may or may not require a qualified terminator, depending on the host
language.

● Line breaks within the SQL statement must be handled according to the style of the host
language.

● The placement of comments must be handled according to the style of the host language.

Specific to SQL
implementation

and host language
SQL precompiler

Source program
containing host

language and SQL
statements

Host language
with calls to

SQL
statements

SQL
statements

Host language
compiler

Bind program

Object code
Application

plan

Linker

Executable
program

Library
routines

Figure 17-2 Compiling programs that contain embedded SQL

www.it-ebooks.info

http://www.it-ebooks.info/

 408 SQL: A Beginner’s Guide

Most embedded SQL statements require a qualified prefix and terminator. Table 17-1
provides the prefix and terminator for each supported programming language.

As you can see from the table, the Ada, C, Pascal, and PL/I languages all handle an embedded
SQL statement in the same way. For example, suppose you want to embed a SELECT statement
that retrieves the CD_NAME and IN_STOCK columns from the CD_INVENTORY table.
To do so, you would use the following statement:

EXEC SQL
 SELECT CD_NAME, IN_STOCK
 FROM CD_INVENTORY;

Notice that the statement is preceded by the EXEC SQL prefix and ended with the
semicolon terminator. If you were to create a similar statement in another language, your
prefix or terminator might be different. In the case of MUMPS, they would both be different.

NOTE
Normally, it doesn’t matter whether your embedded SQL statements appear in
uppercase or lowercase. Programmers generally follow the conventions of the host
language. However, for the purposes of this chapter, I’ll treat embedded SQL statements
as I have other SQL statements throughout the book: I’ll use uppercase for both SQL
keywords and SQL identifiers.

Using Host Variables in Your SQL Statements
In order to use embedded SQL effectively, you must be able to pass values between the host
program and the SQL statements. For example, your embedded SQL statement might include
a WHERE clause that requires a specific value in order to evaluate the search condition. The
value might be supplied by a user or by an operation within the host program. In either case,
that value must in some way be passed from the program to the SQL statement.

To pass values to and from an SQL statement, you can use host variables. A host variable is
a type of parameter that is declared within the host language and is then referenced within the
embedded SQL statement. When a host variable is used within an SQL statement, the name of

Language Prefix Terminator

Ada EXEC SQL ;

C EXEC SQL ;

COBOL EXEC SQL END-EXEC

Fortran EXEC SQL (no terminator)

MUMPS &SQL()

Pascal EXEC SQL ;

PL/I EXEC SQL ;

Table 17-1 Beginning and Ending an SQL Statement

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 409

the variable must be preceded by a colon. The colon signals to the precompiler that the named
item is a variable and not a database object, such as a table or a column. As a result, you do not
have to worry about whether the host variable shares the same name as a database object.

You can use a host variable in an embedded SQL statement in any place where you might
expect to define a value. For example, the following SELECT statement can be embedded in a
C program:

EXEC SQL
 SELECT CD_NAME, IN_STOCK
 FROM CD_INVENTORY
 WHERE CD_ID = :v_CD_ID;

Notice that the v_CD_ID host variable is preceded by a colon. The colon is used only within the
SQL statement. When the variable is declared—earlier in the host program—no colon is used.

NOTE
The preceding example begins with EXEC SQL and ends with a semicolon. In addition,
no specific continuation character is required to indicate a line break in the SQL
statement. These conventions are consistent with what you would expect to find in a C
program. For the examples in this chapter, I will be using embedded SQL statements
as they would appear within a C program. Embedded SQL is well supported in C by a
number of SQL implementations.

You’re not limited to referencing a host variable in the WHERE clause of a SELECT
statement. For example, you can reference a variable in the SET clause of an UPDATE
statement, the VALUES clause of an INSERT statement, or the WHERE clause of a DELETE
or UPDATE statement. However, you cannot use a host variable in place of an SQL identifier.
In other words, you cannot pass an object name, such as a table name or column name, through
a host variable.

Declaring Host Variables
As I mentioned earlier, you must declare your host variables within the host program. You
can declare them anywhere in the program where you would normally declare variables in a
particular language. In addition, you must declare the variables according to the conventions
of the host language. The only difference is that you must begin the declarations with the
BEGIN DECLARE SECTION statement and end the declarations with the END DECLARE
SECTION statement. These two statements notify the precompiler that the variables enclosed
in the statements are to be used in the other embedded SQL statements.

Let’s take a look at an example of what I mean. Suppose you want to declare two
variables, one to receive a value that identifies the CD and one that receives the name of the
CD. Your variable declaration in C might look like the following:

EXEC SQL
 BEGIN DECLARE SECTION;
 long v_CD_ID; /* compact disc ID */

www.it-ebooks.info

http://www.it-ebooks.info/

 410 SQL: A Beginner’s Guide

 varchar v_CD_NAME[60]; /* compact disc name */
EXEC SQL
 END DECLARE SECTION;

As you can see, the variable declarations are enclosed in the two declaration-related
SQL statements. Notice that these statements are treated just like any other embedded SQL
statements in C. Each statement begins with EXEC SQL and ends with a semicolon.

Two host variables are being declared in this section. The first one, v_CD_ID, is declared
with the long data type, and the second variable, v_CD_NAME, is declared with the varchar
data type. The two variable declarations follow the conventions of the host language. Notice
that a comment follows each declaration. The comments also adhere to the conventions of the
host language.

When host variables are used in SQL statements, an impedance mismatch can occur
as a result of the differences between host language data types and SQL data types. As you
can see in the preceding example, the variables are declared with C data types; however, the
variables will be used in SQL statements to pass data to columns that are configured with SQL
data types. If the data types are compatible, then data can be passed through the variables;
otherwise, the impedance mismatch between the data types prevents values from being passed.
For example, the v_CD_ID variable is configured with the long data type, which is compatible
with the INTEGER data type in SQL, and the v_CD_NAME variable is configured with the
varchar data type, which is compatible with the CHARACTER VARYING data type (usually
abbreviated as VARCHAR) in SQL. As a result, you can pass data through these variables as
long as the receiving columns are configured with the compatible data types.

Q: You state that data can be passed from the variable to the SQL statement if the data
types are compatible. How do you pass data if they’re not compatible?

A: Most programming languages contain at least some data types that do not match up with
SQL data types. If this situation arises, you can use the CAST value expression within
the SQL statement to convert the variable value into a value that can be used by the SQL
statement. In effect, the CAST value expression changes the data type of the value. For
example, we can modify the previous embedded statement to convert the v_CD_ID host
variable, as shown in the following example:

EXEC SQL
 SELECT CD_NAME, IN_STOCK
 FROM CD_INVENTORY
 WHERE CD_ID = CAST(:v_CD_ID AS INT);

As you can see, CAST is used to convert the value in the host variable to an INTEGER
data type. (For more information about CAST, see Chapter 10.) To determine which data
types in a host language are compatible with data types in SQL, you should refer to the
SQL:2006 standard, language-specific documentation, or product-specific documentation.

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 411

Retrieving SQL Data
As you have seen throughout this book, the process of querying data in an SQL database
involves executing a SELECT statement that in turn retrieves data from the applicable table
or tables and returns that data in a result set. A result set can be made up of one or more rows
and one or more columns. When you are querying data interactively, the multiple rows present
no problems because your client application can handle more than one row. However, when
querying data from an embedded SQL statement, multiple rows have to be handled through a
cursor in order to allow that host language to work with one row at a time. A cursor, as you’ll
recall, acts as a pointer to specific rows in the result set. The cursor declaration defines the
SELECT statement that retrieves data from the database, and cursor-related statements are then
used to retrieve the individual rows from that result set. (For more information about cursors,
see Chapter 15.)

Cursors, then, provide a solution to one type of impedance mismatch that can occur
between SQL and the host language. Specifically, SQL returns data in sets, and most
programming languages cannot handle sets. By using some sort of looping construct within
the programming language and then using the SQL FETCH statement, you can cycle through
each row in the result set to retrieve the data that you need.

Despite the availability of cursors to embedded SQL, there are often times when you know
that your database query will return only one row. For example, you might want to retrieve data
about a specific CD or performing artist, in which case, a cursor is unnecessary. To facilitate
single-row retrievals, embedded SQL supports the singleton SELECT statement. A singleton
SELECT statement is similar to a regular SELECT statement except in two ways:

● You do not include a GROUP BY, HAVING, or ORDER BY clause.

● You include an INTO clause that specifies the host variables that will receive the data
returned by the SELECT statement to the host program.

For example, suppose your SELECT statement returns the name of the CD and the number
in stock, as shown in the following embedded statement:

EXEC SQL
 SELECT CD_NAME, IN_STOCK
 INTO :v_CD_NAME, :v_IN_STOCK
 FROM CD_INVENTORY
 WHERE CD_ID = :v_CD_ID;

As you can see in this statement, the v_CD_ID variable is used to specify which CD should
be returned. The value is entered by the user, and the variable passes that value from the host
program into the SELECT statement.

Now let’s take a look at the INTO clause. Notice that the clause contains two variables,
the same number of variables as the number of columns retrieved from the CD_INVENTORY
table. These variables are declared in the same way as the other host variables that we’ve seen.
Because this SELECT statement returns only one row and two columns, only two values are
returned. These values are transferred to the variables. The variables must be specified in the
same order as the column names are specified.

www.it-ebooks.info

http://www.it-ebooks.info/

 412 SQL: A Beginner’s Guide

NOTE
The v_CD_ID variable in the WHERE clause is an input host variable, and the v_CD_
NAME and v_IN_STOCK variables in the INTO clause are output host variables. The
only difference is in how they are used by the SQL statement—they are defined in
exactly the same manner within the host language.

Handling Null Values
In Chapter 4, I discussed null values and how they’re used to represent unknown or unavailable
data. As you’ll recall from that discussion, most SQL columns, by default, permit null values,
although you can override the default by defining a NOT NULL constraint on the column.
However, if you don’t override the default and null values are permitted, you can run into
a problem with the host language because most application programming languages do not
support null values.

To work around this issue, SQL allows you to declare indicator host variables. An
indicator host variable is a type of variable that accompanies a regular host variable, also
referred to as a data host variable. For simplicity, I refer to these two types of host variables
as just indicator variables and data variables. The indicator variable contains a value that
specifies whether or not the value in the associated data variable is null. Indicator variables are
declared in the same way as other host variables.

Let’s take a look at an example of indicator variables to illustrate how they work. In the
following embedded SELECT statement, an indicator variable has been added to each of the
data variables in the INTO clause:

EXEC SQL
 SELECT CD_NAME, IN_STOCK
 INTO :v_CD_NAME :ind_CD_NAME, :v_IN_STOCK :ind_IN_STOCK
 FROM CD_INVENTORY
 WHERE CD_ID = :v_CD_ID;

The INTO clause includes two indicator variables: ind_CD_NAME and ind_IN_STOCK.
Notice that each indicator variable follows the associated data variable. The placement of
the indicator variable is the only indication the SQL implementation has that a particular
host variable is an indicator variable. There is nothing in the variable declaration or naming
that distinguishes indicator variables from data variables. When the implementation
sees that one variable follows the other and that no comma separates the two, the
implementation assigns a value of 0 to the indicator variable if the associated variable
contains a real value (is not null). If the associated variable contains a null value, the
implementation assigns a value of -1 to the indicator variable. The host program then
takes the appropriate action based on this information. It is essential that the host program
test the indicator variables for null values before attempting to use the values in the host
variable because when nulls are encountered, the value of the corresponding host variable is
not changed and thus could contain leftover values from a previous statement or unknown
data that programmers call garbage.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 413

NOTE
When you declare an indicator variable, be sure to use a numeric data type that
supports the 0 and -1 values. The value 0 is logically a false condition because all bits
will be set to a binary 0, while the value -1 is logically a true condition because all bits
will be set to a binary 1.

Error Handling
When you embed SQL statements into your host language, you should provide a way to take
specific actions if you receive error or warning messages when you try to access data. SQL
provides a relatively straightforward method that you can use to monitor errors and warnings
and take actions depending on the results of that monitoring. By embedding WHENEVER
statements in your host language, you can provide your program with an effective level of error
handling that works alongside your other embedded statements.

The WHENEVER statement includes two sets of options, as shown in the following syntax:

WHENEVER
{ SQLEXCEPTION | SQLWARNING | NOT FOUND }
{ CONTINUE | GOTO <target> }

As you can see, you must first specify the WHENEVER keyword and then specify the
necessary options. The first set of options indicates the condition to which the WHENEVER
statement applies. If that condition is met, a specified action is taken. A WHENEVER
statement can include one of three conditions:

● SQLEXCEPTION The condition is met whenever an SQL statement generates an
exception. For example, an exception might be generated when you try to insert invalid
data into a column.

● SQLWARNING The condition is met whenever an SQL statement generates a warning.
For example, a statement might generate a warning if a number has been rounded off.

● NOT FOUND The condition is met whenever a SELECT statement cannot return data
in its query results. This can apply to a singleton SELECT statement or to a FETCH
statement at the end of the cursor’s result set.

Once you specify a condition in your WHENEVER statement, you must specify an action.
The WHENEVER statement supports two actions:

● CONTINUE The program will continue running at the next statement.

● GOTO <target> The program will jump to a section within the host language that is
named in the <target> placeholder.

Now that we’ve looked at the options available in the WHENEVER statement, let’s take
a look at an example. Suppose that you want your SQL statements to go to a certain part of the

www.it-ebooks.info

http://www.it-ebooks.info/

 414 SQL: A Beginner’s Guide

Try This 17-1

program if an error occurs. In the following WHENEVER statement, an exception will cause
the program to move to the Error1 section:

EXEC SQL
 WHENEVER SQLEXCEPTION GOTO Error1;

Notice that the SQLEXCEPTION option and the GOTO option are specified in this statement.
The SQLEXCEPTION option tells the program to take a specified action if an SQL statement
generates an exception. The GOTO option defines the action that should be taken. In this case, the
option specifies that the program should move to the Error1 section of the host language.

A WHENEVER statement applies to the embedded SQL statements that follow it. You
can embed as many WHENEVER statements in your host language as necessary. The last
statement to appear is the one that is applied to the other statements.

 Embedding SQL Statements
In most of the Try This exercises in this book, you used a client application to access your SQL
database interactively. However, because of the subject matter of this chapter, particularly with
regard to embedded SQL, this exercise will take a different approach from previous Try This
exercises. For this exercise, you will use some type of text editing program (such as Microsoft
Notepad) to complete the steps. Because programming in a host language is beyond the scope
of this book, you will create only the SQL statements that are embedded in the host language.
The statements will conform to C, although they might apply to other host languages. In the
exercise, you will set up variable declarations, create an error-handling statement, and embed
an SQL SELECT statement that queries data from the INVENTORY database. You can
download the Try_This_17_1.txt file, which contains the embedded SQL statements used in
this Try This exercise.

Step by Step
 1. Open a text editing program such as Microsoft Notepad.

 2. The first step is to create one input host variable and two output host variables. The
purpose of the input host variable is to be able to receive a CD identifier from the user. That
identifier can then be used in the WHERE clause of the SELECT statement to determine
which row of data will be returned from the COMPACT_DISCS table. Along with declaring
the variables, you will include comments that identify the purpose of those variables. Type
the following embedded SQL statements and variable declarations into your text document:

EXEC SQL
 BEGIN DECLARE SECTION;
 long v_CD_ID; /* input variable for CD identifier */
 varchar v_CD_TITLE[60]; /* output variable for CD title */
 long v_IN_STOCK; /* output variable for IN_STOCK value */
EXEC SQL
 END DECLARE SECTION;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 415

 Notice that the variable declaration section is required, so you had to include the BEGIN
DECLARE SECTION statement and the END DECLARE SECTION statement. These
statements are necessary to notify the precompiler that the variable declarations will be used
in the embedded SQL statements.

 3. After you create your declaration section, you realize that you want to include indicator
variables for the output data variables. As a result, you must add two declarations to your
declaration section. Type the following declarations into your text document:

short ind_CD_TITLE; /* indicator variable for v_CD_TITLE */
short ind_IN_STOCK; /* indicator variable for v_IN_STOCK */

 You can add the declarations anywhere in your declaration section. However, for clear
coding, I suggest you add them close to each of their associated data variables, as shown in
the following declaration section:

EXEC SQL BEGIN DECLARE SECTION;
 long v_CD_ID; /* input variable for CD identifier */
 varchar v_CD_TITLE[60]; /* output variable for CD title */
 short ind_CD_TITLE; /* indicator variable for v_CD_TITLE */
 long v_IN_STOCK; /* output variable for IN_STOCK value */
 short ind_IN_STOCK; /* indicator variable for v_IN_STOCK */
EXEC SQL END DECLARE SECTION;

 Notice that the two new declarations have been inserted beneath their respective data
variables.

 4. Now let’s include an error-handling statement into your test document. The statement will
represent a section named Error1 in your host language. The assumption will be that if
an embedded SQL statement generates an exception, the program will jump to the Error1
section and take whatever action is defined in that section. Type the following embedded
SQL statement into your text document:

EXEC SQL
 WHENEVER SQLEXCEPTION GOTO Error1;

 Notice that the embedded SQL code contains a WHENEVER statement that specifies the
SQLEXCEPTION and GOTO options.

 5. Now you’re ready to create the embedded SELECT statement. The statement will contain the
variables defined in your declaration section. In addition, a singleton SELECT statement will
be used because the statement will retrieve only one row at a time. The WHERE clause is based
on a specified COMPACT_DISC_ID value, and each value is unique within the COMPACT_
DISCS table. (The COMPACT_DISC_ID column is the primary key, so values must be unique
within that column.) Type the following embedded SQL statement into your text document:

EXEC SQL
 SELECT CD_TITLE, IN_STOCK
 INTO :v_CD_TITLE :ind_CD_TITLE, :v_IN_STOCK :ind_IN_STOCK

www.it-ebooks.info

http://www.it-ebooks.info/

 416 SQL: A Beginner’s Guide

 FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = :v_CD_ID;

 Notice that an INTO clause is included in this statement. The INTO clause contains the
output data variables and their associated indicator variables. Your text document should
now look like the following code:

EXEC SQL
 BEGIN DECLARE SECTION;
 long v_CD_ID; /* input variable for CD identifier */
 varchar v_CD_TITLE[60]; /* output variable for CD title */
 short ind_CD_TITLE; /* indicator variable for v_CD_TITLE */
 long v_IN_STOCK; /* output variable for IN_STOCK value */
 short ind_IN_STOCK; /* indicator variable for v_IN_STOCK */
EXEC SQL
 END DECLARE SECTION;
EXEC SQL
 WHENEVER SQLEXCEPTION GOTO Error1;
EXEC SQL
 SELECT CD_TITLE, IN_STOCK
 INTO :v_CD_TITLE :ind_CD_TITLE, :v_IN_STOCK :ind_IN_STOCK
 FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = :v_CD_ID;

 If this were an actual C program, you would also see the C code surrounding the embedded
SQL statements. The C code would represent that actual program and would take actions
appropriate to that program. For example, the host language would include code that would
allow the program to receive the CD identifier for the user. That identifier would be passed
to the v_CD_ID variable to be used in the embedded SELECT statement.

 6. Save the file and close the application.

Try This Summary
In this Try This exercise, you created a host variable declaration section, declared five host
variables, added an error-handling statement, and embedded a singleton SELECT statement.
If this were a complete C program, the host language would have used the data in the output
variables to take any actions appropriate to the program. The C program would also include
a section named Error1 that would specify a specific action to take should an exception be
raised when the SQL statement is executed. You can, of course, include many more embedded
SQL statements than those used in this exercise, and you can include other types of statements
such as UPDATE or DELETE. However, the purpose of this exercise was to provide you with
a foundation in embedded SQL. For more details on embedding SQL statements, you should
refer to documentation specific to the host language and documentation for the applicable SQL
implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 417

Create SQL Client Modules
Now that you have a basic understanding of embedded SQL, let’s take a look at SQL client
modules. SQL client modules are self-contained collections of SQL statements. Unlike
embedded SQL, in which the SQL statements are inserted into the host programming
language, SQL client modules are separate from the host language. The host language contains
calls that invoke the module, which in turn executes the SQL statements within that module.

An SQL client module is made up of the properties that define the module, temporary
tables, cursors, and the procedures that contain the SQL statements. Each procedure can
contain only one SQL statement. The following syntax provides the basic elements of an SQL
client module:

MODULE <module name> [NAMES ARE <character set>]
LANGUAGE { ADA | C | COBOL | FORTRAN | MUMPS | PASCAL | PLI }
[SCHEMA <schema name >] [AUTHORIZATION <authorization identifier>]
[<temporary table declarations>] [<cursor declarations>]
PROCEDURE <procedure name> (<parameter declarations>)
<SQL statement>;

Let’s take a look at each clause within the syntax so that you have a better understanding
of all the elements that make up an SQL client module. The MODULE clause specifies a name
for the module. This is followed by the optional NAMES ARE clause, which is used to specify
a character set for the identifiers in the module. If the NAMES ARE clause is not specified, the
default character set for the SQL implementation is used. The next element in the syntax is the
LANGUAGE clause, which specifies the host language that will be calling the module. You
must specify a language.

After you’ve defined the LANGUAGE clause, you must define a SCHEMA clause, an
AUTHORIZATION clause, or both. The SCHEMA clause identifies the default schema to
be used by SQL statements in the module. The AUTHORIZATION clause identifies the
authorization identifier to be used for executing the statements within the module. If no
AUTHORIZATION clause is specified, the current authorization identifier is assumed.

You can also declare temporary tables and cursors within a module. Temporary tables must
be declared before any cursors or procedures. You can declare as many temporary tables as
necessary. Unlike temporary table declarations, cursor declarations can be mixed in between
procedures; however, a cursor declaration must always precede the procedure that references
that cursor.

The final portion of the module statement is the procedure. As I mentioned earlier, your
module can contain one or more procedures. However, each procedure can contain only
one SQL statement and must contain at least one parameter declaration, which is the status
parameter SQLSTATE.

NOTE
The procedure in an SQL client module is sometimes referred to as an externally
invoked procedure.

www.it-ebooks.info

http://www.it-ebooks.info/

 418 SQL: A Beginner’s Guide

The SQLSTATE status parameter provides a way to report errors back to your host
language. Like any other host parameter, values are passed between the SQL database (the
DBMS) and the host program. In the case of SQLSTATE, the values are related to the status
of SQL statement execution. By including the SQLSTATE parameter in your modules, you’re
allowing your host program to see the status of your statement execution. As a result, the
program can monitor for errors and take appropriate actions if those errors occur.

In addition to the SQLSTATE status parameter, you must declare all other host parameters
used in the procedure’s SQL statement. Parameter names (except SQLSTATE) must be
preceded by a colon when being declared and when used in the SQL statement. As you can
see in the syntax, parameter declarations must be enclosed by parentheses. In addition, if more
than one parameter is declared, those declarations must be separated with commas.

Defining SQL Client Modules
Now that we’ve reviewed the syntax for an SQL client module, let’s take a look at an example
of how to create one. In the following statement, I create a module that contains one procedure:

MODULE QUERY_CD_INVENTORY
 LANGUAGE C
 SCHEMA INVENTORY AUTHORIZATION Sales
 PROCEDURE QUERY_1
 (SQLSTATE, :p_CD_ID INT, :p_CD_NAME VARCHAR(60))
 SELECT CD_NAME
 INTO :p_CD_NAME
 FROM CD_INVENTORY
 WHERE CD_ID = :p_CD_ID;

As you can see in this example, we’re creating a module named QUERY_CD_
INVENTORY. The module will be called by a C program (LANGUAGE C). The SQL
statement within the module will access a table in the INVENTORY schema and will be
executed under the context of the Sales authorization identifier. The MODULE statement
includes only one procedure, which is named QUERY_1. If more than one procedure were
defined, they would each be terminated by a semicolon. Now let’s take a closer look at the
QUERY_1 procedure.

The first thing you might notice is that three host parameters have been declared. The
SQLSTATE parameter provides status information to the host program. The p_CD_ID
parameter is an input parameter that will receive a value from the host program. The p_CD_
NAME parameter is an output parameter that will take the value returned by the SELECT
statement and pass it to the host program. Notice that both the p_CD_ID and p_CD_NAME
parameters are preceded by a colon and declared with a data type. The SQLSTATE parameter
does not require a semicolon or data type.

Once we declare the parameters, we can define the SELECT statement. As you can see,
the input parameter is used in the WHERE clause, and the output parameter is used in the
INTO clause. The use of the parameters in this way allows the module to interact with the host
program. A value for the input parameter is passed to the module when the module is called
within the host language, and the output parameter is returned to the host language to be used
by the program as necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 419

NOTE
The process of calling a module within a host program and passing a parameter to
the module is language-specific. Be sure to check the documentation for the specific
programming language and for the applicable SQL implementation.

As you can see, an SQL client module can be a handy tool for developing the SQL
component of an application without having to embed the SQL statements within the
host language. Unfortunately, SQL client modules are not widely supported in SQL
implementations, and if they are supported, they are often not well documented. However,
whether or not they’re widely implemented is becoming beside the point as the industry moves
away from embedded SQL and SQL client modules toward CLI and CLI-like data access,
which I cover in the next section.

Use an SQL Call-Level Interface
As you have seen so far in this chapter, a program can access an SQL database by using
embedded SQL and SQL client modules. In embedded SQL, SQL statements are inserted
directly into the host programming language. For SQL client modules, the host program
calls modules that contain executable SQL statements. The statements are separate from
the host language. SQL provides yet another method for accessing SQL data from within a
programming language—the call-level interface, or CLI.

A CLI is an application programming interface (API) that supports a set of predefined
routines that allow a programming language to communicate with an SQL database. The
programming language calls the routines, which then connect to the database. The routines
access data and status information from the database, as required, and return that information
to the program. Figure 17-3 provides an overview of how a CLI allows a program to
communicate with an SQL database.

The program invokes CLI routines through the use of functions. When calling a function,
the program must specify values for the function’s arguments. These values define what
actions to take and what data to access. The function passes the values to the designated
routine, which acts as an interface between the program and the SQL database. The CLI, in
effect, hides the details of accessing the database from the program, making it possible for the
program to access databases in different management systems.

One of the most well-known implementations of the CLI model is Microsoft’s Open
Database Connectivity (ODBC) API, although other vendors have released CLI-like products
that support similar types of database access. In addition, new generations of data access APIs
are gaining popularity, such as Microsoft’s OLE-DB, which is more efficient than ODBC and
supports access to SQL data sources and other types of data sources. For Java programmers, there
is a similar API called JDBC. You’ll also find that such products as ActiveX Data Object (ADO)
provide an object-oriented interface between scripting languages or object-oriented languages
and the OLE-DB API. Many development tools also make accessing an SQL data source easier
than ever. For example, Visual Studio .NET allows you to build data-driven applications in such
languages as Visual Basic, C++, and C#. By using the built-in ADO.NET tools, you can create
applications that can access a variety of data sources, such as SQL Server and Oracle.

www.it-ebooks.info

http://www.it-ebooks.info/

 420 SQL: A Beginner’s Guide

NOTE
Although Microsoft is generally given credit for ODBC, it was developed by Microsoft in
partnership with Simba Technologies, and is based on CLI specifications from the SQL
Access Group, X/Open (now part of The Open Group), and the ISO/IEC.

The key to all these products is to provide a uniform method of database access from within
the programming language. The CLI specifications in SQL:2006 standardize the database
access interface by providing a set of predefined CLI functions that allow your program to
connect to a database, modify and retrieve data, pass information to and from the database, and
obtain status information about statement execution. In this section, we’ll look at several CLI
functions and how they can be used in a programming language to access SQL data.

NOTE
Despite how extensively the SQL:2006 standard has defined the CLI model, applications
can vary greatly in the methods they use to access a data source. As a result, you’ll find
that you’ll want to use a data access method that is supported in your environment. For
example, if you’re developing a C application that connects to a data source via ODBC,
the specifics of data access described in this section will be very useful to you. However,
if you’re developing a C# application or an Active Server Pages (ASP) application
using VBScript and you’re connecting to a data source via ADO, you’ll want to refer to
documentation related to that particular technology as well as reviewing the information
in this section.

CLI routine

Program
Written in
application

programming
language

CLI
(Database library)

CLI routine

CLI routine

Routine call

Routine call

Routine call

SQL
database

Figure 17-3 Using a CLI to access data in an SQL database

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 421

Allocating Handles
The first step that you must take when accessing a database through a CLI interface is to
establish the necessary allocation handles. An allocation handle is an object returned by the
SQL database when a resource is allocated. The handle is used by the host program to access
the database. You must establish three types of allocation handles in your host program in
order to access SQL data from within that program:

● Environment handle Establishes the environment in which all CLI functions are called
and provides a context in which to establish one or more connection handles.

● Connection handle Establishes a connection context to a specific SQL database. The
connection handle must be established within the context of the environment handle. A
connection handle doesn’t actually connect to the database. It merely provides the context
to make that connection possible. Once a connection handle has been established, you
must use the context of that handle to make the actual connection to the database.

● Statement handle Establishes a context in which SQL statements can be executed. Any
statement invoked through the CLI must be executed within the context of a statement
handle, and the statement handle must be defined within the context of a connection handle.

To better understand how allocation handles operate, let’s take a look at Figure 17-4. As
you can see in the figure, two connection handles are allocated within an environment handle,

Figure 17-4 Establishing allocation handles

Environment handle

Connection handle

Statement handle

Connection to
database 1

SQL statement

SQL statement

SQL statement

SQL statement

Connection handle

Statement handle

Connection to
database 2

SQL statement

SQL statement

SQL statement

SQL statement

www.it-ebooks.info

http://www.it-ebooks.info/

 422 SQL: A Beginner’s Guide

and one statement handle is allocated within each connection handle. Each SQL statement is
executed within the context of a statement handle.

Establishing an Environment Handle
To establish an environment handle in which to support database access, you can use the
AllocHandle() function, which requires three arguments. The first argument (SQL_HANDLE_
ENV) specifies the type of handle (environment) that is being allocated. The second argument
(SQL_NULL_HANDLE) indicates that the environment handle does not depend on any
existing handle. The third argument is a host variable that identifies the environment handle.
When a host variable is used in this context, it is preceded by an ampersand (&).

NOTE
Host variables are declared according to the conventions of the host language. In
addition, the host program might contain other elements that support CLI functionality.
For example, a C program might require special include files necessary to interact with
the CLI API. Also be aware that language libraries can vary from vendor to vendor;
for instance, there are several known inconsistencies between the C libraries provided
by Microsoft and Borland. In addition, the host program might contain special error-
handling functions that can monitor the success or failure of a CLI routine call. For
information about language-specific elements that should be included in your host
program, be sure to check the documentation for the specific language, CLI API, and
SQL implementation.

Now that we’ve reviewed the individual elements necessary to establish an environment
handle, let’s take a look at the AllocHandle() function as it would be included in your C
program:

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

The first thing you’ll notice is that the AllocHandle function is preceded by the SQL
prefix. In C programs, the SQL prefix is added to all CLI functions. The prefix can vary
according to the host language. You’ll also notice in this statement that the three arguments are
enclosed in parentheses and separated by commas. In addition, the host variable that identifies
the handle is preceded by an ampersand.

Establishing a Connection Handle
Once you’ve established your environment handle, you can establish one or more connection
handles within the context of that environment. To do so, you will again use the AllocHandle()
function, along with three arguments. The first argument (SQL_HANDLE_DBC) specifies
the type of handle (connection) that is being allocated. The second argument identifies the
environment in which the connection is being established. (This is the host variable identified
when you established the environment handle.) The third argument is a host variable that
identifies the connection handle. Again, it is preceded by an ampersand, as shown in the
following function statement:

SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 423

After you establish the connection handle, you must explicitly connect to the database
within the context of the handle. To do this, you must use the SQLConnect() function, which
takes seven arguments: the connection handle, the target SQL server, the length of the server
name, the connection user, the length of the username, the connection password, and the
length of the password. For C strings, you can use SQL_NTS in place of length arguments to
indicate that a length does not have to be specified for the preceding string, as shown in the
following example:

SQLConnect (hdbc, server01, SQL_NTS, SaleMngr, SQL_NTS, SalesPW, SQL_NTS);

As you can see, the function specifies the hdbc connection handle and the server01 SQL
server. The connection will be established using the SaleMngr user account and the SalesPW
password. Instead of specifying the length of any of the strings, SQL_NTS is used.

Once you’ve connected to the database, you can create statement handles and execute SQL
statements.

Establishing a Statement Handle
In order to execute an SQL statement from within your host program, you must create a
statement handle within the context of your connection handle. As with other types of handles,
you can use the AllocHandle() function to establish the statement handle.

As you have seen, the AllocHandle() function requires three arguments. In the case of a
statement handle, those arguments are SQL_HANDLE_STMT, the host variable that identifies
the connection handle, and the host variable that identifies the statement handle. The host
variable that identifies the statement handle is preceded by an ampersand, as shown in the
following example:

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

In this function, the connection handle referenced is hdbc, and the variable identifying the
statement handle is hstmt.

Executing SQL Statements
Now that you’ve established your allocation handles and connected to the database, you can
set up functions that allow you to execute the SQL statements. The CLI model supports two
methods that you can use to execute SQL statements. The first is direct execution and the
second is preparing the statement for later execution.

Using the ExecDirect() Function
The first method you can use to execute an SQL statement is the ExecDirect() function.
The function takes three arguments. The first argument is the name of the statement handle
in whose context you’ll be executing the statement. The second argument is the actual SQL
statement, enclosed in double quotation marks. The third argument is the length of the
statement. In a C program, you generally use SQL_NTS to indicate that you do not have to
specify the length of the string.

www.it-ebooks.info

http://www.it-ebooks.info/

 424 SQL: A Beginner’s Guide

Let’s take a look at an example of the ExecDirect() function to demonstrate how you can
use it to execute an SQL statement. The following function references the hstmt statement
handle and defines a DELETE statement:

SQLExecDirect (hstmt, "DELETE FROM CD_INVENTORY WHERE CD_ID = 5731", SQL_NTS);

As you can see, the SQL statement is passed as an argument to the CLI routine. In this
case, any rows with a CD_ID value of 5731 will be deleted from the CD_INVENTORY table.
Notice that the SQL_NTS value is used to indicate that you do not have to specify the length
of the string (the actual SQL statement).

Using the Prepare() and Execute() Functions
Another method that you can use to execute a statement is to first prepare the statement and
then later execute it. You would use this method if you need to execute your statement more
than one time.

The first function that you use in the two-step process is the Prepare() function, which requires
the same three arguments as the ExecDirect() function, as shown in the following example:

SQLPrepare (hstmt, "DELETE FROM CD_INVENTORY WHERE CD_ID = 5731", SQL_NTS);

Notice that we reference the same statement handle and define the same SQL statement as
in the preceding ExecDirect() example. The only difference is that, in the case of the Prepare()
function, the statement isn’t actually executed, but is instead prepared for execution. When
a statement must be executed multiple times, this process saves on overhead because the
statement has to be analyzed and optimized only once.

Once you’ve prepared the statement, you can then use the Execute() function to execute
the statement. The Execute() function takes only one argument—the statement handle that
contains the prepared statement, as shown in the following example:

SQLExecute (hstmt);

Because the statement was already prepared, you merely need to reference the statement
handle to execute the statement. You can execute the statement as often as necessary simply by
invoking the Execute() function and specifying the statement handle.

Working with Host Variables
In the preceding examples, the SQL statements that we executed were relatively
straightforward because no host variables were used in the statement. However, if you plan to
pass host variable values into or out of an SQL statement, you must take an extra step to bind
those host variables to the SQL statement.

For example, suppose you want to set up a DELETE statement that takes an input variable
identifying the row to be deleted. Your Prepare() function would be similar to the following:

SQLPrepare (hstmt, "DELETE FROM CD_INVENTORY WHERE CD_ID = ?", SQL_NTS);

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 425

Notice that a question mark is used to indicate the position of the variable. The question mark
is used in place of the host variable. This is often called a placeholder.

Once you’ve prepared your SQL statement, you must now bind the host variable to
the statement. To do so in a C program, you must use a BindParameter() function that
identifies the statement handle, the position of the host variable within the SQL statement,
the name of the host variable, and a number of other arguments, as shown in the
following example:

SQLBindParameter (hstmt, 1, SQL_PARAMETER_MODE_IN, SQL_INT,
 SQL_INT, 4, 0, &v_CD_ID, 4, &ind_CD_ID);

As you can see, the BindParameter() function takes 10 arguments. Table 17-2 lists
the arguments used in the preceding example and provides a description of each of those
arguments.

If more than one host variable is included in your SQL statement, a BindParameter()
function statement should be defined for each variable, and the position (the second
argument) should be incremented by one for each additional variable. Once you bind
the host variables to your SQL statement, you can execute the statement by using the
Execute() function.

Argument Example Description

1 hstmt Identifies the statement handle that provides the
context for the SQL statement execution

2 1 Identifies the position of the host variable in the SQL
statement

3 SQL_PARAMETER_MODE_IN Specifies whether the host variable is an in, out, or
in/out variable

4 SQL_INT Identifies the data type of the value supplied

5 SQL_INT Identifies the data type of the host variable

6 4 Specifies the column size of the host variable

7 0 Specifies the number of digits to the right of the
decimal required by the host variable

8 &v_CD_ID Identifies the name of the host variable, as declared
in the host program

9 4 Specifies the length in octets (bytes) of the host
variable

10 &ind_CD_ID Identifies the name of the indicator variable, as
declared by the host program

Table 17-2 Arguments Used in the BindParameter() Function

www.it-ebooks.info

http://www.it-ebooks.info/

 426 SQL: A Beginner’s Guide

Retrieving SQL Data
Up to this point, the SQL statements that we’ve executed in the CLI environment have not
returned any data. However, you’ll often run into situations where your program will need to
query the database and process the values that are returned by that query. As a result, you’ll
need some sort of mechanism to bind the output from your query to variables that you declared
in the host language.

For example, suppose that you want to execute the following SELECT statement:

SQLExecDirect (hstmt, "SELECT CD_NAME, IN_STOCK FROM CD_INVENTORY",
 SQL_NTS);

As you can see, the statement will return a list of CD_NAME values and IN_STOCK values
from the CD_INVENTORY table. In order to deal with those values, you must bind them
to the applicable host variables. To do this in a C program, you should use the BindCol()
function. The BindCol() function is a little simpler than the BindParameter() function and
takes only six arguments, as shown in the following example:

SQLBindCol (hstmt, 1, SQL_CHAR, &v_CD_NAME, 60, &ind_CD_NAME);
SQLBindCol (hstmt, 2, SQL_INT, &v_IN_STOCK, 5, &ind_IN_STOCK);

Table 17-3 lists the arguments used in the first statement of this example and provides a
description of each of those arguments.

Notice that two function statements have been defined, one for each column retrieved by
the SELECT statement. You must define a function statement for each column that is listed
in the SELECT clause of the SELECT statement. Once you bind the column values to the
host variables, you can use those variables in the host program to process the data within the
program as necessary.

Argument Example Description

1 hstmt Identifies the statement handle that provides the context for the
SQL statement execution

2 1 Identifies the column as it is listed in the SELECT clause of the
SELECT statement

3 SQL_CHAR Identifies the data type of the host variable

4 &v_CD_NAME Identifies the name of the host variable, as declared in the host
program

5 60 Specifies the length in octets of the host variable

6 &ind_CD_NAME Identifies the name of the indicator variable, as declared by the
host program

Table 17-3 Arguments Used in the BindCol() Function

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 427

Try This 17-2 Using the SQL Call-Level Interface
In Try This 17-1, you used a text editing program to create embedded SQL statements. In this
Try This exercise, you will perform similar actions except that you’ll be defining the functions
necessary to make CLI routine calls. As part of this process, you will establish the necessary
allocation handles, create a connection to the database, set up SQL statement execution,
bind host variables to SQL statements, and bind statement output to host variables. The CLI
functions that you’ll be using are those typically used in a C program. Keep in mind, however,
that the CLI model supports many more functions than what we’ve covered in this chapter,
so be sure to check the appropriate documentation for details on functions other than those
described here. You can download the Try_This_17_2.txt file, which contains the CLI function
statements used in this exercise.

Step by Step
 1. Open a text editing program such as Microsoft Notepad.

 2. The first step that you must take is to establish an environment handle. You’ll use the henv host
variable to set up the handle. Type the following function statement into your text document:

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

 Notice that your functions include three arguments, enclosed in parentheses and separated
by commas. Also notice that an ampersand is used for the host variable.

 3. Now you can establish your connection environment. The connection environment will be
established within the context of the environment handle that you created in Step 2. Type
the following function statement into your text document:

SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);

 As you can see, the henv host variable is used to indicate the environment handle, and the
hdbc host variable is used to identify the connection handle.

 4. Now that you’ve established a connection handle, you can create the actual connection. For
this connection, you’ll use DBServer as your SQL server, DBAdmin as the user account,
and AdminPW as the password for that account. Type the following function statement into
your text document:

SQLConnect (hdbc, DBServer, SQL_NTS, DBAdmin, SQL_NTS, AdminPW, SQL_NTS);

 Notice that the statement includes the SQL_NTS value to indicate that a string length does
not have to be specified.

 5. Next you’ll establish your statement handle within the context of the connection you created
in step 3. Type the following function statement into your text document:

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

 As you can see, the hdbc host variable is used to identify the connection handle, and the
hstmt variable is used to identify the statement handle.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 428 SQL: A Beginner’s Guide

 6. Now that you’ve established your allocation handles and created your connection, you’re
ready to execute an SQL statement. You’ll use the ExecDirect() function to specify a
DELETE statement. Type the following function statement into your text document:

SQLExecDirect (hstmt, "DELETE FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = 122", SQL_NTS);

 The DELETE statement is included as one of the function’s arguments. Notice that it is
enclosed in double quotation marks. Also notice that the statement is being prepared within
the context of the hstmt host variable, which is assigned to the statement environment.

 7. In the last step, you executed your SQL statement in one step by using the ExecDirect()
function. In this step, you will prepare an SQL statement for execution, but you will actually
execute it in a later step. Type the following function statement into your text document:

SQLPrepare (hstmt, "SELECT CD_TITLE, IN_STOCK FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = ?", SQL_NTS);

 Notice that the WHERE clause of the SELECT statement includes a question mark to
indicate that a value will be passed into the statement through a host variable.

 8. In order to execute the statement in the previous step, you’ll need to bind the host variable
to the statement. Type the following function statement into your text document:

SQLBindParameter (hstmt, 1, SQL_PARAMETER_MODE_IN, SQL_INT,
 SQL_INT, 3, 0, &v_CD_ID, 4, &ind_CD_ID);

 As you can see, the v_CD_ID host variable is being bound to the SQL statement in the
context of the statement environment created earlier. Because only one host variable is
referenced in the SQL statement, only one BindParameter() function statement is required.

 9. Now you can execute the statement prepared in step 7. Type the following function
statement into your text document:

SQLExecute (hstmt);

 The statement will be executed in the context of the hstmt statement environment.

 10. Next you must bind the query results to the host variables. Because two columns are
identified in the SELECT clause of the SELECT statement, you must include two BindCol()
function statements. Type the following function statements into your text document:

SQLBindCol (hstmt, 1, SQL_CHAR, &v_CD_TITLE, 60, &ind_CD_TITLE);
SQLBindCol (hstmt, 2, SQL_INT, &v_IN_STOCK, 5, &ind_IN_STOCK);

 Your C program should now be able to use the values returned by your SELECT statement.
If you review the document that you created, it should contain the following code:

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
SQLConnect (hdbc, DBServer, SQL_NTS, DBAdmin, SQL_NTS, AdminPW, SQL_NTS);
SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

SQLExecDirect (hstmt, "DELETE FROM COMPACT_DISCS

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 429

 WHERE COMPACT_DISC_ID = 122", SQL_NTS);
SQLPrepare (hstmt, "SELECT CD_TITLE, IN_STOCK FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = ?", SQL_NTS);
SQLBindParameter (hstmt, 1, SQL_PARAMETER_MODE_IN, SQL_INT,
 SQL_INT, 3, 0, &v_CD_ID, 4, &ind_CD_ID);
SQLExecute (hstmt);
SQLBindCol (hstmt, 1, SQL_CHAR, &v_CD_TITLE, 60, &ind_CD_TITLE);
SQLBindCol (hstmt, 2, SQL_INT, &v_IN_STOCK, 5, &ind_IN_STOCK);

 11. Save the file and close the application.

Try This Summary
This Try This exercise introduced the basic functions necessary to use CLI to access an SQL
database from a host program. What the exercise did not cover is the actual C code that would
provide the foundation for your program. For example, a C program would usually include
variable declarations, include files, error-handling capabilities, user-related operations, and
conditional language that allow you to use the values returned by the SQL database. The CLI
functions that we covered in this exercise would usually be interspersed into and work in
conjunction with the host language. Still, this exercise should have helped you understand the
basic concepts involved in using CLI and better prepared you for working in the host language
environment when trying to access SQL data.

 Chapter 17 Self-Test
 1. Which data access method should you use if you want to create and execute ad hoc SQL

statements?

 A CLI

 B SQL client modules

 C Direct invocation

 D Embedded SQL

 2. What is embedded SQL?

 3. What does the precompiler do with the program file?

 4. Which files are created by an SQL precompiler?

 A A file for the CLI functions

 B A file for the host language

 C A file for the CLI calls

 D A file for the embedded SQL statements

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 430 SQL: A Beginner’s Guide

 5. Which clause in a MODULE statement do you use to specify the host programming
language?

 6. Which prefix should embedded SQL statements use when those statements are embedded in
the MUMPS programming language?

 A &SQL(

 B EXEC SQL

 C START-EXEC

 D Statements embedded in MUMPS do not require a prefix.

 7. A(n) ____________ is a type of parameter that is declared within the host language and is
then referenced within the embedded SQL statement.

 8. What statement should you use at the beginning of the declaration section for host
variables?

 9. Which prefix must you provide for a host variable when it is included in an SQL statement?

 A Question mark

 B Ampersand

 C Semicolon

 D Colon

 10. You plan to embed SQL statements in your host program. You want to declare several
host variables to be used in the SQL statements. Which SQL statement should you use to
terminate the declaration section of your program?

 A TERMINATE DECLARE SECTION

 B END DECLARE SECTION

 C TERMINATE DECLARATIONS

 D END DECLARATIONS

 11. What can cause an impedance mismatch to occur when passing a variable from a host
program to an SQL statement?

 12. What type of SELECT statement can you use in embedded SQL when retrieving only one
row of data?

 13. A(n) ____________ is a type of variable that specifies whether an associated data variable
contains a null value.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 17: Accessing SQL Data from Your Host Program 431

 14. Which statement can you use in embedded SQL to provide your host program with
exception and warning information?

 A WHENEVER

 B INTO

 C CAST

 D PROCEDURE

 15. A(n) ____________ is a self-contained collection of SQL statements that are separate from
a host programming language but that can be called from within that language.

 16. What allocation handles must you establish in order to execute an SQL statement through
a CLI API?

 17. How many SQL statements can you include in a procedure in an SQL client module?

 18. Which function should you use to establish a CLI connection handle?

 A ExecDirect()

 B Connect()

 C Prepare()

 D AllocHandle()

 19. You’re allocating an environment handle within a C program and associating the handle
with the henv host variable. What function statement should you use?

 20. You’re creating the following Prepare() function statement in your host program:

SQLPrepare (hstmt, "SELECT CD_ID, CD_TITLE, IN_STOCK FROM COMPACT_DISCS
WHERE COMPACT_DISC_ID = ?", SQL_NTS);

 How many BindCol() function statements should you create?

 A One

 B Two

 C Three

 D Four

 21. What CLI function should you use if you want to execute an SQL statement in one step?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

433

Chapter 18
Working with XML Data

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 434 SQL: A Beginner’s Guide

Key Skills & Concepts

● Learn the Basics of XML

● Learn About SQL/XML

The Extensible Markup Language (XML) is a general-purpose markup language used
to describe documents in a format that is convenient for display on web pages and for

exchanging data between different parties. The specifications for storing XML data in
SQL databases were added to the SQL standard in SQL:2003 as Part 14 (arguably the most
significant enhancement to that version of the standard). Part 14, also known as SQL/XML,
was expanded in SQL:2006 and some error corrections were published in 2007.

NOTE
SQL/XML is not at all the same as Microsoft’s SQLXML, which is a proprietary
technology used in SQL Server. As you can imagine, the unfortunate similarity in names
has caused much confusion. Microsoft participated in the standards proceedings for
SQL/XML, but then chose not to implement it.

Learn the Basics of XML
In order to understand SQL/XML, you must first understand the basics of XML. While a
complete explanation of XML is well beyond the scope of this book, this topic provides a brief
overview. You can find a lot more information by searching on the Internet.

You may already be familiar with HTML, the markup language used to define web pages.
If so, the syntax of XML will look familiar. This is because both are based on the Standard
Generalized Markup Language (SGML), which itself is based on Generalized Markup
Language (GML), which was developed by IBM in the 1960s. A markup language is a set of
annotations, often called tags, that are used to describe how text is to be structured, formatted,
or laid out. The tagged text is intended to be human-readable. One of the fundamental
differences between HTML and XML is that HTML provides a predefined set of tags, while
XML allows the author to create their own tags.

Let’s look at a sample XML document that contains the results of an SQL query.
Figure 18-1 shows two artists from the PERFORMERS table and five of their CDs from the
CD_INVENTORY table. As you learned in Chapter 11, we can easily join the two tables
using an SQL SELECT statement like this one:

SELECT a.PERF_NAME, a.PERF_ID, b.CD_NAME, b.IN_STOCK
 FROM PERFORMERS a JOIN CD_INVENTORY b
 ON a.PERF_ID = b.PERF_ID
 ORDER BY a.PERF_NAME, b.CD_NAME;

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 18: Working with XML Data 435

Note that I used the ORDER BY clause to specify the order of the rows in the result set. The
query results should look something like this:

PERF_ID PERF_NAME CD_NAME IN_STOCK
------- ---------------- ----------------------- --------
104 Bonnie Raitt Fundamental 22
104 Bonnie Raitt Longing in Their Hearts 18
101 Joni Mitchell Blue 24
101 Joni Mitchell Both Sides Now 11
101 Joni Mitchell Court and Spark 17

The query results are well suited for display or printing, but they are not in a form that
would be easy to display on a web page or to pass to another computer application for
further processing. One way to make this easier is to convert the query results into XML as
shown here:

<artists>
 <artist id="104">
 <name>Bonnie Raitt</name>
 <CDs>
 <CD stock="22"><name>Fundamental</name></CD>
 <CD stock="18"><name>Longing in Their Hearts</name></CD>
 </CDs>
 </artist>
 <artist id="101">
 <name>Joni Mitchell</name>
 <CDs>
 <CD stock="24"><name>Blue</name></CD>
 <CD stock="11"><name>Both Sides Now</name></CD>

CD_NAME:
VARCHAR(60)

Blue

Longing in Their Hearts

Court and Spark

Fundamental

PERF_ID:
INT

Both Sides Now

101

101

101

104

104

IN_STOCK:
INT

24

17

22

18

13

PERF_NAME:
VARCHAR(60)

Bonnie Raitt

Joni Mitchell

PERF_ID:
INT

101

104

CD_INVENTORYPERFORMERS

Figure 18-1 The PERFORMERS and CD_INVENTORY tables

www.it-ebooks.info

http://www.it-ebooks.info/

 436 SQL: A Beginner’s Guide

 <CD stock="17"><name>Court and Spark</name></CD>
 </CDs>
 </artist>
 <!-- Additional artists available soon -->
</artists>

As you can see in the code listing, tags are enclosed in angle brackets and each start
tag has a matching end tag that is identical except that the name has a slash (/) in front of it.
HTML uses an identical convention. For example, the tag <artists> starts the list of recording
artists, while the end tag </artists> ends it. Within the artists list, the information for each
individual artist begins with the <artist> tag, which includes a data value for the artist id
attribute, and ends with the </artist> tag. It is customary (and considered a best practice) to
name a list using the plural of the tag name used for each item in the list. Comments can be
added using a special tag that begins with <!-- and ends with --> as shown in the next to last
line of the example.

Data items and values, such as those that would be stored in a relational table column, can
be coded as name and value pairs in one of two ways. The first way is using an XML attribute
by naming the attribute inside another tag, followed by the equals sign and the data value
enclosed in double-quote characters, such as I did with the id and stock attributes. The second
way is using an XML element by creating a separate tag for the data item with the data value
sandwiched between the start and end tags, such as I did with both the artist name and CD
name attributes. The question of which form to use has been the subject of much debate among
XML developers. However, the general consensus is to use elements whenever the data item
might later be broken down into additional elements, such as splitting the artist name into first
name and last name, or dividing a single data element containing a comma-separated list of
backup artist names into a list of elements. An additional consideration is whether you want to
allow the XML processor to ignore insignificant whitespace, as it would do for attributes, but
not for elements.

You likely noticed that, unlike the SQL result set, XML can show the hierarchy of the
data. In this case, the list of CDs recorded by each artist is nested within the information about
the artist. I have indented the XML statements to make the nesting more obvious. And while
indentation of nested tags is a best practice, it is not significant because whitespace between
tags is ignored when the XML is processed.

XML coding can be quite tedious. Fortunately, there are tools available to convert between
XML and plain text, and SQL/XML functions (covered later in this chapter) to convert
relational database (SQL) data into XML. For a time, specialized databases for storing and
retrieving XML were gaining popularity, but the major relational database vendors added
features to permit native XML to be stored directly in their databases. At the same time, the
SQL standard was expanded to include provisions for XML data, as I discuss in the remainder
of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 18: Working with XML Data 437

Learn About SQL/XML
As already mentioned, XML is commonly used to represent data on web pages, and that data
often comes from relational databases. However, as you have seen, the two models are quite
different in that relational data is stored in tables where neither hierarchy nor sequence have any
significance, while XML is based on hierarchical trees in which order is considered significant.
The term forest is often used to refer to a collection of XML tree structures. XML is used for
web pages because its structure so closely matches the structure that would be used to display
the same data in HTML. In fact, many web pages are a mixture of HTML for the static portions,
and XML for the dynamic data. It is perhaps this widespread implementation that has led many
of the major vendors, including Oracle and IBM, to support XML extensions.

SQL/XML can be divided into three main parts: the XML data type, SQL/XML functions,
and SQL/XML mapping rules. I cover each of these as the major topics in the remainder of
this chapter.

The XML Data Type
The XML data type is handled in the same general way as all the other data types I had discussed
in Chapter 3. While storing data in XML format directly in the database is not the only way to
use SQL and XML together, it is a very simple way to get started because it is a logical extension

Q: Is there a standard for the XML language itself?

A: While ISO does not currently publish a standard for XML, ISO 8879 provides a standard
for SGML (Standard Generalized Markup Language), and XML is based on SGML. More
importantly, the World Wide Web Consortium (W3C) publishes XML specifications that
comprise the generally accepted standard throughout the IT industry.

Q: You mentioned that XML is a convenient way for different parties to exchange
information. Does that mean that two companies can freely exchange data without
having to create elaborate interface software so long as they both use XML?

A: Well, not exactly. XML only provides a standard way to format the data. In order for one
company to correctly interpret the XML data that another company has sent them, they
must know the names and definitions of the tags the other company formatted for them,
particularly the elements and attributes that contain the data. Fortunately, there are a number
of industry standards that help. For example, HR/XML provides a standard for exchanging
human resources (HR) data, so that a company can, for example, send employee data to
a vendor that provides medical insurance to those employees. In some industries, XML is
beginning to replace an older standard known as EDI (Electronic Data Interchange).

Ask the Expert

www.it-ebooks.info

http://www.it-ebooks.info/

 438 SQL: A Beginner’s Guide

of the earliest implementations where SQL developers simply stored the XML text in a column
defined with a general character data type such as CHARACTER VARYING (VARCHAR).
However, it is far better to tell the DBMS that the column contains XML, and the particular way
the XML is coded, so that the DBMS can provide additional features tailored to the XML format.

The specification for the XML data type has this general format:

XML (<type modifier> {(<secondary type modifier>)})

The type modifier is required and must be enclosed in a pair of parentheses as shown, while
the secondary type modifier is optional, and in fact is not supported for all type modifiers. The
standard is not specific about how a particular SQL implementation should treat the various
types, but some conventions and syntax rules are specified. The valid type modifiers are:

● DOCUMENT The DOCUMENT type is intended for storage of text documents
formatted using XML. In general, the data values are expected to be composed of human-
readable characters such as letters, numbers, and symbols as they would appear in an
unstructured text document.

● CONTENT The CONTENT type is intended for more complex data that can include
binary data such as images and sound clips.

● SEQUENCE The SEQUENCE type is intended for XQuery documents, which are often
called XQuery sequences. XQuery is an advanced topic that is beyond the scope of this book.

The secondary type modifier, used only with the DOCUMENT and CONTENT primary
type modifiers, can have one of these values:

● UNTYPED The XML data is not of a particular type.

● ANY The XML data is of any of the types supported by the SQL implementation.

● XMLSCHEMA The XMLSCHEMA type refers to a registered XML schema that has
been made known to the database server. The three most common are:

Common Prefix Target Namespace URI (Uniform Resource Identifier)

Xs http://www.w3.org/2001/XMLSchema

Xsi http://www.w3.org/2001/XMLSchema-instance

sqlxml http://standards.iso.org/iso/9075/2003/sqlxml

For SQL implementations that do not support the secondary type modifier, ANY is
assumed as a default.

www.it-ebooks.info

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://standards.iso.org/iso/9075/2003/sqlxml
http://www.it-ebooks.info/

 Chapter 18: Working with XML Data 439

NOTE
Because SQL/XML is a relatively new standard, vendor implementation support varies.
Oracle supports a XMLType data type instead of the XML type. IBM’s DB2 UDB supports
an XML type, but without the type modifiers. As already mentioned, Microsoft SQL
Server supports XML and an XML data type, but in a manner a bit different from the
SQL/XML standard. As of version 5.0, MySQL provides no support for XML, but it is a
statement of direction for a future release.

Suppose we want to add a biography of the artist to our artists table that can be displayed
on a web page. If the biographical sketch could come from several different sources, and thus
be formatted differently depending on the source, XML might be a good way to store the data
in our artists table. In the following example, I have added the column to the definition of the
ARTISTS table that appeared in Chapter 3:

CREATE TABLE ARTISTS
(ARTIST_ID INT,
 ARTIST_NAME VARCHAR(60),
 ARTIST_DOB DATE,
 POSTER_IN_STOCK BOOLEAN,
 ARTIST_BIOGRAPHY XML(DOCUMENT(UNTYPED)));

SQL/XML Functions
An SQL/XML function (also called an XML value function) is simply a function that returns
a value as an XML type. For example, a query can be written that selects non-XML data
(that is, data stored in data types other than XML) and formats the query results into an XML
document suitable for display on a web page or transmission to some other party. Table 18-1
shows the basic SQL/XML functions.

There are more functions than those I have listed, and SQL/XML functions can be used
in combination to form extremely powerful (if not complicated) queries. Also, the functions
available vary across SQL implementations. Let’s look at a simple example to clarify how
these functions can be used. In this example, I will list the CDs by artist Bonnie Raitt from
the PERFORMERS and CD_INVENTORY tables shown in Figure 18-1. Here is the SQL
statement, using the XMLELEMENT and XMLFOREST functions:

SELECT XMLELEMENT(NAME "ArtistCD",
 XMLFOREST(a.PERF_NAME as Artist, a.PERF_ID, b.CD_NAME,
b.IN_STOCK)
 FROM PERFORMERS a JOIN CD_INVENTORY b
 ON a.PERF_ID = b.PERF_ID
 WHERE a.PERF_ID = '104'
 AND a.PERF_ID = b.PERF_ID
 ORDER BY b.CD_NAME;

www.it-ebooks.info

http://www.it-ebooks.info/

 440 SQL: A Beginner’s Guide

The results returned should look something like this:

<ArtistCD>
 <Artist>BonnieRait</Artist>
 <PERF_ID>104</PERF_ID>
 <CD_NAME>Fundamental</CD_NAME>
 <IN_STOCK>22</IN_STOCK>
</ArtistCD>
<ArtistCD>
 <Artist>BonnieRait</Artist>
 <PERF_ID>104</PERF_ID>
 <CD_NAME>Longing in Their Hearts</CD_NAME>
 <IN_STOCK>18</IN_STOCK>
</ArtistCD>

Notice that the XML element names are taken from the column names, in uppercase
with underscores as is customary in SQL. However, using the column alias, as I did for the
PERF_NAME column, you can change the column names to just about anything you want.

Function Value Returned

XMLAGG A single XML value containing an XML forest formed by combining
(aggregating) a collection of rows that each contain a single XML value

XMLATTRIBUTE An attribute in the form name=value within an XMLELEMENT

XMLCOMMENT An XML comment

XMLCONCAT A concatenated list of XML values, creating a single value containing
an XML forest

XMLDOCUMENT An XML value containing a single document node

XMLELEMENT An XML element, which can be a child of a document node, with the name
specified in the name parameter

XMLFOREST An XML element containing a sequence of XML elements formed from table
columns, using the name of each column as the corresponding element name

XMLPARSE An XML value formed by parsing the supplied string without validating it

XMLPI An XML value containing an XML processing instruction

XMLQUERY The result of an XQuery expression (XQuery is a sublanguage used to search
XML stored in the database; it is beyond the scope of this book)

XMLTEXT An XML value containing a single XML text node, which can be a child of
a document node

XMLVALIDATE An XML sequence that is the result of validating an XML value

Table 18-1 SQL/XML Functions

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 18: Working with XML Data 441

SQL/XML Mapping Rule
Thus far I have not discussed how SQL values are translated and represented as XML values
and vice versa. The SQL standard describes in detail how SQL values can be mapped to and
from XML values. This topic contains an overview of the SQL/XML mapping rules.

Mappings from SQL to XML
The mappings in this topic apply to translating data in SQL data types to XML.

Mapping SQL Character Sets to Unicode Unicode is an industry standard that allows
computer systems to consistently represent (encode) text characters expressed in most of the
world’s written languages. XML is often encoded as Unicode characters to allow for text in
multiple languages. SQL character data is stored in whatever character set is specified when
the table or database is created, and while many SQL implementations support Unicode, many
other character sets can also be used. The SQL standard requires that each character in an SQL
character set have a mapping to an equivalent Unicode character.

Mapping SQL Identifiers to XML Names It is necessary to define a mapping of SQL
identifiers, such as table and column names, to XML names because not all SQL identifiers
are acceptable XML names. Characters that are not valid in XML names are converted to a
sequence of hexadecimal digits derived from the Unicode encoding of the character, bracketed
by an introductory underscore and lowercase x and a trailing underscore. For example,
a colon (:) in an SQL identifier might be translated to _x003A_ in an XML name.

Mapping SQL Data Types to XML Schema Data Types This is perhaps the most
complicated of the mapping forms. For each SQL type or domain, the SQL implementation
is required to provide a mapping to the appropriate XML schema type. Detailed mapping of
standard SQL types to XML schema data types is provided in the standard in exhaustive detail.
I summarize them in Table 18-2.

Mapping Values of SQL Dat4a Types to Values of XML Schema Data Types For each
SQL type or domain, with the exception of structured types and reference types, there is also
a mapping of values for the type to the value space of the corresponding XML schema type.
Null values are representing using either absence (skipping the element) or using the facet
xsi:nil=“true” to explicitly set the null value.

Mapping an SQL Table to an XML Document and an XML Schema Document The SQL
standard defines a mapping of an SQL table to one or both of two documents: an XML schema
document that describes the structure of the mapped XML, and either an XML document or a
sequence of XML elements. This mapping applies only to base tables and viewed tables, and
only columns visible to the database user can be mapped. The implementation may provide
options for the following:

● Whether to map the table to a sequence of XML elements or as an XML document with a
single root name derived from the table name.

● The target namespace of the XML schema to be mapped.

www.it-ebooks.info

http://www.it-ebooks.info/

 442 SQL: A Beginner’s Guide

SQL Type XML Schema Type Notes

CHARACTER,
CHARACTER VARYING,
CHARACTER LARGE OBJECT

xs:string The XML facet xs:length is used
to specify length for fixed length
strings. (A facet is an element used
to define a property of another
element.)

NUMERIC
DECIMAL

xs:decimal Precision and scale are specified
using XML facets xs:precision and
xs:scale.

INTEGER
SMALLINT
BIGINT

xs:integer This mapping is listed as
implementation-defined, meaning
it is optional.

FLOAT
REAL
DOUBLE PRECISION

xs:float, xs:double For precisions up to 24 binary
digits (bits) and an exponent
between -149 and 104 inclusive,
xs:float is used; otherwise
xs_double is used.

BOOLEAN xs:Boolean

DATE xs:date The xs:pattern facet is used to
exclude the use of a time zone
displacement.

TIME WITH TIME ZONE
TIME WITHOUT TIME ZONE

xs:time The xs:pattern facet is used to
exclude or specify the time zone
displacement, as appropriate.

TIMESTAMP WITH TIME ZONE;
TIMESTAMP WITHOUT TIME
ZONE

xs:dateTime The xs:pattern facet is used to
exclude or specify the time zone
displacement, as appropriate.

Interval types xdt:yearMonthDuration,
xdt:day-TimeDuration

Row type XML schema complex type The XML document contains one
element for each field of the SQL
row type.

Domain XML schema data type The domain’s data type is mapped
to XML with an annotation that
identifies the name of the domain.

SQL distinct type XML schema simple type

SQL collection type XML schema complex type The complex type has a single
element named element.

XML type XML schema complex type

Table 18-2 Mapping of SQL Data Types to XML Schema Types

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 18: Working with XML Data 443

● Whether to map null values as absent elements or elements marked with facet xsi:nil=“true”.

● Whether to map the table into XML data, an XML schema document, or both.

Mapping an SQL Schema to an XML Document and an XML Schema Document The
SQL standard defines the mapping between the tables of an SQL schema and either an XML
document that represents the data in the tables, or an XML schema document, or both. Only
tables and columns visible to the database user can be mapped. The implementation may
provide options for the following:

● Whether to map each table as a sequence of XML elements or as an XML document with
a single root name derived from the table name.

● The target namespace of the XML schema to be mapped.

● Whether to map null values as absent elements or elements marked with facet xsi:nil=“true”.

● Whether to map the schema into XML data, an XML schema document, or both.

Mapping an SQL Catalog to an XML Document and an XML Schema Document The
SQL standard defines the mapping between the tables of an SQL catalog and either an XML
document that represents the data in the catalog’s tables, or an XML schema document, or both.
However, this part of the standard specifies no syntax for invoking such mapping because it is
intended to be used by applications or referenced by other standards. Only schemas visible to
the SQL user can be mapped. The implementation may provide options for the following:

● Whether to map each table as a sequence of XML elements or as an XML document with
a single root name derived from the table name.

● The target namespace of the XML schema and data to be mapped.

● Whether to map null values as absent elements or elements marked with facet xsi:nil=“true”.

● Whether to map the catalog into XML data, an XML schema document, or both.

Mappings from XML to SQL
This topic contains two mappings from XML back to SQL.

Mapping Unicode to SQL Character Sets As with the mapping of SQL character sets to
Unicode, the SQL standard requires that there be an implementation-defined mapping of Unicode
characters to the characters in each SQL character set supported by the SQL implementation.

Mapping XML Names to SQL Identifiers This is the reverse of the mapping of SQL
identifiers to XML names where characters that were converted because they were not valid in
XML names are converted back to their original form. So, if a colon in an SQL identifier was
converted to _x003A_ when translating the SQL identifier into XML, it would be converted
back into a colon when the process was reversed. The SQL standard further recommends that
the SQL implementation use a single algorithm for translation in both directions.

www.it-ebooks.info

http://www.it-ebooks.info/

 444 SQL: A Beginner’s Guide

Try This 18-1 Using SQL/XML Functions
In this Try This exercise, you will use XML functions to select XML formatted data from
the INVENTORY database. Obviously, your SQL implementation has to provide XML
support in order for you to complete the exercise, and as usual, you may have to modify
the code included in this exercise in order to run it on your DBMS. You can download the
Try_This_18.txt file, which contains the SQL statements used in this Try This exercise.

Step by Step
 1. Open the client application for your RDBMS and connect to the INVENTORY database.

 2. You are going to create an SQL query that uses the three SQL/XML functions to format
XML that contains an element for each CD in the COMPACT_DISCS table, with each
element including the ID of the CD, followed by a separate element containing the title of
the CD. Enter and execute the following statement:

SELECT XMLELEMENT(NAME CD,
 XMLATTRIBUTE(COMPACT_DISC_ID AS ID),
 XMLFOREST(CD_TITLE as Title))
 FROM COMPACT_DISCS
 ORDER BY COMPACT_DISC_ID;

 3. The output produced should look something like the following listing. Note that in the
interest of space, only the first two CDs are shown.

<CD ID='101'>
 <Title>Famous Blue Raincoat</Title>
</CD>
<CD ID='102'>
 <Title>Blue</Title>
</CD>

 4. Close the client application.

Try This Summary
In this Try This exercise, the SQL SELECT statement used three SQL/XML functions to
format data from the COMPACT_DISCS table into XML. The XMLELEMENT function
was used to create an element for each CD. The XMLATTRIBUTE function was used
to include the COMPACT_DISC_ID value with the name ID as a value within the CD
element. Finally, the XMLFOREST function was used to create an element for the
CD_TITLE column.

www.it-ebooks.info

http://www.it-ebooks.info/

 Chapter 18: Working with XML Data 445

 Chapter 18 Self Test
 1. What is XML?

 2. Which of the following are common uses of XML?

 A Displaying database data on a web page

 B Creation of static web pages

 C Transmission of database data to another party

 D Enforcement of business rules on documents

 3. How do SQL databases and XML documents vary in terms of data structure?

 4. If two organizations are both using XML, does that mean that they have a standard way of
exchanging data without having to create interface software?

 5. Which of the following are valid type modifiers for the XML data type?

 A DOCUMENT

 B SEQUENCE

 C SQLXML

 D CONTENT

 6. What are the valid secondary type modifiers for the SEQUENCE type modifier?

 7. Which of the following SQL/XML functions creates an element based on a table column?

 A XMLQUERY

 B XMLELEMENT

 C XMLFOREST

 D XMLDOCUMENT

 E XMLPARSE

 8. Which XML schema type is mapped from the SQL NUMERIC data type?

 A xs:integer

 B xs:float

 C xs:decimal

 D xs:double

✓

www.it-ebooks.info

http://www.it-ebooks.info/

 446 SQL: A Beginner’s Guide

 9. Which XML schema type is mapped from the SQL DATE data type?

 A xs:dateTime

 B xdt:yearMonthDuration

 C xs:time

 D xs:date

 E xdt:dat-TimeDuration

 10. What are the two ways that null values from the database can be represented by SQL/XML?

 A Absent document

 B Absent element

 C xsi:null= “true”

 D xsi:nil= “true”

 E <elementname=nil>

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV
Appendices

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

449

Appendix A
Answers to Self Test

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 450 SQL: A Beginner’s Guide

Chapter 1: Introduction to Relational Databases and SQL
 1. What is a database?

A database is a collection of data organized in a structured format defined by metadata that describes
the structure.

 2. Which of the following objects make up a relation?

A. Data types

B. Tuples

C. Attributes

D. Forms

B and C are the correct answers.

 3. A(n) ____________ is a set of data whose values make up an instance of each attribute defined
for that relation.

Tuple

 4. What are the differences between the first normal form and the second normal form?

According to the first normal form, each attribute of a tuple must contain only one value, each tuple
in a relation must contain the same number of values, and each tuple in a relation must be different.
According to the second normal form, a relation must be in first normal form and all attributes in a
relation must be dependent on the entire candidate key.

 5. A relation is in third normal form if it is in second normal form and if it complies with the other
guidelines of that form. What are those guidelines?

All nonkey attributes must be independent of each other and dependent on the key.

 6. What are the three primary types of relationships supported by a relational database?

One-to-one, one-to-many, many-to-many

 7. In your data model, you have two relations associated with each other by a many-to-many
relationship. How will this relationship be physically implemented in a relational database?

The relationship will be implemented by adding a third relation between the original two relations in
order to create two one-to-many relationships.

 8. How does SQL differ from programming languages such as C, COBOL, and Java?

Programming languages such as C, COBOL, and Java are procedural languages that define how an
application’s operations should be performed and the order in which they are performed. However,
SQL is a nonprocedural language and is more concerned with the results of an operation; the
underlying software environment determines how the operations will be processed. Even so, SQL
does support some procedural functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 451

 9. What factors have contributed to the SQL:2006 standard incorporating object-oriented
capabilities?

The advent of object-oriented programming, advancements in hardware and software technologies,
and the growing complexities of applications.

 10. Which level of conformance must an RDBMS support in order to comply with SQL:2006?

A. Entry

B. Core

C. Full

D. Intermediate

B is the correct answer.

 11. What are the differences between a DDL statement and a DML statement?

DDL statements are used to create, modify, and delete database objects such as tables, views,
schemas, domains, triggers, and stored procedures. DML statements are used to view, add, modify, or
delete data stored in the database objects.

 12. What method of executing SQL statements would you use if you want to communicate directly
with an SQL database from a front-end application?

Direct invocation

 13. What four methods does the SQL:2006 standard support for the execution of SQL statements?

Direct invocation, embedded SQL, module binding, and CLI

 14. What is a relational database management system?

An RDBMS is a program or set of programs that store, manage, retrieve, modify, and manipulate data
in one or more relational databases.

 15. What is an example of an RDBMS?

Any of the following are examples of RDBMSs: DB2, MySQL, Oracle, SQL Server, PostgreSQL,
Sybase, Informix, Ocelot, or any other RDBMS on the market.

Chapter 2: Working with the SQL Environment
 1. What are the differences between an SQL agent and an SQL implementation?

An SQL agent is any structure that causes SQL statements to be executed. The SQL agent is bound to
the SQL client within the SQL implementation. An SQL implementation is a processor that executes
SQL statements according to the requirements of the SQL agent. The SQL implementation includes
one SQL client and one or more SQL servers. The SQL client establishes SQL connections with the
SQL servers and maintains data related to interactions with the SQL agent and the SQL servers. An
SQL server manages the SQL session that takes place over the SQL connection and executes SQL
statements received from the SQL client.

www.it-ebooks.info

http://www.it-ebooks.info/

 452 SQL: A Beginner’s Guide

 2. Which component of an SQL environment represents a user or role that is granted specific
access privileges to objects and data?

A. Catalog

B. Authorization identifier

C. SQL client module

D. SQL agent

B is the correct answer.

 3. A(n) ____________ is a collection of schemas that form a namespace within the SQL
environment.

Catalog

 4. What is a schema?

A schema is a set of related objects that are collected under a common namespace. The schema acts as
a container for those objects, which in turn store the SQL data or perform other data-related functions.

 5. Which statement do you use to add a schema to an SQL environment?

A. ADD SCHEMA

B. INSERT SCHEMA

C. CREATE SCHEMA

C is the correct answer.

 6. What is the name of the schema that contains definitions for schema objects in a catalog?

INFORMATION_SCHEMA

 7. What are the 11 types of schema objects that can be contained in a schema?

Base tables, views, domains, UDTs, constraints, SQL server modules, triggers, SQL-invoked routines,
character sets, collations, and translations

 8. What is a view?

A view is a virtual table that is created when the view is invoked (by calling its name). The table
doesn’t actually exist, only the SQL statement that defines the table.

 9. Which schema objects provide the basic unit of data management in the SQL environment?

A. Views

B. Domains

C. Base tables

D. Character sets

C is the correct answer.

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 453

 10. How does the SQL:2006 standard define a database?

The SQL:2006 standard doesn’t define a database.

 11. A(n) ____________ is a name given to an SQL object.

Identifier

 12. How is a regular identifier distinguished from a delimited identifier in an SQL statement?

A delimited identifier is enclosed in double quotation marks. A regular identifier is not.

 13. Which type of identifier permits spaces to be used as part of the name of an object?

A delimited identifier

 14. Your SQL environment includes a catalog named INVENTORY. In that catalog is a schema
named COMPACT_DISCS, and in that schema is a table named ARTISTS. What is the
qualified name of that table?

INVENTORY.COMPACT_DISCS.ARTISTS

 15. What three forms can the <name clause> component of a CREATE SCHEMA statement take?

A <name clause> in a CREATE SCHEMA statement can take any of the following three forms:

<schema name>
AUTHORIZATION <authorization identifier>
<schema name> AUTHORIZATION <authorization identifier>

 16. What are the differences between the CASCADE option and the RESTRICT option in a DROP
SCHEMA statement?

If the CASCADE option is specified, all schema objects and SQL data within those objects are
deleted from the system. If the RESTRICT option is used, the schema is deleted only if no schema
objects exist.

 17. Within the hierarchy of the SQL environment, how is a domain related to a catalog?

A domain is a schema object, which is a child object of the schema. The schema is a child object of
a catalog.

 18. Which type of identifier allows you to use a reserved keyword?

A delimited identifier

Chapter 3: Creating and Altering Tables
 1. Which kinds of base tables can you create by using a CREATE TABLE statement?

A. Persistent base tables

B. Global temporary base tables

www.it-ebooks.info

http://www.it-ebooks.info/

 454 SQL: A Beginner’s Guide

C. Created local temporary tables

D. Declared local temporary tables

A, B, and C are the correct answers.

 2. What is the primary difference between a global temporary table and a created local temporary
table?

A global temporary table can be accessed from anywhere within the associated SQL session, whereas
a created local temporary table can be accessed only within the associated module.

 3. You’re creating a table named AGENTS. The table includes the AGENT_ID column, which has
an INT data type, and the AGENT_NAME column, which has a CHAR(60) data type. What
SQL statement should you use?

You should use the following SQL statement:

CREATE TABLE AGENTS
(AGENT_ID INT,
 AGENT_NAME CHAR(60));

 4. What are the three types of data types that SQL supports?

Predefined, constructed, and user-defined

 5. What are the four types of string data types?

Character strings, national character strings, bit strings, and binary strings

 6. A(n) ____________ data type permits values that are based on data bits, rather than character
sets or collations. This type of data type allows only values of 0 and 1.

Bit string

 7. What are the precision and the scale of the number 5293.472?

The precision is 7 and the scale is 3.

 8. What are the differences between exact numeric data types and approximate numeric data types?

With exact numeric data types, permitted values have a precision and scale. With approximate
numeric data types, permitted values have a precision but no scale.

 9. Which data types are exact numeric data types?

A. DOUBLE PRECISION

B. DECIMAL

C. REAL

D. SMALLINT

B and D are the correct answers.

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 455

 10. A(n) ____________ data type specifies the year, month, and day values of a date.

DATE

 11. What are the two types of interval data types that SQL supports?

Year-month intervals and day-time intervals

 12. Which data type should you use to support a true/false construct that can be used for comparing
values?

BOOLEAN

 13. You are creating a distinct user-defined type named CITY. The user type is based on the
CHAR(40) data type. Which SQL statement should you use?

You should use the following SQL statement:

CREATE TYPE CITY AS CHAR(40)
FINAL;

 14. You’re creating a table named CUSTOMERS. The table includes the CUSTOMER_NAME
column and the CUSTOMER_CITY column. Both columns have a VARCHAR(60) data type.
The CUSTOMER_CITY column also has a default value of Seattle. Which SQL statement
should you use?

You should use the following SQL statement:

CREATE TABLE CUSTOMERS
(CUSTOMER_NAME VARCHAR(60),
 CUSTOMER_CITY VARCHAR(60) DEFAULT 'Seattle');

 15. Which SQL statement should you use to delete a column from an existing table?

ALTER TABLE

 16. Which SQL statement should you use to delete a table definition and all its SQL data from a
database?

DROP TABLE

 17. Your database includes a table named OPERA_SINGERS. You want to add a column named
NATIONALITY to the table. The column should have a VARCHAR(40) data type. What SQL
statement should you use?

You should use the following SQL statement:

ALTER TABLE OPERA_SINGERS
 ADD COLUMN NATIONALITY VARCHAR(40);

 18. You want to delete the table definition for the OPERA_SINGERS table from your database. You
also want to delete all the data and any dependencies on the table. What SQL statement should
you use?

You should use the following SQL statement:

DROP TABLE OPERA_SINGERS CASCADE;

www.it-ebooks.info

http://www.it-ebooks.info/

 456 SQL: A Beginner’s Guide

Chapter 4: Enforcing Data Integrity
 1. What are the three categories of integrity constraints?

Table-related constraints (sometimes referred to simply as table constraints), assertions, and domain
constraints

 2. What are the differences between a column constraint and a table constraint?

Both types of constraints are defined in the table definition. A column constraint is included with the
column definition, and a table constraint is included as a table element, similar to the way columns are
defined as table elements.

 3. What types of constraints can you include in a column definition?

NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, and CHECK

 4. What is the difference between a table constraint and an assertion?

A table constraint is defined within a table definition and applies only to that table. An assertion is a
type of constraint that is defined within an assertion definition (separate from the table definition). An
assertion can be associated with one or more tables.

 5. What does a null value signify?

A null signifies that a value is undefined or not known. This is not the same as a zero, a blank, or a
default value. Instead, it indicates that a data value is absent.

 6. Which of the following types of constraints support NOT NULL constraints?

A. Table constraints

B. Column constraints

C. Domain constraints

D. Assertions

B is the correct answer.

 7. You are creating a table that includes a column that allows null values but whose non-null
values should be unique. Which type of constraint should you use?

UNIQUE

 8. You’re creating a table that includes the TYPE_NAME column. The column is defined with
the CHAR(10) data type and requires a UNIQUE constraint, which you’ll define as a column
constraint. What SQL code should you use for the column definition?

You should use the following code:

TYPE_NAME CHAR(10) UNIQUE

 9. What two restrictions apply to PRIMARY KEY constraints but not to UNIQUE constraints?

A column that is defined with a PRIMARY KEY constraint cannot contain null values, and only one
PRIMARY KEY constraint can be defined for each table.

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 457

 10. You’re creating a PRIMARY KEY constraint named PK_ARTIST_MUSIC_TYPES on the
ARTIST_MUSIC_TYPES table. The primary key includes the ARTIST_NAME and ARTIST_
DOB columns. What SQL code should you use for a table constraint?

You should use the following code:

CONSTRAINT PK_ARTIST_MUSIC_TYPES
 PRIMARY KEY (ARTIST_NAME, ARTIST_DOB)

 11. How does a referential constraint differ from a unique constraint?

Referential constraints are concerned with how data in one table relates to data in another table,
ensuring referential integrity between the two tables. Unique constraints ensure the integrity within a
table by blocking duplicate values.

 12. A(n) ____________ constraint enforces referential integrity between two tables by ensuring that
no action is taken to either table that affects the data protected by the constraint.

FOREIGN KEY

 13. You’re creating a table that includes a column named BUSINESS_TYPE_ID, with a data type of
INT. The column will be defined with a FOREIGN KEY constraint that references the primary
key in a table named BUSINESS_TYPES. The foreign key will be added as a column constraint.
What SQL code should you use for the column definition?

You should use the following code:

BUSINESS_TYPE_ID INT REFERENCES BUSINESS_TYPES

 14. What three options can you use in the MATCH clause of a FOREIGN KEY constraint?

FULL, PARTIAL, and SIMPLE

 15. What are the two types of referential triggered actions that can be defined in a FOREIGN KEY
constraint?

ON UPDATE and ON DELETE

 16. You’re creating a FOREIGN KEY constraint and want the values in the referencing column to
be updated if values in the referenced column are updated. Which <referential triggered action>
clause should you use?

A. ON UPDATE RESTRICT

B. ON UPDATE NO ACTION

C. ON UPDATE CASCADE

D. ON UPDATE SET DEFAULT

C is the correct answer.

 17. What syntax should you use for a CHECK constraint that you’re defining as a table constraint?

[CONSTRAINT <constraint name>] CHECK (<search condition>)

www.it-ebooks.info

http://www.it-ebooks.info/

 458 SQL: A Beginner’s Guide

 18. What types of constraints can you define within an assertion?

CHECK constraints

 19. You’re creating a CHECK constraint on the NUMBER_IN_STOCK column. You want to limit
the values that can be entered into the column to the range of 11 through 29. What should you
use for the <search condition> clause of the constraint?

(NUMBER_IN_STOCK BETWEEN 11 AND 29)

Chapter 5: Creating SQL Views
 1. What are two advantages of using views?

You can define complex queries and store them within the view definition. That way, rather than
having to recreate those queries every time you need them, you can instead invoke the view. You can
also present information to users without providing them with more information than they need or
information that they should not see.

 2. What are the three types of stored tables supported by SQL?

Base tables, derived tables, and viewed tables (views)

 3. What happens if you don’t assign column names to a view?

The view columns inherit the names from the originating table.

 4. How do you assign data types to view columns?

You don’t assign data types to view columns. The view columns inherit their data types from their
respective table columns.

 5. In what circumstances must you provide the view column names in a view definition?

You must provide names if any columns are arrived at through some sort of operation that calculates
the value to be inserted in the column, rather than the value coming directly from the table. You must
also provide names if table column names are duplicated, which can happen when joining tables
together.

 6. You’re creating a view named EMP_BIRTHDAYS. The view is based on the EMP_NAME
column and the BIRTHDAY column of the EMPLOYEES table. The view column names will be
the same as the table column names. What SQL code should you use to create the view?

You should use the following code:

CREATE VIEW EMP_BIRTHDAYS AS
 SELECT EMP_NAME, BIRTHDAY
 FROM EMPLOYEES;

 7. You’re creating a view based on the COMPACT_DISCS table in the INVENTORY database.
You want the view to include only those rows whose value in the LABEL_ID column is 546.
What clause—in addition to the SELECT clause and the FROM clause—should be included in
the SELECT statement for the view?

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 459

You should use the following WHERE clause:

WHERE LABEL_ID = 546

 8. You’re creating a view that references the EMPLOYEE table and the JOB_TITLE table. The
data in the two tables is matched together by the JOB_TITLE_ID column in each table. How
should you write the WHERE clause in the view’s SELECT statement?

You should write the following WHERE clause:

WHERE EMPLOYEE.JOB_TITLE_ID = JOB_TITLE.JOB_TITLE_ID

 9. You’re creating a view that references the EMPLOYEE table and the JOB_TITLE table. The
data in the two tables is matched together by the JOB_TITLE_ID column in each table. You
want the view to display only those rows whose value in the JOB_TITLE_ID column of the
JOB_TITLE table is 109. How should you write the WHERE clause in the view’s SELECT
statement?

You should write the following WHERE clause:

WHERE EMPLOYEE.JOB_TITLE_ID = JOB_TITLE.JOB_TITLE_ID
 AND JOB_TITLE.JOB_TITLE_ID = 109

 10. What is a query specification?

A query specification is an SQL expression that begins with the SELECT keyword and includes a
number of elements that form that expression.

 11. Which guidelines should you follow if you want to create an updatable view?

A. Data within the view cannot be summarized, grouped together, or automatically eliminated.

B. At least one column in the source table must be updatable.

C. Each column in the view must be traceable to exactly one source column in one table.

D. Each row in the view must be traceable to exactly one source row in one table.

A, B, C, and D are correct. A view must adhere to all four guidelines to be updatable.

 12. You create the following view based on the COMPACT_DISCS table in the INVENTORY
database:

CREATE VIEW IN_STOCK_AVERAGE AS
 SELECT AVG(IN_STOCK)
 FROM COMPACT_DISCS;

How do you insert data through this view?

You can’t insert data through this view because the data is being summarized (by using the AVG
function), which means that the row in the view isn’t traceable to exactly one source row in one table.

 13. What type of view does the WITH CHECK OPTION clause apply to?

The WITH CHECK OPTION clause applies to updatable views that include a WHERE clause in the
SELECT statement.

www.it-ebooks.info

http://www.it-ebooks.info/

 460 SQL: A Beginner’s Guide

 14. You create the following view definition:

CREATE VIEW EMP_COMM AS
 SELECT EMPLOYEE_ID, YEAR_1999, YEAR_2000
 FROM EMPLOYEE_COMMISSIONS
 WHERE YEAR_1999 > 100;

You want to use the view to update data. What happens if you change the YEAR_1999 value to
an amount less than or equal to 100?

The row is changed but you will no longer be able to use the view to display the row or update it.
To avoid having this occur, you can use the WITH CHECK OPTION clause in the CREATE VIEW
statement.

 15. You want to alter the EMP_COMM view definition in your database. How do you alter that
definition?

You must drop the view and then recreate the view.

 16. You want to drop the EMP_BIRTHDAYS view definition from your database. What SQL
statement should you use?

You should use the following SQL statement:

DROP VIEW EMP_BIRTHDAYS;

 17. What happens to the SQL data when you drop a view from the database?

None of the underlying data (which is stored in the base tables) is affected when you drop a view.
Only the view definition is removed.

Chapter 6: Managing Database Security
 1. What is the difference between a user identifier and a role name?

A user identifier is an individual security account that can represent an individual, an application,
or a system service. A role name is a defined set of privileges that can be assigned to a user or to
another role.

 2. What is the name of the special authorization identifier that grants access to all database users?

PUBLIC

 3. Each ____________ is associated with a user identifier and role name.

SQL session

 4. An SQL session is associated with which of the following?

A. Privilege

B. User identifier

C. PUBLIC

D. Role name

B and D are the correct answers.

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 461

 5. When an SQL session is first established, the user identifier is always the ____________.

SQL session user identifier

 6. What is the value of the current role name when an SQL session is first established?

A null value

 7. What is an authorization identifier?

An authorization identifier is an object in the SQL environment that represents a user or group of
users that are granted specific access privileges to objects and data within the SQL environment.

 8. What two types of authorization identifiers does SQL support?

User identifiers and role names

 9. Which privilege should you grant on an object if you want to allow an authorization identifier to
query data in that object?

SELECT

 10. You establish an SQL session with your database. The current user identifier is EthanW. The
current role name is null. What is the current authorization identifier?

EthanW

 11. On which schema objects can you define access privileges?

Base tables, views, columns, domains, character sets, collations, translations, user-defined types,
triggers, and SQL-invoked routines

 12. On which types of database objects can you assign the DELETE privilege?

A. Tables

B. Views

C. Columns

D. Domains

A and B are the correct answers.

 13. On which types of database objects can you assign the TRIGGER privilege?

A. Tables

B. Views

C. Columns

D. Domains

A is the correct answer.

www.it-ebooks.info

http://www.it-ebooks.info/

 462 SQL: A Beginner’s Guide

 14. You’re creating a role named ACCOUNTING. Which SQL statement should you use?

You should use the following SQL statement:

CREATE ROLE ACCOUNTING;

 15. You’re granting all privileges on the CD_NAMES view to everyone who uses the database.
Which SQL statement should you use?

You should use the following SQL statement:

GRANT ALL PRIVILEGES ON TABLE CD_NAMES TO PUBLIC;

 16. You’re granting the SELECT privilege to the SALES_CLERK role on a table in your database.
You want the SALES_CLERK role to be able to assign the SELECT privilege to other users.
What clause should you include in your GRANT statement?

WITH GRANT OPTION

 17. You want to grant the ACCT role to the MaxN user authorization. You do not want the user to
be able to grant the role to other users. What SQL statement should you use to grant the role?

You should use the following SQL statement:

GRANT ACCT TO MaxN;

Chapter 7: Querying SQL Data
 1. Which clauses in a SELECT statement are part of the table expression?

A. SELECT

B. FROM

C. WHERE

D. ORDER BY

B and C are the correct answers.

 2. In what order are the clauses of a SELECT statement applied?

The clauses are applied in the following order: FROM, WHERE, GROUP BY, HAVING, SELECT,
and ORDER BY.

 3. You are writing a SELECT statement that retrieves the CD_TITLE column and all rows from
the INVENTORY table. Which SELECT statement should you use?

You should use the following SQL statement:

SELECT CD_TITLE
 FROM INVENTORY;

 4. You are writing a SELECT statement that retrieves the CD_TITLE column and all rows from
the INVENTORY table. You want the column in the query results to be named COMPACT_
DISC. Which SELECT statement should you use?

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 463

You should use the following SQL statement:

SELECT CD_TITLE AS COMPACT_DISC
 FROM INVENTORY;

 5. Which clauses in a SELECT statement are required?

A. SELECT

B. FROM

C. WHERE

D. GROUP BY

A and B are the correct answers.

 6. Which keyword should you add to the SELECT clause to ensure that each row of the query
result is unique?

A. ALL

B. ROLLUP

C. DISTINCT

D. CUBE

C is the correct answer.

 7. You’re creating a SELECT statement for the INVENTORY table and you want to ensure that
only rows with a RETAIL_PRICE value of less than $16.00 are included in the query results.
What WHERE clause should you use?

You should use the following WHERE clause:

WHERE RETAIL_PRICE < 16.00

 8. You’re creating a SELECT statement that includes a WHERE clause. The WHERE
clause contains two predicates. You want the condition of either one of the predicates
to be met, but it’s not necessary for both conditions to be met. What keyword should
you use to connect the two predicates?

OR

 9. Each predicate in a WHERE clause is evaluated to which of the following?

A. True

B. Not

C. False

D. Unknown

A, C, and D are the correct answers.

www.it-ebooks.info

http://www.it-ebooks.info/

 464 SQL: A Beginner’s Guide

 10. Which clause allows you to group together values in a specified column?

A. ROLLUP

B. HAVING

C. ORDER BY

D. GROUP BY

D is the correct answer.

 11. Which two operators can you use in a GROUP BY clause to return additional summary data in
a query result?

A. ROLLUP

B. HAVING

C. CUBE

D. DISTINCT

A and C are the correct answers.

 12. You’re writing a SELECT statement that retrieves the CATEGORY and PRICE columns from
the COMPACT_DISC_STOCK table. You want to group data together first by the CATEGORY
column and then by the PRICE column. Which SELECT statement should you use?

You should use the following SQL statement:

SELECT CATEGORY, PRICE
 FROM COMPACT_DISC_STOCK
 GROUP BY CATEGORY, PRICE;

 13. You’re writing a SELECT statement that retrieves the CATEGORY and PRICE
columns from the COMPACT_DISC_STOCK table. You want to group together data
first by the CATEGORY column and then by the PRICE column. You then want to
filter out any groups that have a PRICE value over 15.99. Which SELECT statement
should you use?

You should use the following SQL statement:

SELECT CATEGORY, PRICE
 FROM COMPACT_DISC_STOCK
 GROUP BY CATEGORY, PRICE
HAVING PRICE < 16.00;

 14. You’re creating a SELECT statement that includes a SELECT clause, FROM clause, WHERE
clause, GROUP BY clause, and HAVING clause. From which clause will the HAVING clause
receive output?

A. SELECT

B. FROM

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 465

C. WHERE

D. GROUP BY

D is the correct answer.

 15. How does the HAVING clause differ from the WHERE clause?

The HAVING clause is similar to the WHERE clause in that it defines a search condition. However,
unlike the WHERE clause, the HAVING clause is concerned with groups, not individual rows.

 16. From which clause does the ORDER BY clause receive output?

The SELECT clause

 17. Which keyword should you add to an ORDER BY clause to sort data in descending order?

DESC

Chapter 8: Modifying SQL Data
 1. Which SQL statement should you use to add data to a table?

A. SELECT

B. INSERT

C. UPDATE

D. DELETE

B is the correct answer.

 2. What two clauses are mandatory in an INSERT statement?

INSERT INTO and VALUES

 3. In which clause in the INSERT statement do you identify the table that will receive the new data?

INSERT INTO

 4. You create the following INSERT statement to add data to the PERFORMING_ARTISTS table:

INSERT INTO PERFORMING_ARTISTS VALUES (12, 'Frank Sinatra');

The PERFORMING_ARTISTS table includes three columns. What will happen when you try to
execute this statement?

You’ll receive an error because there are not enough values defined for the table and no columns have
been specified to distinguish where the two values should be inserted.

 5. What information must you specify in the VALUES clause of an INSERT statement?

You must specify one or more values to be inserted into the table.

www.it-ebooks.info

http://www.it-ebooks.info/

 466 SQL: A Beginner’s Guide

 6. What requirements must be met by the values in a VALUES clause?

The values must be enclosed in parentheses and, if more than one is specified, must be separated by
commas. If the column names are not specified in the INSERT INTO clause, then there must be one
value for each column in the table and the values must be in the same order as they are defined in
the table. If the column names are specified in the INSERT INTO clause, then there must be exactly
one value per specified column and those values must be in the same order as they are defined in the
INSERT INTO clause. Each value with a character string data type must be enclosed in single quotes.

 7. You’re creating an INSERT statement to insert data into the ARTIST_TYPES table. The
table includes only two columns: ART_ID and TYPE_NAME. You want to insert one row that
includes the ART_ID value of 27 and the TYPE_NAME value of Gospel. Which SQL statement
should you use?

You should use the following SQL statement:

INSERT INTO ARTIST_TYPES VALUES (27, 'Gospel');

 8. You’re creating an INSERT statement that inserts values taken from another table. Which type
of statement or clause can you use in place of the VALUES clause to pull data from that other
table?

A. UPDATE

B. SET

C. SELECT

D. WHERE

C is the correct answer.

 9. Which statement should you use to modify existing data in one or more rows in a table?

A. SELECT

B. INSERT

C. UPDATE

D. DELETE

C is the correct answer.

 10. Which clauses in an UPDATE statement are mandatory?

UPDATE and SET

 11. What is the purpose of the WHERE clause in an UPDATE statement?

The WHERE clause specifies a condition or set of conditions that act as a filter for the rows that are
updated. Only the rows that meet the specified condition(s) are updated.

 12. You’re creating an UPDATE statement to update data in the PERFORMING_ARTISTS table.
You want to update the ART_ID value in the row that contains the PERF_ART_ID value of 139.
The new ART_ID value is 27. Which SQL statement should you use?

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 467

You should use the following SQL statement:

UPDATE PERFORMING_ARTISTS
 SET ART_ID = 27
 WHERE PERF_ART_ID = 139;

 13. You’re creating an UPDATE statement to update data in the PERFORMING_ARTISTS table.
You want to update the ART_ID value of every row to 27. Which SQL statement should you use?

You should use the following SQL statement:

UPDATE PERFORMING_ARTISTS
 SET ART_ID = 27;

 14. You’re updating two columns in the CD_INVENTORY table. You want to change the
PUBLISHER value to MCA Records and you want to double the IN_STOCK value.
Which SET clause should you use?

You should use the following SET clause:

SET PUBLISHER = 'MCA Records',
 IN_STOCK = (IN_STOCK * 2);

 15. You’re creating an UPDATE statement that includes a SET clause with one value expression.
You want the value expression to pull a value from another table in the database. Which
statement or clause can you use as a value expression to choose data from another table?

A. SELECT

B. WHERE

C. UPDATE

D. INSERT

A is the correct answer.

 16. Which clause in a DELETE statement is required?

DELETE FROM

 17. Which statement or clause do you use in a DELETE statement to specify which rows are deleted
from a table?

A. SELECT

B. WHERE

C. UPDATE

D. INSERT

B is the correct answer.

www.it-ebooks.info

http://www.it-ebooks.info/

 468 SQL: A Beginner’s Guide

Chapter 9: Using Predicates
 1. In which SELECT statement clause do you include predicates?

WHERE clause

 2. Which comparison operator symbol should you use to express a not equal condition?

A. <=

B. >=

C. <>

D. =<

C is the correct answer.

 3. Which keywords can you use to combine predicates in a WHERE clause?

The AND keyword and the OR keyword

 4. You want to query a table that includes the PRICE column. You want to ensure that all rows
returned have a PRICE value of 13.99. What predicate should you use?

PRICE = 13.99

 5. You create the following SQL statement:

SELECT CD_TITLE, RETAIL_PRICE
 FROM CDS_ON_HAND
 WHERE RETAIL_PRICE >= 14
 AND RETAIL_PRICE <= 16;

What predicate can you use in place of the two predicates shown in this statement?

RETAIL_PRICE BETWEEN 14 AND 16

 6. What keyword can you add to a BETWEEN predicate to find the inverse of the condition
specified by the predicate?

NOT

 7. When is a null value used in a column?

A null value is used in place of a value when that value is undefined or not known. A null indicates
that the value is absent. This is not the same as a zero, a blank, or a default value.

 8. You want to query a table to determine which values are null. What type of predicate should
you use?

NULL predicate

 9. You’re creating a SELECT statement that queries the ARTISTS_BIO table. You want to return
all columns in the table, but you want to return only those rows that do not contain null values
in the PLACE_OF_BIRTH column. Which SELECT statement should you use?

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 469

You should use the following SQL statement:

SELECT *
 FROM ARTISTS_BIO
 WHERE PLACE_OF_BIRTH IS NOT NULL;

 10. You’re querying the CD_INVENTORY table. You want to view all columns, but you want to
view only rows that contain the word Christmas in the name of the CD. The names are stored in
the CD_TITLE column. Which SELECT statement should you use?

You should use the following SQL statement:

SELECT *
 FROM CD_INVENTORY
 WHERE CD_TITLE LIKE ('%Christmas%');

 11. What is the difference between a percentage sign and an underscore when used in a LIKE
predicate?

The percentage sign represents zero or more unknown characters, and the underscore represents
exactly one unknown character.

 12. What two types of data sources can you use in an IN predicate?

A defined list or a subquery

 13. Which type of predicate is concerned only with determining whether or not a subquery returns
any rows?

EXISTS predicate

 14. What column names must be specified in an EXISTS predicate?

It does not matter what columns or how many columns you specify in the SELECT clause of the
subquery in an EXISTS predicate. This type of predicate is concerned only with whether rows are being
returned, not with the content of those rows. You can specify any column names or just an asterisk.

 15. You’re creating a SELECT statement that includes a predicate in the WHERE clause. You want
to use a comparison operator to compare the values in one of the columns to the results of a
subquery. You want the predicate to evaluate to true for any of the subquery results. Which type
of predicate should you use?

A. EXISTS

B. ANY

C. ALL

D. IN

B is the correct answer.

 16. What is the difference between a SOME predicate and an ANY predicate?

There is no difference. The two predicates return identical results.

www.it-ebooks.info

http://www.it-ebooks.info/

 470 SQL: A Beginner’s Guide

 17. How does the ALL predicate differ from the SOME predicate?

In many respects, the ALL predicate works the same way as the SOME predicate. The ALL predicate
compares column values to the subquery results. However, rather than the column values having to
evaluate to true for any of the result values, the column values must evaluate to true for all the result
values; otherwise, the row is not returned.

Chapter 10: Working with Functions and Value Expressions
 1. What is a set function?

A set function is a type of function that processes or calculates data and returns the appropriate values.

 2. You’re creating a SELECT statement that queries the ARTIST_CDS table. The table includes the
ARTIST_NAME and CD_NAME columns. You want your statement to return the total number
of rows in the table. Which COUNT function should you include in your SELECT clause?

A. COUNT(*)

B. COUNT(ARTIST_NAME)

C. COUNT(CD_NAME)

D. COUNT(ARTIST_NAME, CD_NAME)

A is the correct answer.

 3. Which set function should you use to add together the values in a column?

A. MAX

B. COUNT

C. SUM

D. AVG

C is the correct answer.

 4. Set functions require that the data be ____________ in some way.

Grouped

 5. What are value functions?

Value functions are a type of function that allow you to return a value that in some way calculates or
derives information from the data stored within your tables or from the SQL implementation itself.

 6. You’re using the SUBSTRING function to extract characters from the COMPACT_DISC
column of the SALES_DATES table. You want to start with the third character and extract
eight characters. What parameters should you use in the SUBSTRING function?

(COMPACT_DISC FROM 3 FOR 8)

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 471

 7. You’re using the LOWER function on the Past Light value of THE CD_NAME column. What
value will be returned?

The following value will be returned: past light

 8. Which function returns a value that represents the current date and time as well as information
related to UCT?

A. LOCALTIMESTAMP

B. CURRENT_DATE

C. LOCALTIME

D. CURRENT_TIMESTAMP

D is the correct answer.

 9. What are four types of operators that you use in a numeric value expression?

Addition, subtraction, multiplication, and division

 10. You are querying data from the CD_TRACKING table. You want to add values in the
IN_STOCK column to values in the ON_ORDER column. You then want to double the column
totals. How do you set up the numeric value expression?

(IN_STOCK + ON_ORDER) * 2

 11. Which value expression do you use to set up a series of conditions that modify values?

CASE

 12. You’re creating a SELECT statement that includes a CASE value expression. You want one of
the conditions to specify that any ON_ORDER values greater than 10 should be increased by 5.
How should you set up the WHEN/THEN clause?

WHEN ON_ORDER > 10 THEN ON_ORDER + 5

 13. What is the last word in a CASE value expression?

END

 14. What is a CAST value expression?

A CAST value expression is a type of expression that allows you to change a value’s data type when
retrieving that value from your database.

 15. You’re querying the DATE_SOLD column in the SALES_DATES table. You want to convert the
values to a CHAR(25) data type, and you want the data displayed in the CHAR_DATE column
in the query results. How do you define the CAST value expression?

CAST(DATE_SOLD AS CHAR (25)) AS CHAR_DATE

 16. Which special value can you use to identify the current SQL session user identifier?

SESSION_USER

www.it-ebooks.info

http://www.it-ebooks.info/

 472 SQL: A Beginner’s Guide

Chapter 11: Accessing Multiple Tables
 1. You are using a comma-separated join operation to join two tables. The first table contains five

rows and the second table contains three rows. How many rows will the Cartesian product table
contain?

15

 2. What constitutes an equi-join condition in a WHERE clause?

The values in one or more columns in the first table are equated with the values in one or more
corresponding columns in the second table.

 3. Which clause contains the equi-join condition in a comma-separated join?

WHERE clause

 4. What basic guidelines should you follow when creating a comma-separated join?

Your FROM clause should include all table names, your WHERE clause should define an equi-join
condition, and your column references should be qualified when column names are shared among
tables.

 5. You’re creating a join on two tables. You assign correlation names to each of these tables. Which
names should you use in the SELECT clause: the correlation names or the actual table names?

The correlation names

 6. Which type of join is nearly identical to the comma-separated join?

A. Condition join

B. Natural join

C. Cross join

D. Named column join

C is the correct answer.

 7. How many tables are contained in a self-join?

One

 8. What guidelines must you follow when creating natural joins or named column joins?

The joined columns must share the same name and have compatible data types, and the names of the
joined columns cannot be qualified with table names.

 9. What is the difference between a natural join and a named column join?

The natural join automatically matches rows for those columns with the same name. You do not have
to specify any sort of equi-join condition for natural joins. The SQL implementation determines which
columns have the same names and then tries to form a match. In a named column join, you must
specify the matching column. The matching columns are not determined automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 473

 10. Which type of join contains a USING clause to specify the equi-join condition?

A named column join

 11. What are the two types of condition joins?

Inner and outer

 12. What are the three types of outer joins?

Left, right, and full

 13. Which type of condition join should you use if you want to return only matched rows?

A. Inner join

B. Left outer join

C. Right outer join

D. Full outer join

A is the correct answer.

 14. Which type of condition join returns all matched and unmatched rows?

A. Inner join

B. Left outer join

C. Right outer join

D. Full outer join

D is the correct answer.

 15. Which type of join contains an ON clause?

A. Cross join

B. Comma-separated join

C. Natural join

D. Condition join

D is the correct answer.

 16. A(n) ____________ operator allows you to combine separate SELECT statements into one
statement in order to join data in a query result.

UNION

 17. What keyword can you use with a UNION operator to return all rows in the query results,
regardless of whether there are duplicate values?

ALL keyword

www.it-ebooks.info

http://www.it-ebooks.info/

 474 SQL: A Beginner’s Guide

Chapter 12: Using Subqueries to Access and Modify Data
 1. In which types of statements can you include subqueries?

A. SELECT

B. INSERT

C. UPDATE

D. DELETE

A, B, C, and D are the correct answers.

 2. What is a subquery?

A subquery is an embedded SELECT statement that acts as a gateway to data in a second table. The
data returned by the subquery is used by the primary statement to meet whatever conditions have been
defined for that statement.

 3. In which clauses of a SELECT statement can you include a subquery?

A. SELECT

B. WHERE

C. GROUP BY

D. HAVING

A, B, and D are the correct answers.

 4. Into what two general categories can you divide subqueries in a WHERE clause?

Subqueries that can return multiple rows and those that can return only one value

 5. Which types of predicates are you prevented from using with subqueries that return multiple
rows?

A. IN and EXISTS predicates

B. SOME, ANY, and ALL predicates

C. Comparison predicates

D. Quantified comparison predicates

C is the correct answer.

 6. When does an EXISTS condition evaluate to true?

An EXISTS condition evaluates to true if one or more rows are returned by the subquery; otherwise, it
evaluates to false.

 7. What should be included in a subquery’s search condition when using an EXISTS predicate?

The subquery of an EXISTS predicate should include a search condition that matches values in the
two tables that are being linked through the subquery.

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 475

 8. In addition to numbers, ____________ data can be compared in comparison predicates.

Character string

 9. What are the three quantified comparison predicates?

SOME, ANY, and ALL

 10. Which types of predicates allow you to use subqueries that return multiple rows?

A. IN and EXISTS predicates

B. SOME, ANY, and ALL predicates

C. Comparison predicates

D. Quantified comparison predicates

A, B, and D are the correct answers.

 11. What is a correlated subquery?

A correlated subquery is one that is dependent on the outer statement in some way.

 12. How often is a correlated subquery evaluated when a SELECT statement is processed?

The correlated subquery must be evaluated for each row returned by the outer SELECT statement.

 13. A(n) ____________ is a subquery that is a component of another subquery.

Nested subquery

 14. How many subqueries can be included in a SELECT statement, as specified by the SQL standard?

The SQL:2006 standard does not limit the number of subqueries that can be included in a statement.

 15. Which clause in an INSERT statement can contain a subquery?

VALUES clause

 16. How many values can a subquery return if it is used in an INSERT statement?

One

 17. Which clauses in an UPDATE statement can contain a subquery?

WHERE and SET

Chapter 13: Creating SQL-Invoked Routines
 1. Which are types of SQL-invoked routines supported by the SQL standard?

A. CHECK constraint

B. Function

C. Trigger

D. SQL-invoked procedure

B and D are the correct answers.

www.it-ebooks.info

http://www.it-ebooks.info/

 476 SQL: A Beginner’s Guide

 2. Which types of parameters can you use in an SQL-invoked function?

A. Input

B. Output

C. Input/output

D. Variable

A, B, and C are the correct answers.

 3. Which statement do you use to invoke an SQL-invoked procedure?

A. RETURN

B. CALL

C. SET

D. DECLARE

B is the correct answer.

 4. A(n) ____________ is a value passed to a statement in a procedure when you invoke that
procedure.

Parameter

 5. Which types of parameters can you use in an SQL-invoked function?

A. Input

B. Output

C. Input/output

D. Variable

A is the correct answer.

 6. What is another name for an SQL-invoked procedure?

Stored procedure

 7. What are the two primary differences between procedures and functions?

Procedures are invoked by using a CALL statement, and they support input and output parameters.
Functions are invoked as a value in an expression, and they support input parameters only.

 8. What information must you include in a CALL statement when invoking a procedure?

The name of the procedure and the values that are passed to the parameters

 9. Which types of statements can you include in a procedure?

A. SELECT

B. INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 477

C. UPDATE

D. DELETE

A, B, C, and D are the correct answers.

 10. Which statement do you use to assign an initial value to a variable?

A. DECLARE

B. RETURN

C. SET

D. CALL

C is the correct answer.

 11. A(n) ____________ statement allows you to group SQL statements into blocks.

Control

 12. Which keyword do you use to begin a conditional statement?

A. IF

B. BEGIN

C. THEN

D. ELSE

A is the correct answer.

 13. What keyword do you use in a LOOP statement to end that loop?

LEAVE

 14. What is the difference between a conditional statement and a compound statement?

A conditional statement determines whether a statement is executed based on whether a specified
condition evaluates to true. A compound statement groups statements into a block.

 15. What are two types of looping statements?

A. BEGIN...END

B. IF...END IF

C. LOOP...END LOOP

D. WHILE...END WHILE

C and D are the correct answers.

 16. Which type of parameter can return a value when you invoke a procedure?

Output

www.it-ebooks.info

http://www.it-ebooks.info/

 478 SQL: A Beginner’s Guide

 17. What step must you take when calling a procedure that includes an output parameter?

You must declare a variable that is then used in the CALL statement as a parameter value.

 18. How does a CREATE FUNCTION statement differ from a CREATE PROCEDURE statement?

In a CREATE FUNCTION statement, the input parameter definitions cannot include the IN keyword.
In addition, a RETURNS clause must follow the parameter definitions, and the routine body must
include a RETURN statement.

 19. You’re calling a procedure named GET_TOTALS. The procedure does not include any
parameters, but does include a SELECT statement that queries the CD_INVENTORY table.
What SQL statement should you use to invoke this parameter?

You should use the following SQL statement:

CALL GET_TOTALS();

 20. You create a procedure named GET_CD_INFO that selects data about an artist from the
CD_INFO table. The procedure includes one input parameter. You want to call that procedure
with the value Bonnie Raitt. What SQL statement should you use to invoke the procedure?

You should use the following SQL statement:

CALL GET_CD_INFO ('Bonnie Raitt');

 21. What are two types of schema objects that you can use to store a SELECT statement?

Views and SQL-invoked procedures

Chapter 14: Creating SQL Triggers
 1. What is a trigger?

A trigger is a schema object that is invoked automatically when a specified data modification is made.
Once invoked, the trigger takes a predefined action, which is specified in one or more SQL statements.

 2. What are the three types of triggers?

Insert, update, and delete

 3. What type of actions can be performed by the triggered SQL statements?

The triggered SQL statements can take such actions as updating tables, deleting data, invoking
procedures, or performing most tasks that you can perform with SQL statements.

 4. Which actions can invoke a trigger?

A. Updating data

B. Querying data

C. Deleting data

D. Inserting data

A, C, and D are the correct answers.

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 479

 5. When is an insert trigger invoked?

When data is inserted into the table on which the trigger is defined

 6. A trigger can be defined on how many tables?

A. Only one

B. One or more

C. One to three

D. Any number of tables

A is the correct answer.

 7. A(n) ____________ is a space created in memory that holds a trigger process during the
execution of that trigger.

Trigger execution context

 8. You insert data into Table 1, which invokes an insert trigger defined on that table. The trigger
updates information in Table 2, which invokes an update trigger defined on that table. The
update trigger deletes information in Table 3, which invokes a delete trigger defined on that
table. Which trigger execution context is active at this point?

A. The trigger execution context for the insert trigger

B. The trigger execution context for the update trigger

C. The trigger execution context for the delete trigger

C is the correct answer.

 9. If three triggers are invoked during a session, how many trigger execution contexts are created
in that session?

Three

 10. What information is included in a trigger execution context?

A trigger execution context contains the information necessary for the trigger to be executed correctly.
This information includes details about the trigger itself and about the subject table. In addition, the
execution context includes one or two transition tables.

 11. In which clause of the CREATE TRIGGER statement do you assign correlation names to old
and new data?

A. FOR EACH

B. ON

C. REFERENCING

D. WHEN

C is the correct answer.

www.it-ebooks.info

http://www.it-ebooks.info/

 480 SQL: A Beginner’s Guide

 12. In which clause of the CREATE TRIGGER statement do you specify whether the triggered SQL
statements are executed once for each row or once for each statement?

A. FOR EACH

B. ON

C. REFERENCING

D. WHEN

A is the correct answer.

 13. You’re creating a trigger definition for an insert trigger. Which REFERENCING clauses can
you include in your CREATE TRIGGER statement?

A. REFERENCING OLD ROW AS Old

B. REFERENCING NEW ROW AS New

C. REFERENCING OLD TABLE AS Old

D. REFERENCING NEW TABLE AS New

B and D are the correct answers.

 14. A(n) ____________ trigger allows you to specify the column names of a subject table.

Update

 15. What keywords can you use to designate whether the triggered SQL statements are executed
before or after the data modification statement is applied to the subject table?

BEFORE or AFTER

 16. You’re creating an update trigger on the CD_INVENTORY table. The table includes a column
named IN_STOCK. You want the triggered SQL statements to be executed only when the
IN_STOCK value of the updated row exceeds 20. Which clause should you include in your
CREATE TRIGGER statement to restrict when the statements are executed?

A. WHERE

B. HAVING

C. FOR EACH

D. WHEN

D is the correct answer.

 17. What statement must you include in your CREATE TRIGGER statement if the trigger
definition includes more than one triggered SQL statement?

BEGIN...END statement

 18. Which statement can you use to delete a trigger from the schema?

DROP TRIGGER statement

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 481

 19. What SQL statement do you use to alter a trigger definition?

SQL does not support a statement that allows you to alter a trigger definition. You must first use
the DROP TRIGGER statement to delete the trigger from the database, and then use the CREATE
TRIGGER statement to recreate the trigger.

Chapter 15: Using SQL Cursors
 1. What is a cursor?

A cursor serves as a pointer that allows the application programming language to deal with query
results one row at a time. Although the cursor can traverse all the rows of a query result, it focuses on
only one row at a time.

 2. Which invocation methods support the use of cursors?

Embedded SQL and SQL client modules

 3. What form of impedance mismatch is addressed through the use of cursors?

The fact that SQL returns data in sets but other programming languages can process only a few pieces
of data at the same time

 4. A(n) ____________ serves as a pointer that allows the application programming language to
deal with query results one row at a time.

Cursor

 5. When using cursors in embedded SQL, what is the first step you must take before you can
retrieve data through that cursor?

A. Fetch the cursor.

B. Declare the cursor.

C. Close the cursor.

D. Open the cursor.

B is the correct answer.

 6. What are the four cursor-related statements that you can embed in a host language?

DECLARE CURSOR, OPEN, FETCH, and CLOSE

 7. Which options can be used only in read-only cursor declarations?

A. SCROLL

B. WITH HOLD

C. ORDER BY

D. INSENSITIVE

A, C, and D are the correct answers.

www.it-ebooks.info

http://www.it-ebooks.info/

 482 SQL: A Beginner’s Guide

 8. What are the required elements of a DECLARE CURSOR statement?

DECLARE <cursor name> CURSOR FOR <query expression>

 9. What cursor type does not see changes made by statements outside the cursor?

Insensitive cursors

 10. Which option should you use in a cursor declaration to extend the retrieving capabilities of a
FETCH statement?

A. WITHOUT HOLD

B. ASENSITIVE

C. SCROLL

D. FOR UPDATE

C is the correct answer.

 11. Cursor ____________ refers to a characteristic in cursors that is concerned with whether a
cursor is automatically closed when the transaction in which the cursor was opened is committed.

Holdability

 12. You’re creating a cursor declaration. The SELECT statement includes an ORDER BY clause.
Which clauses cannot be included in the SELECT statement?

A. SELECT

B. HAVING

C. GROUP BY

D. WHERE

B and C are the correct answers.

 13. What option should you include in a cursor declaration to define that cursor as holdable?

WITH HOLD

 14. Your cursor declaration includes a FOR UPDATE clause that does not specify any columns.
Which columns in the underlying table can be updated?

All columns

 15. What SQL statement should you use if you want to open the CD_ARTISTS cursor?

You should use the following statement:

OPEN CD_ARTISTS;

 16. Which SQL statement executes the SELECT statement in a cursor?

OPEN statement

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 483

 17. A(n) ____________ statement retrieves rows from a cursor’s query results once you open that cursor.

FETCH

 18. What type of cursor allows you to use all the fetch orientation options in a FETCH statement?

Scrollable cursor

 19. Which fetch orientation option should you use in a FETCH statement if you want to be sure to
retrieve the first row in a cursor’s query results?

A. PRIOR

B. NEXT

C. ABSOLUTE -1

D. FIRST

D is the correct answer.

 20. What clause is required in a positioned UPDATE statement in order to update a row returned
by the most recent FETCH statement?

WHERE CURRENT OF <cursor name>

Chapter 16: Managing SQL Transactions
 1. Which transaction characteristic refers to the all-or-nothing nature of a transaction?

A. Atomic

B. Consistent

C. Isolated

D. Durable

A is the correct answer.

 2. A(n) ____________ is a unit of work that is made up of one or more SQL statements that
perform a related set of actions.

Transaction

 3. What statement can you use to explicitly initiate a transaction?

START TRANSACTION

 4. Which SQL statements will terminate a transaction?

A. SAVEPOINT

B. SET TRANSACTION

C. ROLLBACK

D. COMMIT

C and D are the correct answers.

www.it-ebooks.info

http://www.it-ebooks.info/

 484 SQL: A Beginner’s Guide

 5. What are the three types of transaction modes that you can specify in a SET TRANSACTION
statement?

Access level, isolation level, and diagnostics size

 6. Which access level options can you include in a START TRANSACTION statement?

A. READ ONLY

B. UPDATE

C. LOCAL

D. READ WRITE

A and D are the correct answers.

 7. Two concurrent transactions are active in your system. The first transaction modifies data in
a table. The second transaction sees those modifications before they’re actually committed
to the database. The first transaction then rolls back the modifications. Which type of data
phenomenon has occurred?

A. Phantom read

B. Repeatable read

C. Dirty read

D. Nonrepeatable read

C is the correct answer.

 8. A(n) ____________ read can occur when a transaction reads a table based on some sort of
search condition, then a second transaction updates the data in the table, and then the first
transaction attempts to reread the data, but this time different rows are returned because of
how the search condition is defined.

Phantom

 9. What type of constraint can you specify in a SET CONSTRAINTS statement?

Deferrable constraint

 10. Which isolation level fully isolates one transaction from another transaction?

SERIALIZABLE

 11. You’re using a SET TRANSACTION statement to configure transaction modes. You want
to ensure that no nonrepeatable reads and no dirty reads can occur within that transaction.
However, you’re not concerned about phantom reads. Which isolation level should you use?

A. READ UNCOMMITTED

B. READ COMMITTED

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 485

C. REPEATABLE READ

D. SERIALIZABLE

C is the correct answer.

 12. You’re setting up a transaction that defers the application of the CK_CD_STOCK constraint
until you execute several SQL statements. After you execute the statements, you want to
explicitly apply the constraint to the changes you made to the database. What SQL statement
should you use to apply the constraints?

You should use the following statement:

SET CONSTRAINTS CK_CD_STOCK IMMEDIATE;

 13. A(n) ____________ is a designated marker within your transaction that acts as a rollback point
for a portion of your transaction.

Savepoint

 14. You want to create a savepoint named svpt_Section2. What SQL statement should you use?

You should use the following statement:

SAVEPOINT svpt_Section2;

 15. You create a transaction that includes four savepoints: Section1, Section2, Section3, and
Section4. Near the end of the transaction, after all four savepoints, you define a RELEASE
SAVEPOINT that specifies the Section2 savepoint. Which savepoint or savepoints are removed
from the transaction when the RELEASE SAVEPOINT statement is executed?

A. Section1

B. Section2

C. Section3

D. Section4

B, C, and D are the correct answers.

 16. What circumstances will terminate a transaction?

A ROLLBACK statement is explicitly defined in the transaction; a COMMIT statement is explicitly
defined in the transaction; the program that initiated the transaction is interrupted, causing the
program to abort; or the program successfully completes its execution.

 17. You’re creating a ROLLBACK statement in your transaction. You want the rollback to undo
changes back to the svpt_Section2 savepoint. What SQL statement should you use?

You should use the following statement:

ROLLBACK TO SAVEPOINT svpt_Section2;

www.it-ebooks.info

http://www.it-ebooks.info/

 486 SQL: A Beginner’s Guide

 18. You’re creating a COMMIT statement in your transaction. After the transaction is terminated, you
want a new transaction to be initiated. The new transaction should be configured with the same
transaction modes as the first transaction. How should you create your COMMIT statement?

You should use the following statement:

COMMIT AND CHAIN;

Chapter 17: Accessing SQL Data from Your Host Program
 1. Which data access method should you use if you want to create and execute ad hoc SQL

statements?

A. CLI

B. SQL client modules

C. Direct invocation

D. Embedded SQL

C is the correct answer.

 2. What is embedded SQL?

Embedded SQL refers to SQL statements that are interspersed in some type of application
programming language. The SQL statements are blended into the host language to allow the source
program to be able to access and modify SQL data and the underlying database structure.

 3. What does the precompiler do with the program file?

The precompiler strips the SQL statements out of the host language code and replaces them with calls
to the SQL statements.

 4. Which files are created by an SQL precompiler?

A. A file for the CLI functions

B. A file for the host language

C. A file for the CLI calls

D. A file for the embedded SQL statements

B and D are the correct answers.

 5. Which clause in a MODULE statement do you use to specify the host programming language?

LANGUAGE clause

 6. Which prefix should embedded SQL statements use when those statements are embedded in the
MUMPS programming language?

A. &SQL(

B. EXEC SQL

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 487

C. START-EXEC

D. Statements embedded in MUMPS do not require a prefix.

A is the correct answer.

 7. A(n) ____________ is a type of parameter that is declared within the host language and is then
referenced within the embedded SQL statement.

Host variable

 8. What statement should you use at the beginning of the declaration section for host variables?

BEGIN DECLARE SECTION

 9. Which prefix must you provide for a host variable when it is included in an SQL statement?

A. Question mark

B. Ampersand

C. Semicolon

D. Colon

D is the correct answer.

 10. You plan to embed SQL statements in your host program. You want to declare several host
variables to be used in the SQL statements. Which SQL statement should you use to terminate
the declaration section of your program?

A. TERMINATE DECLARE SECTION

B. END DECLARE SECTION

C. TERMINATE DECLARATIONS

D. END DECLARATIONS

B is the correct answer.

 11. What can cause an impedance mismatch to occur when passing a variable from a host program
to an SQL statement?

The differences between the host language data type and SQL data type

 12. What type of SELECT statement can you use in embedded SQL when retrieving only one row
of data?

Singleton SELECT statement

 13. A(n) ____________ is a type of variable that specifies whether an associated data variable
contains a null value.

Indicator host variable

www.it-ebooks.info

http://www.it-ebooks.info/

 488 SQL: A Beginner’s Guide

 14. Which statement can you use in embedded SQL to provide your host program with exception
and warning information?

A. WHENEVER

B. INTO

C. CAST

D. PROCEDURE

A is the correct answer.

 15. A(n) ____________ is a self-contained collection of SQL statements that are separate from a
host programming language but that can be called from within that language.

SQL client module

 16. What allocation handles must you establish in order to execute an SQL statement through a
CLI API?

Environment, connection, and statement

 17. How many SQL statements can you include in a procedure in an SQL client module?

One

 18. Which function should you use to establish a CLI connection handle?

A. ExecDirect()

B. Connect()

C. Prepare()

D. AllocHandle()

D is the correct answer.

 19. You’re allocating an environment handle within a C program and associating the handle with
the henv host variable. What function statement should you use?

You should use the following function statement:

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

 20. You’re creating the following Prepare() function statement in your host program:

SQLPrepare (hstmt, "SELECT CD_ID, CD_TITLE, IN_STOCK FROM
COMPACT_DISCS
 WHERE COMPACT_DISC_ID = ?", SQL_NTS);

How many BindCol() function statements should you create?

A. One

B. Two

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix A: Answers to Self Test 489

C. Three

D. Four

C is the correct answer.

 21. What CLI function should you use if you want to execute an SQL statement in one step?

ExecDirect()

Chapter 18: Working with XML Data
 1. What is XML?

XML is a general-purpose markup language used to describe documents.

 2. Which of the following are common uses of XML?

A. Displaying database data on a web page

B. Creation of static web pages

C. Transmission of database data to another party

D. Enforcement of business rules on documents

A and C are the correct answers.

 3. How do SQL databases and XML documents vary in terms of data structure?

XML defines sequence and a hierarchical tree structure, while SQL does not.

 4. If two organizations are both using XML, does that mean that they have a standard way of
exchanging data without having to create interface software?

Not necessarily. The two organizations must use a common definition for the elements within the
XML documents to be exchanged before they can process them without the need to perform any
interpretation or conversion.

 5. Which of the following are valid type modifiers for the XML data type?

A. DOCUMENT

B. SEQUENCE

C. SQLXML

D. CONTENT

A, B, and D are the correct answers.

 6. What are the valid secondary type modifiers for the SEQUENCE type modifier?

The SEQUENCE type modifier cannot have a secondary type modifier.

www.it-ebooks.info

http://www.it-ebooks.info/

 490 SQL: A Beginner’s Guide

 7. Which of the following SQL/XML functions creates an element based on a table column?

A. XMLQUERY

B. XMLELEMENT

C. XMLFOREST

D. XMLDOCUMENT

E. XMLPARSE

C is the correct answer.

 8. Which XML schema type is mapped from the SQL NUMERIC data type?

A. xs:integer

B. xs:float

C. xs:decimal

D. xs:double

C is the correct answer.

 9. Which XML schema type is mapped from the SQL DATE data type?

A. xs:dateTime

B. xdt:yearMonthDuration

C. xs:time

D. xs:date

E. xdt:dat-TimeDuration

D is the correct answer.

 10. What are the two ways that null values from the database can be represented by SQL/XML?

A. Absent document

B. Absent element

C. xsi:null= “true”

D. xsi:nil= “true”

E. <elementname=nil>

D is the correct answer.

www.it-ebooks.info

http://www.it-ebooks.info/

491

Appendix B
SQL:2006 Keywords

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 492 SQL: A Beginner’s Guide

The SQL:2006 standard defines a set of reserved keywords and nonreserved keywords that
are used within your SQL statements. You cannot use reserved keywords as identifiers.

In addition, it is generally a good idea to avoid using nonreserved keywords. Note that the
SQL standard warns that it makes no guarantees about what keywords might be added to the
standard in the future. As a result, an identifier you use in a current database might not be
usable in future releases of SQL. You can avoid conflicts with future reserved keywords by
adding a digit or an underscore to your identifiers, especially those comprised of only a single
word, and by not beginning an identifier with current_, session_, system_, or timezone_, or
ending an identifier with _length.

NOTE
Various SQL implementations include additional keywords and reserved words that
cannot be used as identifiers. Always check your product documentation.

SQL Reserved Keywords
Table B-1 lists SQL reserved keywords.

ABS ALL ALLOCATE ALTER

AND ANY ARE ARRAY

AS ASENSITIVE ASYMMETRIC AT

ATOMIC AUTHORIZATION AVG BEGIN

BETWEEN BIGINT BINARY BLOB

BOOLEAN BOTH BY CALL

CALLED CARDINALITY CASCADED CASE

CAST CEIL CEILING CHAR

CHAR_LENGTH CHARACTER CHARACTER_
LENGTH

CHECK

CLOB CLOSE COALESCE COLLATE

COLLECT COLUMN COMMIT CONDITION

CONNECT CONSTRAINT CONVERT CORR

CORRESPONDING COUNT COVAR_POP COVAR_SAMP

CREATE CROSS CUBE CUME_DIST

CURRENT CURRENT_DATE CURRENT_DEFAULT_
TRANSFORM_GROUP

CURRENT_PATH

CURRENT_ROLE CURRENT_TIME CURRENT_TIMESTAMP CURRENT_TRANSFORM_
GROUP_FOR_TYPE

Table B-1 SQL Reserved Keywords

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix B: SQL:2006 Keywords 493

CURRENT_USER CURSOR CYCLE DATE

DAY DEALLOCATE DEC DECIMAL

DECLARE DEFAULT DELETE DENSE_RANK

DEREF DESCRIBE DETERMINISTIC DISCONNECT

DISTINCT DOUBLE DROP DYNAMIC

EACH ELEMENT ELSE END

END-EXEC ESCAPE EVERY EXCEPT

EXEC EXECUTE EXISTS EXP

EXTERNAL EXTRACT FALSE FETCH

FILTER FLOAT FLOOR FOR

FOREIGN FREE FROM FULL

FUNCTION FUSION GET GLOBAL

GRANT GROUP GROUPING HAVING

HOLD HOUR IDENTITY IN

INDICATOR INNER INOUT INSENSITIVE

INSERT INT INTEGER INTERSECT

INTERSECTION INTERVAL INTO IS

JOIN LANGUAGE LARGE LATERAL

LEADING LEFT LIKE LN

LOCAL LOCALTIME LOCALTIMESTAMP LOWER

MATCH MAX MEMBER MERGE

METHOD MIN MINUTE MOD

MODIFIES MODULE MONTH MULTISET

NATIONAL NATURAL NCHAR NCLOB

NEW NO NONE NORMALIZE

NOT NULL NULLIF NUMERIC

OCTET_LENGTH OF OLD ON

ONLY OPEN OR ORDER

OUT OUTER OVER OVERLAPS

OVERLAY PARAMETER PARTITION PERCENT_RANK

PERCENTILE_CONT PERCENTILE_DISC POSITION POWER

PRECISION PREPARE PRIMARY PROCEDURE

RANGE RANK READS REAL

Table B-1 SQL Reserved Keywords (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 494 SQL: A Beginner’s Guide

RECURSIVE REF REFERENCES REFERENCING

REGR_AVGX REGR_AVGY REGR_COUNT REGR_INTERCEPT

REGR_R2 REGR_SLOPE REGR_SXX REGR_SXY

REGR_SYY RELEASE RESULT RETURN

RETURNS REVOKE RIGHT ROLLBACK

ROLLUP ROW ROW_NUMBER ROWS

SAVEPOINT SCOPE SCROLL SEARCH

SECOND SELECT SENSITIVE SESSION_USER

SET SIMILAR SMALLINT SOME

SPECIFIC SPECIFICTYPE SQL SQLEXCEPTION

SQLSTATE SQLWARNING SQRT START

STATIC STDDEV_POP STDDEV_SAMP SUBMULTISET

SUBSTRING SUM SYMMETRIC SYSTEM

SYSTEM_USER TABLE TABLESAMPLE THEN

TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE

TO TRAILING TRANSLATE TRANSLATION

TREAT TRIGGER TRIM TRUE

UESCAPE UNION UNIQUE UNKNOWN

UNNEST UPDATE UPPER USER

USING VALUE VALUES VAR_POP

VAR_SAMP VARCHAR VARYING WHEN

WHENEVER WHERE WIDTH_BUCKET WINDOW

WITH WITHIN WITHOUT YEAR

Table B-1 SQL Reserved Keywords (continued)

SQL Nonreserved Keywords
Table B-2 lists SQL nonreserved keywords.

ABSOLUTE ACTION ADA

ADD ADMIN AFTER

ALWAYS ASC ASSERTION

ASSIGNMENT ATTRIBUTE ATTRIBUTES

BEFORE BERNOULLI BREADTH

Table B-2 SQL Nonreserved Keywords

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix B: SQL:2006 Keywords 495

CASCADE CATALOG CATALOG_NAME

CHAIN CHARACTER_SET_CATALOG CHARACTER_SET_NAME

CHARACTER_SET_SCHEMA CHARACTERISTICS CHARACTERS

CLASS_ORIGIN COBOL COLLATION

COLLATION_CATALOG COLLATION_NAME COLLATION_SCHEMA

COLUMN_NAME COMMAND_FUNCTION COMMAND_FUNCTION_CODE

COMMITTED CONDITION_NUMBER CONNECTION

CONNECTION_NAME CONSTRAINT_CATALOG CONSTRAINT_NAME

CONSTRAINT_SCHEMA CONSTRAINTS CONSTRUCTOR

CONTAINS CONTINUE CURSOR_NAME

DATA DATETIME_INTERVAL_CODE DATETIME_INTERVAL_PRECISION

DEFAULTS DEFERRABLE DEFERRED

DEFINED DEFINER DEGREE

DEPTH DERIVED DESC

DESCRIPTOR DIAGNOSTICS DISPATCH

DOMAIN DYNAMIC_FUNCTION DYNAMIC_FUNCTION_CODE

EQUALS EXCEPTION EXCLUDE

EXCLUDING FINAL FIRST

FOLLOWING FORTRAN FOUND

GENERAL GENERATED GO

GOTO GRANTED IMMEDIATE

IMPLEMENTATION INCLUDING INCREMENT

INITIALLY INPUT INSTANCE

INSTANTIABLE INVOKER ISOLATION

KEY KEY_MEMBER KEY_TYPE

LAST LENGTH LEVEL

LOCATOR MAP MATCHED

MAXVALUE MESSAGE_LENGTH MESSAGE_OCTET_LENGTH

MESSAGE_TEXT MINVALUE MORE

MUMPS NAME NAMES

NESTING NEXT NORMALIZED

NULLABLE NULLS NUMBER

OBJECT OCTETS OPTION

Table B-2 SQL Nonreserved Keywords (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

 496 SQL: A Beginner’s Guide

OPTIONS ORDERING ORDINALITY

OTHERS OUTPUT OVERRIDING

PAD PARAMETER_MODE PARAMETER_NAME

PARAMETER_ORDINAL_
POSITION

PARAMETER_SPECIFIC_
CATALOG

PARAMETER_SPECIFIC_NAME

PARAMETER_SPECIFIC_
SCHEMA

PARTIAL PASCAL

PATH PLACING PLI

PRECEDING PRESERVE PRIOR

PRIVILEGES PUBLIC READ

RELATIVE REPEATABLE RESTART

RESTRICT RETURNED_CARDINALITY RETURNED_LENGTH

RETURNED_OCTET_LENGTH RETURNED_SQLSTATE ROLE

ROUTINE ROUTINE_CATALOG ROUTINE_NAME

ROUTINE_SCHEMA ROW_COUNT SCALE

SCHEMA SCHEMA_NAME SCOPE_CATALOG

SCOPE_NAME SCOPE_SCHEMA SECTION

SECURITY SELF SEQUENCE

SERIALIZABLE SERVER_NAME SESSION

SETS SIMPLE SIZE

SOURCE SPACE SPECIFIC_NAME

STATE STATEMENT STRUCTURE

STYLE SUBCLASS_ORIGIN TABLE_NAME

TEMPORARY TIES TOP_LEVEL_COUNT

TRANSACTION TRANSACTION_ACTIVE TRANSACTIONS_COMMITTED

TRANSACTIONS_
ROLLED_BACK

TRANSFORM TRANSFORMS

TRIGGER_CATALOG TRIGGER_NAME TRIGGER_SCHEMA

TYPE UNBOUNDED UNCOMMITTED

UNDER UNNAMED USAGE

USER_DEFINED_TYPE_
CATALOG

USER_DEFINED_TYPE_CODE USER_DEFINED_TYPE_NAME

USER_DEFINED_TYPE_
SCHEMA

VIEW WORK

WRITE ZONE

Table B-2 SQL Nonreserved Keywords (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

497

Appendix C
SQL Code Used in
Try This Exercises

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 498 SQL: A Beginner’s Guide

Try This 3-1

In the Try This exercises throughout this book, you created a number of SQL statements that
allowed you to define database objects in the INVENTORY database, modify those objects,
insert data into the tables that you created, retrieve that data, and update and delete the data.
The statements are included here so that you can see the progression of the statements as you
move through the Try This exercises and also so that you can reference them as necessary
in case you need to redo certain elements of an exercise. In addition, I’ve provided the SQL
statements (in a consolidated form) used to create the INVENTORY database and populate
the tables with data. You might find that, as you work your way through this book, you’ll
want to be able to recreate the database and bring it into a consistent state. By using the
consolidated code, you can simply create the database objects and populate the tables as
often as necessary, without having to pick the statements out of different Try This exercises.
You can download the files from http://www.mhprofessional.com. Go to Computing and
then Downloads.

NOTE
The SQL statements are written in pure SQL. Therefore, some SQL implementations
might require that you modify the statements to conform to the conventions of that
particular implementation. Be sure to check your product documentation.

SQL Code by Try This Exercise
The SQL statements are presented here according to the order in which the projects were
presented in the book. You can reference these statements as necessary to use them to
recreate exercises or to use them as a foundation for other exercises. If you’re recreating the
INVENTORY database and want to ensure that you’re including all the necessary elements,
see the “The INVENTORY Database” section later in this appendix.

 Creating SQL Tables
CREATE TABLE COMPACT_DISCS
(COMPACT_DISC_ID INT,
 CD_TITLE VARCHAR(60),
 LABEL_ID INT);

CREATE TABLE CD_LABELS
(LABEL_ID INT,
 COMPANY_NAME VARCHAR(60));

CREATE TABLE MUSIC_TYPES
(TYPE_ID INT,
 TYPE_NAME VARCHAR(20));

www.it-ebooks.info

http://www.mhprofessional.com
http://www.it-ebooks.info/

 Appendix C: SQL Code Used in Try This Exercises 499

Try This 4-1

Try This 3-2 Altering and Deleting SQL Tables
CREATE TABLE COMPACT_DISC_TYPES
(COMPACT_DISC_ID INT,
 TYPE_ID INT);

DROP TABLE COMPACT_DISC_TYPES CASCADE;

CREATE TABLE COMPACT_DISC_TYPES
(COMPACT_DISC_ID INT,
 CD_TITLE VARCHAR(60),
 TYPE_ID INT);

ALTER TABLE COMPACT_DISC_TYPES
 DROP COLUMN CD_TITLE CASCADE;

 Adding NOT NULL, Unique, and
Referential Constraints

DROP TABLE COMPACT_DISCS CASCADE;
DROP TABLE COMPACT_DISC_TYPES CASCADE;
DROP TABLE MUSIC_TYPES CASCADE;
DROP TABLE CD_LABELS CASCADE;

CREATE TABLE MUSIC_TYPES
(TYPE_ID INT,
 TYPE_NAME VARCHAR(20) NOT NULL,
 CONSTRAINT UN_TYPE_NAME UNIQUE (TYPE_NAME),
 CONSTRAINT PK_MUSIC_TYPES PRIMARY KEY (TYPE_ID));

CREATE TABLE CD_LABELS
(LABEL_ID INT,
 COMPANY_NAME VARCHAR(60) DEFAULT 'Independent' NOT NULL,
 CONSTRAINT PK_CD_LABELS PRIMARY KEY (LABEL_ID));

CREATE TABLE COMPACT_DISCS
(COMPACT_DISC_ID INT,
 CD_TITLE VARCHAR(60) NOT NULL,
 LABEL_ID INT NOT NULL,
 CONSTRAINT PK_COMPACT_DISCS PRIMARY KEY (COMPACT_DISC_ID),
 CONSTRAINT FK_LABEL_ID FOREIGN KEY (LABEL_ID) REFERENCES CD_LABELS);

CREATE TABLE COMPACT_DISC_TYPES
(COMPACT_DISC_ID INT,
 MUSIC_TYPE_ID INT,
 CONSTRAINT PK_COMPACT_DISC_TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

 500 SQL: A Beginner’s Guide

Try This 5-1

Try This 4-2

 PRIMARY KEY (COMPACT_DISC_ID, MUSIC_TYPE_ID),
 CONSTRAINT FK_COMPACT_DISC_ID_01
 FOREIGN KEY (COMPACT_DISC_ID) REFERENCES COMPACT_DISCS,
 CONSTRAINT FK_MUSIC_TYPE_ID
 FOREIGN KEY (MUSIC_TYPE_ID) REFERENCES MUSIC_TYPES);

CREATE TABLE ARTISTS
(ARTIST_ID INT,
 ARTIST_NAME VARCHAR(60) NOT NULL,
 PLACE_OF_BIRTH VARCHAR(60) DEFAULT 'Unknown' NOT NULL,
 CONSTRAINT PK_ARTISTS PRIMARY KEY (ARTIST_ID));

CREATE TABLE ARTIST_CDS
(ARTIST_ID INT,
 COMPACT_DISC_ID INT,
 CONSTRAINT PK_ARTIST_CDS PRIMARY KEY (ARTIST_ID, COMPACT_DISC_ID),
 CONSTRAINT FK_ARTIST_ID FOREIGN KEY (ARTIST_ID) REFERENCES Artists,
 CONSTRAINT FK_COMPACT_DISC_ID_02 FOREIGN KEY (COMPACT_DISC_ID)
 REFERENCES COMPACT_DISCS);

 Adding a CHECK Constraint
ALTER TABLE COMPACT_DISCS
 ADD COLUMN IN_STOCK INT NOT NULL;

ALTER TABLE COMPACT_DISCS
 ADD CONSTRAINT CK_IN_STOCK CHECK (IN_STOCK > 0 AND IN_STOCK < 50);

 Adding Views to Your Database
CREATE VIEW CDS_IN_STOCK AS
 SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 10 WITH CHECK OPTION;

CREATE VIEW CD_PUBLISHERS (CD_TITLE, PUBLISHER) AS
 SELECT COMPACT_DISCS.CD_TITLE, CD_LABELS.COMPANY_NAME
 FROM COMPACT_DISCS, CD_LABELS
 WHERE COMPACT_DISCS.LABEL_ID = CD_LABELS.LABEL_ID
 AND CD_LABELS.LABEL_ID = 5403 OR CD_LABELS.LABEL_ID = 5402;

DROP VIEW CD_PUBLISHERS;

CREATE VIEW CD_PUBLISHERS (CD_TITLE, PUBLISHER) AS
 SELECT COMPACT_DISCS.CD_TITLE, CD_LABELS.COMPANY_NAME
 FROM COMPACT_DISCS, CD_LABELS
 WHERE COMPACT_DISCS.LABEL_ID = CD_LABELS.LABEL_ID;

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix C: SQL Code Used in Try This Exercises 501

Try This 7-1

Try This 6-1 Managing Roles and Privileges
CREATE ROLE MRKT;

CREATE ROLE SALES_STAFF;

GRANT SELECT ON CDS_IN_STOCK TO PUBLIC;

GRANT SELECT, INSERT, UPDATE(CD_TITLE) ON COMPACT_DISCS
 TO SALES_STAFF WITH GRANT OPTION;

GRANT SALES_STAFF TO MRKT;

REVOKE SELECT ON CDS_IN_STOCK FROM PUBLIC CASCADE;

REVOKE ALL PRIVILEGES ON COMPACT_DISCS FROM SALES_STAFF CASCADE;

REVOKE SALES_STAFF FROM MRKT CASCADE;

DROP ROLE MRKT;

DROP ROLE SALES_STAFF;

 Querying the Inventory Database
NOTE
The INSERT statements used for this project are listed at the bottom of the “The
INVENTORY Database” section later in this appendix.

SELECT *
 FROM ARTISTS;

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS;

SELECT *
 FROM CDS_IN_STOCK;

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 10 AND IN_STOCK < 30;

SELECT LABEL_ID, SUM(IN_STOCK) AS TOTAL_IN_STOCK
 FROM COMPACT_DISCS
 GROUP BY LABEL_ID;

www.it-ebooks.info

http://www.it-ebooks.info/

 502 SQL: A Beginner’s Guide

Try This 8-1

SELECT LABEL_ID, SUM(IN_STOCK) AS TOTAL_IN_STOCK
 FROM COMPACT_DISCS
 GROUP BY LABEL_ID
HAVING SUM(IN_STOCK) > 10;

SELECT *
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 10
 ORDER BY CD_TITLE DESC;

 Modifying SQL Data
INSERT INTO CD_LABELS
 VALUES (837, 'DRG Records');

INSERT INTO COMPACT_DISCS
VALUES (116, 'Ann Hampton Callaway', 836, 14) ;

INSERT INTO COMPACT_DISCS
 (COMPACT_DISC_ID, CD_TITLE, LABEL_ID, IN_STOCK)
 VALUES (117, 'Rhythm Country and Blues', 832, 21);

UPDATE COMPACT_DISCS
 SET IN_STOCK = 25
 WHERE COMPACT_DISC_ID = 117;

UPDATE COMPACT_DISCS
 SET LABEL_ID =
 (SELECT LABEL_ID
 FROM CD_LABELS
 WHERE COMPANY_NAME = 'DRG Records')
 WHERE COMPACT_DISC_ID = 116;

SELECT *
 FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = 116
 OR COMPACT_DISC_ID = 117;

DELETE FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = 116
 OR COMPACT_DISC_ID = 117;

DELETE FROM CD_LABELS
 WHERE LABEL_ID = 837;

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix C: SQL Code Used in Try This Exercises 503

Try This 9-2

Try This 9-1 Using Predicates in SQL Statements
SELECT TYPE_ID, TYPE_NAME
 FROM MUSIC_TYPES
 WHERE TYPE_ID = 11
 OR TYPE_ID = 12;

SELECT ARTIST_NAME, PLACE_OF_BIRTH
 FROM ARTISTS
 WHERE ARTIST_NAME <> 'Patsy Cline'
 AND ARTIST_NAME <> 'Bing Crosby';

SELECT ARTIST_ID, ARTIST_NAME
 FROM ARTISTS
 WHERE ARTIST_ID > 2004
 AND ARTIST_ID < 2014;

SELECT ARTIST_ID, ARTIST_NAME
 FROM ARTISTS
 WHERE ARTIST_ID BETWEEN 2004 AND 2014;

SELECT *
 FROM ARTISTS
 WHERE PLACE_OF_BIRTH IS NULL;

SELECT *
 FROM ARTISTS
 WHERE PLACE_OF_BIRTH IS NOT NULL;

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE CD_TITLE LIKE ('%Greatest%')
 OR CD_TITLE LIKE ('%Best%');

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE CD_TITLE NOT LIKE ('%Greatest%')
 AND CD_TITLE NOT LIKE ('%Best%');

 Using Subqueries in Predicates
SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE LABEL_ID IN
 (SELECT LABEL_ID
 FROM CD_LABELS
 WHERE COMPANY_NAME = 'Decca Record Company');

www.it-ebooks.info

http://www.it-ebooks.info/

 504 SQL: A Beginner’s Guide

Try This 10-1

SELECT CD_TITLE, IN_STOCK FROM COMPACT_DISCS
 WHERE EXISTS
 (SELECT LABEL_ID FROM CD_LABELS
 WHERE COMPACT_DISCS.LABEL_ID = CD_LABELS.LABEL_ID
 AND LABEL_ID > 830);

SELECT LABEL_ID, COMPANY_NAME
 FROM CD_LABELS
 WHERE LABEL_ID = ANY
 (SELECT LABEL_ID
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 20);

SELECT LABEL_ID, COMPANY_NAME
 FROM CD_LABELS
 WHERE LABEL_ID = ALL
 (SELECT LABEL_ID
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 20);

SELECT LABEL_ID, COMPANY_NAME
 FROM CD_LABELS
 WHERE LABEL_ID = ALL
 (SELECT LABEL_ID
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 40);

 Using Functions and Value Expressions
SELECT COUNT(DISTINCT ARTIST_NAME) AS ARTISTS
 FROM ARTISTS;

SELECT MIN(IN_STOCK) AS MIN_STOCK
 FROM COMPACT_DISCS;

SELECT LABEL_ID, SUM(IN_STOCK) AS TOTAL
 FROM COMPACT_DISCS
 GROUP BY LABEL_ID;

SELECT ARTIST_NAME,
 SUBSTRING(PLACE_OF_BIRTH FROM 1 FOR 8) AS BIRTH_PLACE
 FROM ARTISTS;

SELECT UPPER(CD_TITLE) AS CD_NAME
 FROM COMPACT_DISCS;;

SELECT CD_TITLE, IN_STOCK,

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix C: SQL Code Used in Try This Exercises 505

Try This 12-1

Try This 11-1

 (IN_STOCK * 2) AS DOUBLED, (IN_STOCK * 3) AS TRIPLED
 FROM COMPACT_DISCS
 WHERE IN_STOCK < 25;

SELECT CD_TITLE, IN_STOCK, TO_ORDER =
 CASE
 WHEN IN_STOCK < 10 THEN IN_STOCK * 2
 WHEN IN_STOCK BETWEEN 10 AND 15 THEN IN_STOCK + 3
 ELSE IN_STOCK
 END
 FROM COMPACT_DISCS
 WHERE IN_STOCK < 20;

SELECT TYPE_ID, CAST(TYPE_NAME AS CHAR(20)) AS CHAR_TYPE
 FROM MUSIC_TYPES;

 Querying Multiple Tables
SELECT * FROM ARTISTS a, ARTIST_CDS c
 WHERE a.ARTIST_ID = c.ARTIST_ID;

SELECT d.CD_TITLE, a.ARTIST_NAME, a.PLACE_OF_BIRTH
 FROM ARTISTS a, ARTIST_CDS c, COMPACT_DISCS d
 WHERE a.ARTIST_ID = c.ARTIST_ID
 AND d.COMPACT_DISC_ID = c.COMPACT_DISC_ID;

SELECT d.CD_TITLE, a.ARTIST_NAME, a.PLACE_OF_BIRTH
 FROM ARTISTS a CROSS JOIN ARTIST_CDS c CROSS JOIN COMPACT_DISCS d
 WHERE a.ARTIST_ID = c.ARTIST_ID
 AND d.COMPACT_DISC_ID = c.COMPACT_DISC_ID;

SELECT d.CD_TITLE, t.TYPE_NAME
 FROM COMPACT_DISCS d JOIN COMPACT_DISC_TYPES dt
 ON d.COMPACT_DISC_ID = dt.COMPACT_DISC_ID
 JOIN MUSIC_TYPES t
 ON dt.MUSIC_TYPE_ID = t.TYPE_ID;

SELECT d.CD_TITLE, t.TYPE_NAME
 FROM COMPACT_DISCS d FULL JOIN COMPACT_DISC_TYPES dt
 ON d.COMPACT_DISC_ID = dt.COMPACT_DISC_ID
 FULL JOIN MUSIC_TYPES t
 ON dt.MUSIC_TYPE_ID = t.TYPE_ID;

 Working with Subqueries
SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE LABEL_ID IN

www.it-ebooks.info

http://www.it-ebooks.info/

 506 SQL: A Beginner’s Guide

 (SELECT LABEL_ID
 FROM CD_LABELS
 WHERE COMPANY_NAME = 'MCA Records');

SELECT COMPANY_NAME
 FROM CD_LABELS l
 WHERE EXISTS
 (SELECT *
 FROM COMPACT_DISCS d
 WHERE l.LABEL_ID = d.LABEL_ID
 AND CD_TITLE = 'Out of Africa');

SELECT COMPANY_NAME
 FROM CD_LABELS
 WHERE LABEL_ID = ANY
 (SELECT LABEL_ID
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 30);

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE LABEL_ID =
 (SELECT LABEL_ID
 FROM CD_LABELS
 WHERE COMPANY_NAME = 'Capitol Records');

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS d, CD_LABELS l
 WHERE d.LABEL_ID = l.LABEL_ID
 AND COMPANY_NAME = 'Capitol Records';

SELECT ARTIST_NAME
 FROM ARTISTS
 WHERE ARTIST_ID IN
 (SELECT ARTIST_ID
 FROM ARTIST_CDS
 WHERE COMPACT_DISC_ID IN
 (SELECT COMPACT_DISC_ID
 FROM COMPACT_DISCS
 WHERE CD_TITLE = 'Past Light'));

SELECT CD_TITLE, TYPE_NAME
 FROM COMPACT_DISCS d, COMPACT_DISC_TYPES t, MUSIC_TYPES m
 WHERE d.COMPACT_DISC_ID = t.COMPACT_DISC_ID
 AND t.MUSIC_TYPE_ID = m.TYPE_ID
 AND CD_TITLE = 'Kojiki';

UPDATE COMPACT_DISC_TYPES
 SET MUSIC_TYPE_ID =

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix C: SQL Code Used in Try This Exercises 507

Try This 13-1

 (SELECT TYPE_ID
 FROM MUSIC_TYPES
 WHERE TYPE_NAME = 'Classical')
 WHERE COMPACT_DISC_ID =
 (SELECT COMPACT_DISC_ID
 FROM COMPACT_DISCS
 WHERE CD_TITLE = 'Kojiki')
 AND MUSIC_TYPE_ID =
 (SELECT TYPE_ID
 FROM MUSIC_TYPES
 WHERE TYPE_NAME = 'New Age');

SELECT CD_TITLE, TYPE_NAME
 FROM COMPACT_DISCS d, COMPACT_DISC_TYPES t, MUSIC_TYPES m
 WHERE d.COMPACT_DISC_ID = t.COMPACT_DISC_ID
 AND t.MUSIC_TYPE_ID = m.TYPE_ID
 AND CD_TITLE = 'Kojiki';

UPDATE COMPACT_DISC_TYPES
 SET MUSIC_TYPE_ID =
 (SELECT TYPE_ID
 FROM MUSIC_TYPES
 WHERE TYPE_NAME = 'New Age')
 WHERE COMPACT_DISC_ID =
 (SELECT COMPACT_DISC_ID
 FROM COMPACT_DISCS
 WHERE CD_TITLE = 'Kojiki')
 AND MUSIC_TYPE_ID =
 (SELECT TYPE_ID
 FROM MUSIC_TYPES
 WHERE TYPE_NAME = 'Classical');

SELECT CD_TITLE, TYPE_NAME
 FROM COMPACT_DISCS d, COMPACT_DISC_TYPES t, MUSIC_TYPES m
 WHERE d.COMPACT_DISC_ID = t.COMPACT_DISC_ID
 AND t.MUSIC_TYPE_ID = m.TYPE_ID
 AND CD_TITLE = 'Kojiki';

 Creating SQL-Invoked Procedures
CREATE PROCEDURE GET_CD_ARTISTS ()
 SELECT cd.CD_TITLE, a.ARTIST_NAME
 FROM COMPACT_DISCS cd, ARTIST_CDS ac, ARTISTS a
 WHERE cd.COMPACT_DISC_ID = ac.COMPACT_DISC_ID
 AND ac.ARTIST_ID = a.ARTIST_ID;

www.it-ebooks.info

http://www.it-ebooks.info/

 508 SQL: A Beginner’s Guide

Try This 14-1

Try This 13-2

CALL GET_CD_ARTISTS();

DROP PROCEDURE GET_CD_ARTISTS CASCADE;

 SELECT cd.CD_TITLE, a.ARTIST_NAME
 FROM COMPACT_DISCS cd, ARTIST_CDS ac, ARTISTS a
 WHERE cd.COMPACT_DISC_ID = ac.COMPACT_DISC_ID
 AND ac.ARTIST_ID = a.ARTIST_ID
 AND cd.CD_TITLE = p_CD;

CALL GET_CD_ARTISTS('Fundamental');

CREATE PROCEDURE GET_CD_AMOUNT ()
 BEGIN
 DECLARE v_In_Stock INT;
 SET v_In_Stock = (SELECT AVG(IN_STOCK)
 FROM COMPACT_DISCS);
 SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE IN_STOCK < v_In_Stock;
 END;

CALL GET_CD_AMOUNT();

 Creating SQL-Invoked Functions
CREATE FUNCTION CD_LABEL (p_CD VARCHAR(60))
 RETURNS VARCHAR(60)
 BEGIN
 RETURN (SELECT COMPANY_NAME
 FROM COMPACT_DISCS d, CD_LABELS l
 WHERE d.LABEL_ID = l.LABEL_ID
 AND CD_TITLE = p_CD);
 END;

SELECT CD_TITLE, COMPANY_NAME
 FROM COMPACT_DISCS d, CD_LABELS l
 WHERE d.LABEL_ID = l.LABEL_ID
 AND COMPANY_NAME = CD_LABEL ('Blues on the Bayou');

DROP FUNCTION CD_LABEL CASCADE;

 Creating SQL Triggers
CREATE TABLE ARTIST_LOG
 (ACTION_TYPE CHAR(6),
 ARTIST_ID INT,

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix C: SQL Code Used in Try This Exercises 509

 MOD_DATE TIMESTAMP DEFAULT CURRENT_TIMESTAMP);

CREATE TRIGGER INSERT_LOG
 AFTER INSERT ON ARTISTS
 REFERENCING NEW ROW AS New
 FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO ARTIST_LOG (ACTION_TYPE, ARTIST_ID)
 VALUES ('INSERT', New.ARTIST_ID);
 END;

CREATE TRIGGER UPDATE_LOG
 AFTER UPDATE ON ARTISTS
 REFERENCING NEW ROW AS New
 FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO ARTIST_LOG (ACTION_TYPE, ARTIST_ID)
 VALUES ('UPDATE', New.ARTIST_ID);
 END;

CREATE TRIGGER DELETE_LOG
 AFTER DELETE ON ARTISTS
 REFERENCING OLD ROW AS Old
 FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO ARTIST_LOG (ACTION_TYPE, ARTIST_ID)
 VALUES ('DELETE', Old.ARTIST_ID);
 END;

INSERT INTO ARTISTS (ARTIST_ID, ARTIST_NAME)
 VALUES (2019, 'John Lee Hooker');

UPDATE ARTISTS
 SET PLACE_OF_BIRTH = 'Clarksdale, Mississippi, USA'
 WHERE ARTIST_ID = 2019;

DELETE ARTISTS
 WHERE ARTIST_ID = 2019

SELECT * FROM ARTIST_LOG;

DROP TRIGGER INSERT_LOG;

DROP TRIGGER UPDATE_LOG;

DROP TRIGGER DELETE_LOG;

DROP TABLE ARTIST_LOG;

www.it-ebooks.info

http://www.it-ebooks.info/

 510 SQL: A Beginner’s Guide

Try This 15-1 Working with SQL Cursors
DECLARE v_CD_NAME VARCHAR (60);

DECLARE CD_cursor_1 CURSOR
 FOR
 SELECT CD_TITLE
 FROM COMPACT_DISCS
 ORDER BY CD_TITLE ASC;

OPEN CD_cursor_1;

FETCH CD_cursor_1 INTO v_CD_NAME;

CLOSE CD_cursor_1;

DECLARE v_CD_NAME VARCHAR(60);

DECLARE CD_cursor_2 SCROLL INSENSITIVE CURSOR
 FOR
 SELECT CD_TITLE
 FROM COMPACT_DISCS
 ORDER BY CD_TITLE ASC
 FOR READ ONLY;

OPEN CD_cursor_2;

FETCH LAST FROM CD_cursor_2 INTO v_CD_NAME;

CLOSE CD_cursor_2;

DECLARE v_CD_NAME VARCHAR(60);

DECLARE CD_cursor_3 CURSOR
 FOR
 SELECT CD_TITLE
 FROM COMPACT_DISCS
 FOR UPDATE;

OPEN CD_cursor_3;

FETCH CD_cursor_3 INTO v_CD_NAME;

UPDATE COMPACT_DISCS
 SET IN_STOCK = IN_STOCK * 2
 WHERE CURRENT OF CD_cursor_3;

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix C: SQL Code Used in Try This Exercises 511

Try This 16-1

CLOSE CD_cursor_3;

SELECT * FROM COMPACT_DISCS;

UPDATE COMPACT_DISCS
 SET IN_STOCK = 13
 WHERE COMPACT_DISC_ID = 101;

 Working with Transactions
START TRANSACTION
 ISOLATION LEVEL READ UNCOMMITTED;

SELECT *
 FROM ARTISTS;

COMMIT;

START TRANSACTION
 ISOLATION LEVEL SERIALIZABLE;

UPDATE COMPACT_DISCS
 SET IN_STOCK = IN_STOCK + 2
 WHERE LABEL_ID = 832;

ROLLBACK;

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE LABEL_ID = 832;

START TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE LABEL_ID = 832;

SAVEPOINT SECTION_1;

UPDATE COMPACT_DISCS
 SET IN_STOCK = IN_STOCK + 2
 WHERE LABEL_ID = 832;

ROLLBACK TO SAVEPOINT SECTION_1;

www.it-ebooks.info

http://www.it-ebooks.info/

 512 SQL: A Beginner’s Guide

Try This 17-1 Embedding SQL Statements
EXEC SQL
 BEGIN DECLARE SECTION;
 long v_CD_ID; /* input variable for CD identifier */
 varchar v_CD_TITLE[60]; /* output variable for CD title */
 long v_IN_STOCK; /* output variable for IN_STOCK value */
EXEC SQL
 END DECLARE SECTION;

short ind_CD_TITLE; /* indicator variable for v_CD_TITLE */
short ind_IN_STOCK; /* indicator variable for v_IN_STOCK */

EXEC SQL BEGIN DECLARE SECTION;
 long v_CD_ID; /* input variable for CD identifier */
 varchar v_CD_TITLE[60]; /* output variable for CD title */
 short IND_CD_TITLE; /* indicator variable for v_CD_TITLE */
 long v_IN_STOCK; /* output variable for IN_STOCK value */
 short ind_IN_STOCK; /* indicator variable for v_IN_STOCK */
EXEC SQL END DECLARE SECTION;

EXEC SQL
 WHENEVER SQLEXCEPTION GOTO Error1;

EXEC SQL
 SELECT CD_TITLE, IN_STOCK
 INTO :v_CD_TITLE :ind_CD_TITLE, :v_IN_STOCK :ind_IN_STOCK
 FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = :v_CD_ID;

EXEC SQL
 BEGIN DECLARE SECTION;
 long v_CD_ID; /* input variable for CD identifier */
 varchar v_CD_TITLE[60]; /* output variable for CD title */
 short ind_CD_TITLE; /* indicator variable for v_CD_TITLE */
 long v_IN_STOCK; /* output variable for IN_STOCK value */
 short ind_IN_STOCK; /* indicator variable for v_IN_STOCK */
EXEC SQL
 END DECLARE SECTION;
EXEC SQL
 WHENEVER SQLEXCEPTION GOTO Error1;
EXEC SQL
 SELECT CD_TITLE, IN_STOCK
 INTO :v_CD_TITLE :ind_CD_TITLE, :v_IN_STOCK :ind_IN_STOCK
 FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = :v_CD_ID;

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix C: SQL Code Used in Try This Exercises 513

Try This 18-1

Try This 17-2 Using the SQL Call-Level Interface
SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);

SQLConnect (hdbc, DBServer, SQL_NTS, DBAdmin, SQL_NTS, AdminPW,
SQL_NTS);

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

SQLExecDirect (hstmt, "DELETE FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = 122", SQL_NTS);

SQLPrepare (hstmt, "SELECT CD_TITLE, IN_STOCK FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = ?", SQL_NTS);

SQLBindParameter (hstmt, 1, SQL_PARAMETER_MODE_IN, SQL_INT,
 SQL_INT, 3, 0, &v_CD_ID, 4, &ind_CD_ID);

SQLExecute (hstmt);

SQLBindCol (hstmt, 1, SQL_CHAR, &v_CD_TITLE, 60, &ind_CD_TITLE);
SQLBindCol (hstmt, 2, SQL_INT, &v_IN_STOCK, 5, &ind_IN_STOCK);

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
SQLConnect (hdbc, DBServer, SQL_NTS, DBAdmin, SQL_NTS, AdminPW,
SQL_NTS);
SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
SQLExecDirect (hstmt, "DELETE FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = 122", SQL_NTS);
SQLPrepare (hstmt, "SELECT CD_TITLE, IN_STOCK FROM COMPACT_DISCS
 WHERE COMPACT_DISC_ID = ?", SQL_NTS);
SQLBindParameter (hstmt, 1, SQL_PARAMETER_MODE_IN, SQL_INT,
 SQL_INT, 3, 0, &v_CD_ID, 4, &ind_CD_ID);
SQLExecute (hstmt);
SQLBindCol (hstmt, 1, SQL_CHAR, &v_CD_TITLE, 60, &ind_CD_TITLE);
SQLBindCol (hstmt, 2, SQL_INT, &v_IN_STOCK, 5, &ind_IN_STOCK);

 Using SQL/XML Functions
SELECT XMLELEMENT(NAME CD,
 XMLATTRIBUTE(COMPACT_DISC_ID AS ID),
 XMLFOREST(CD_TITLE as Title))
 FROM COMPACT_DISCS
 ORDER BY COMPACT_DISC_ID;

www.it-ebooks.info

http://www.it-ebooks.info/

 514 SQL: A Beginner’s Guide

<CD ID='101'>
 <Title>Famous Blue Raincoat</Title>
</CD>
<CD ID='102'>
 <Title>Blue</Title>
</CD>

The INVENTORY Database
You might find that as you work through the projects in this book you need to recreate
the INVENTORY database. This might be as a result of switching to a different SQL
implementation, reinstalling your SQL implementation, or wanting to start with a fresh
database and data. The following SQL statements will allow you to recreate the INVENTORY
database objects (tables and views) in their entirety. Once you create the necessary tables, you
can use the INSERT statements to add data to them. If you want to be able to copy the SQL
statements directly from a file, you can download the AppC.txt file, which contains the data
definition statements and the INSERT statements.

CREATE TABLE MUSIC_TYPES
(TYPE_ID INT,
 TYPE_NAME VARCHAR(20) NOT NULL,
 CONSTRAINT UN_TYPE_NAME UNIQUE (TYPE_NAME),
 CONSTRAINT PK_MUSIC_TYPES PRIMARY KEY (TYPE_ID));

CREATE TABLE CD_LABELS
(LABEL_ID INT,
 COMPANY_NAME VARCHAR(60) DEFAULT 'Independent' NOT NULL,
 CONSTRAINT PK_CD_LABELS PRIMARY KEY (LABEL_ID));

CREATE TABLE COMPACT_DISCS
(COMPACT_DISC_ID INT,
 CD_TITLE VARCHAR(60) NOT NULL,
 LABEL_ID INT NOT NULL,
 IN_STOCK INT NOT NULL
 CONSTRAINT PK_COMPACT_DISCS PRIMARY KEY (COMPACT_DISC_ID),
 CONSTRAINT FK_LABEL_ID FOREIGN KEY (LABEL_ID) REFERENCES CD_LABELS,
 CONSTRAINT CK_IN_STOCK CHECK (IN_STOCK > 0 AND IN_STOCK < 50));

CREATE TABLE COMPACT_DISC_TYPES
(COMPACT_DISC_ID INT,
 MUSIC_TYPE_ID INT,
 CONSTRAINT PK_COMPACT_DISC_TYPES
 PRIMARY KEY (COMPACT_DISC_ID, MUSIC_TYPE_ID),
 CONSTRAINT FK_COMPACT_DISC_ID_01
 FOREIGN KEY (COMPACT_DISC_ID) REFERENCES COMPACT_DISCS,
 CONSTRAINT FK_MUSIC_TYPE_ID
 FOREIGN KEY (MUSIC_TYPE_ID) REFERENCES MUSIC_TYPES);

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix C: SQL Code Used in Try This Exercises 515

CREATE TABLE ARTISTS
(ARTIST_ID INT,
 ARTIST_NAME VARCHAR(60) NOT NULL,
 PLACE_OF_BIRTH VARCHAR(60) DEFAULT 'Unknown' NOT NULL,
 CONSTRAINT PK_ARTISTS PRIMARY KEY (ARTIST_ID));

CREATE TABLE ARTIST_CDS
(ARTIST_ID INT,
 COMPACT_DISC_ID INT,
 CONSTRAINT PK_ARTIST_CDS PRIMARY KEY (ARTIST_ID, COMPACT_DISC_ID),
 CONSTRAINT FK_ARTIST_ID FOREIGN KEY (ARTIST_ID) REFERENCES ARTISTS,
 CONSTRAINT FK_COMPACT_DISC_ID_02 FOREIGN KEY (COMPACT_DISC_ID)
 REFERENCES COMPACT_DISCS);

CREATE VIEW CDS_IN_STOCK AS
 SELECT CD_TITLE, IN_STOCK
 FROM COMPACT_DISCS
 WHERE IN_STOCK > 10 WITH CHECK OPTION;

CREATE VIEW CD_PUBLISHERS (CD_TITLE, PUBLISHER) AS
 SELECT COMPACT_DISCS.CD_TITLE, CD_LABELS.COMPANY_NAME
 FROM COMPACT_DISCS, CD_LABELS
 WHERE COMPACT_DISCS.LABEL_ID = CD_LABELS.LABEL_ID;

--Insert data into the CD_LABELS table
INSERT INTO CD_LABELS VALUES (827, 'Private Music');
INSERT INTO CD_LABELS VALUES (828, 'Reprise Records');
INSERT INTO CD_LABELS VALUES (829, 'Asylum Records');
INSERT INTO CD_LABELS VALUES (830, 'Windham Hill Records');
INSERT INTO CD_LABELS VALUES (831, 'Geffen');
INSERT INTO CD_LABELS VALUES (832, 'MCA Records');
INSERT INTO CD_LABELS VALUES (833, 'Decca Record Company');
INSERT INTO CD_LABELS VALUES (834, 'CBS Records');
INSERT INTO CD_LABELS VALUES (835, 'Capitol Records');
INSERT INTO CD_LABELS VALUES (836, 'Sarabande Records');
--End inserts for the CD_LABELS table

--Insert data into the COMPACT_DISCS table
INSERT INTO COMPACT_DISCS VALUES
 (101, 'Famous Blue Raincoat', 827, 13);
INSERT INTO COMPACT_DISCS VALUES
 (102, 'Blue', 828, 42);
INSERT INTO COMPACT_DISCS VALUES
 (103, 'Court and Spark', 829, 22);
INSERT INTO COMPACT_DISCS VALUES
 (104, 'Past Light', 830, 17);
INSERT INTO COMPACT_DISCS VALUES
 (105, 'Kojiki', 831, 6);

www.it-ebooks.info

http://www.it-ebooks.info/

 516 SQL: A Beginner’s Guide

INSERT INTO COMPACT_DISCS VALUES
 (106, 'That Christmas Feeling', 832, 8);
INSERT INTO COMPACT_DISCS VALUES
 (107, 'Patsy Cline: 12 Greatest Hits', 832, 32);
INSERT INTO COMPACT_DISCS VALUES
 (108, 'Carreras Domingo Pavarotti in Concert', 833, 27);
INSERT INTO COMPACT_DISCS VALUES
 (109, 'After the Rain: The Soft Sounds of Erik Satie', 833, 21);
INSERT INTO COMPACT_DISCS VALUES
 (110, 'Out of Africa', 832, 29);
INSERT INTO COMPACT_DISCS VALUES
 (111, 'Leonard Cohen The Best Of', 834, 12);
INSERT INTO COMPACT_DISCS VALUES
 (112, 'Fundamental', 835, 34);
INSERT INTO COMPACT_DISCS VALUES
 (113, 'Bob Seger and the Silver Bullet Band Greatest Hits',
 835, 16);
INSERT INTO COMPACT_DISCS VALUES
 (114, 'Blues on the Bayou', 832, 27);
INSERT INTO COMPACT_DISCS VALUES
 (115, 'Orlando', 836, 5);
--End inserts for the COMPACT_DISCS table

--Insert data into the MUSIC_TYPES table
INSERT INTO MUSIC_TYPES VALUES (11, 'Blues');
INSERT INTO MUSIC_TYPES VALUES (12, 'Jazz');
INSERT INTO MUSIC_TYPES VALUES (13, 'Pop');
INSERT INTO MUSIC_TYPES VALUES (14, 'Rock');
INSERT INTO MUSIC_TYPES VALUES (15, 'Classical');
INSERT INTO MUSIC_TYPES VALUES (16, 'New Age');
INSERT INTO MUSIC_TYPES VALUES (17, 'Country');
INSERT INTO MUSIC_TYPES VALUES (18, 'Folk');
INSERT INTO MUSIC_TYPES VALUES (19, 'International');
INSERT INTO MUSIC_TYPES VALUES (20, 'Soundtracks');
INSERT INTO MUSIC_TYPES VALUES (21, 'Christmas');
--End inserts for the MUSIC_TYPES table

--Insert data into the COMPACT_DISC_TYPES table
INSERT INTO COMPACT_DISC_TYPES VALUES (101, 18);
INSERT INTO COMPACT_DISC_TYPES VALUES (101, 13);
INSERT INTO COMPACT_DISC_TYPES VALUES (102, 11);
INSERT INTO COMPACT_DISC_TYPES VALUES (102, 18);
INSERT INTO COMPACT_DISC_TYPES VALUES (102, 13);
INSERT INTO COMPACT_DISC_TYPES VALUES (103, 18);
INSERT INTO COMPACT_DISC_TYPES VALUES (103, 13);
INSERT INTO COMPACT_DISC_TYPES VALUES (104, 16);
INSERT INTO COMPACT_DISC_TYPES VALUES (105, 16);

www.it-ebooks.info

http://www.it-ebooks.info/

 Appendix C: SQL Code Used in Try This Exercises 517

INSERT INTO COMPACT_DISC_TYPES VALUES (106, 21);
INSERT INTO COMPACT_DISC_TYPES VALUES (107, 13);
INSERT INTO COMPACT_DISC_TYPES VALUES (107, 17);
INSERT INTO COMPACT_DISC_TYPES VALUES (108, 13);
INSERT INTO COMPACT_DISC_TYPES VALUES (108, 15);
INSERT INTO COMPACT_DISC_TYPES VALUES (109, 15);
INSERT INTO COMPACT_DISC_TYPES VALUES (110, 20);
INSERT INTO COMPACT_DISC_TYPES VALUES (111, 13);
INSERT INTO COMPACT_DISC_TYPES VALUES (111, 18);
INSERT INTO COMPACT_DISC_TYPES VALUES (112, 11);
INSERT INTO COMPACT_DISC_TYPES VALUES (112, 13);
INSERT INTO COMPACT_DISC_TYPES VALUES (113, 13);
INSERT INTO COMPACT_DISC_TYPES VALUES (113, 14);
INSERT INTO COMPACT_DISC_TYPES VALUES (114, 11);
INSERT INTO COMPACT_DISC_TYPES VALUES (115, 20);
--End inserts for the COMPACT_DISC_TYPES table

--Insert data into the ARTISTS table
INSERT INTO ARTISTS VALUES
 (2001, 'Jennifer Warnes', 'Seattle, Washington, USA');
INSERT INTO ARTISTS VALUES
 (2002, 'Joni Mitchell', 'Fort MacLeod, Alberta, Canada');
INSERT INTO ARTISTS VALUES
 (2003, 'William Ackerman', 'Germany');
INSERT INTO ARTISTS VALUES
 (2004, 'Kitaro', 'Toyohashi, Japan');
INSERT INTO ARTISTS VALUES
 (2005, 'Bing Crosby', 'Tacoma, Washington, USA');
INSERT INTO ARTISTS VALUES
 (2006, 'Patsy Cline', 'Winchester, Virginia, USA');
INSERT INTO ARTISTS VALUES
 (2007, 'Jose Carreras', 'Barcelona, Spain');
INSERT INTO ARTISTS VALUES
 (2008, 'Luciano Pavarotti', 'Modena, Italy');
INSERT INTO ARTISTS VALUES
 (2009, 'Placido Domingo', 'Madrid, Spain');
INSERT INTO ARTISTS VALUES
 (2010, 'Pascal Roge', 'Unknown');
INSERT INTO ARTISTS VALUES
 (2011, 'John Barry', 'Unknown');
INSERT INTO ARTISTS VALUES
 (2012, 'Leonard Cohen', 'Montreal, Quebec, Canada');
INSERT INTO ARTISTS VALUES
 (2013, 'Bonnie Raitt', 'Burbank, California, USA');
INSERT INTO ARTISTS VALUES
 (2014, 'Bob Seger', 'Dearborn, Michigan, USA');
INSERT INTO ARTISTS VALUES
 (2015, 'Silver Bullet Band', 'Does not apply');

www.it-ebooks.info

http://www.it-ebooks.info/

 518 SQL: A Beginner’s Guide

INSERT INTO ARTISTS VALUES
 (2016, 'B.B. King', 'Indianola, Mississippi, USA');
INSERT INTO ARTISTS VALUES
 (2017, 'David Motion', 'Unknown');
INSERT INTO ARTISTS VALUES
 (2018, 'Sally Potter', 'Unknown');
--End inserts for the ARTISTS table

--Insert data into the ARTIST_CDS table
INSERT INTO ARTIST_CDS VALUES (2001, 101);
INSERT INTO ARTIST_CDS VALUES (2002, 102);
INSERT INTO ARTIST_CDS VALUES (2002, 103);
INSERT INTO ARTIST_CDS VALUES (2003, 104);
INSERT INTO ARTIST_CDS VALUES (2004, 105);
INSERT INTO ARTIST_CDS VALUES (2005, 106);
INSERT INTO ARTIST_CDS VALUES (2006, 107);
INSERT INTO ARTIST_CDS VALUES (2007, 108);
INSERT INTO ARTIST_CDS VALUES (2008, 108);
INSERT INTO ARTIST_CDS VALUES (2009, 108);
INSERT INTO ARTIST_CDS VALUES (2010, 109);
INSERT INTO ARTIST_CDS VALUES (2011, 110);
INSERT INTO ARTIST_CDS VALUES (2012, 111);
INSERT INTO ARTIST_CDS VALUES (2013, 112);
INSERT INTO ARTIST_CDS VALUES (2014, 113);
INSERT INTO ARTIST_CDS VALUES (2015, 113);
INSERT INTO ARTIST_CDS VALUES (2016, 114);
INSERT INTO ARTIST_CDS VALUES (2017, 115);
INSERT INTO ARTIST_CDS VALUES (2018, 115);
--End inserts for the ARTIST_CDS table

www.it-ebooks.info

http://www.it-ebooks.info/

519

Index

Symbols
-- (hyphens) with INSERT statements,

170
− (subtraction) operator, 239
% (percentage sign) with LIKE,

203–205
& (ampersand) with allocation

handles, 422
() (parentheses)

with AND and OR keywords,
155

with CALL statement, 308
with COUNT function, 227
organizing in code, 96–97
with predicates, 158–159

* (asterisk)
in COUNT function, 227–228
with cursors, 361
with query results, 148

* (multiplication) operator, 239
/ (division) operator, 239
/ (slash) in XML, 436
: (colon)

with host variables, 408–409
with statement label, 317

::= symbol, 90
; (semicolon) with compound

statements, 313
? (question mark) placeholder, 425

[] (brackets) with MATCH clause, 88
_ (underscores)

with LIKE predicate, 203–204
using, 41

{} (curly brackets), 51
+ (addition) operator, 239
< (less than) operator, 195, 197
<!-- and --> in XML, 436
<= (less than or equal to) operator,

195, 198–199
<> (angle brackets)

using, 42
in XML, 436

<> (not equal to) operator, 195–196
<::> separator with class keyword,

133
= (equal to) operator

with equi-joins, 256
example of, 195
with WHERE clause, 196

> (comparison predicates)
combining, 197, 207
with constraints, 95
defining subqueries with, 292
description of, 194

> (greater than) operator, 195, 197
>= (greater than or equal to) operator,

195, 198–199
‘ (single quote) with INSERT INTO,

177–178

, (comma)
with authorization identifiers,

137–138
with CALL statement, 308
with columns, 53
with INSERT INTO clause,

177
with table references, 149

A
ABSOLUTE option with FETCH

statement, 365–367
access privileges
 defining, 128–129
 granting and restricting, 19
ACCOUNTING role, granting

privileges to, 134
ACID test, applying to transactions, 379
active database, defined, 331
Ada, SQL statements in, 408
addition (+) operator, 239
ADMIN OPTION FOR clause with

roles, 138
AFTER DELETE keyword with

triggers, 343
AFTER keyword

with insert triggers, 337
with triggers, 333, 339

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.
www.it-ebooks.info

http://www.it-ebooks.info/

 520 SQL: A Beginner’s Guide

aggregate functions. See set functions
aliases

with triggers, 334–335
using, 257–258

ALL keyword
with SELECT clause,

147–148, 152
after UNION operator, 271

ALL predicate, 218–219, 221
ALL PRIVILEGES option

with GRANT clause, 132
using, 136

allocation handles in CLI, 421–423, 427
AllocHandle() function, 422–423
ALTER [COLUMN] clause, 68
ALTER FUNCTION statement, 311
ALTER PROCEDURE statement, 310
ALTER TABLE statement

with CHECK constraints, 99
using, 50, 67–68

ALTER VIEW statement, 118
ampersand (&) with allocation

handles, 422
AND CHAIN clause

with COMMIT, 396
with ROLLBACK, 397

AND keyword
with joins, 257
with BETWEEN predicate, 199
with predicates, 153–155, 157,

197–198, 208, 219
AND NO CHAIN clause

with COMMIT, 396
with ROLLBACK, 397

AND NOT keywords, 157–158
angle brackets (<>)

using, 42
in XML, 436

ANSI standard for SQL-86, 16
ANY predicate, 216–218, 221, 282
App_User authorization identifier,

127–128
ARTIST_CDS table, creating, 94
ARTIST_LOG table with triggers,

345–348
ARTISTS table

altering, 68
constraints in, 94
creating, 53, 62–63, 65
creating insert trigger on, 345
querying, 170
transactions in, 398–400

ARTISTS_CDS table, set functions
on, 226–227

AS keyword
with CAST, 244–245
with correlation names, 258
with views, 109–111

AS subclause with SELECT
statement, 151

ASC keyword with ORDER BY, 166
ASENSITIVE option with cursors, 357
assertions

defined, 74
defining, 97–98
limitation of, 75

asterisk (*)
in COUNT function, 227–228
with cursors, 361
with query results, 148

ATOMIC keyword
with insert triggers, 337
with triggers, 334

atomic quality, applying to
transactions, 379

attributes
defined, 6
functional dependence of, 9
terminology, 7
unique identifiers, 8–9
in XML, 436

AUTHORIZATION clause, 417
<authorization identifier list>

option, 133
<authorization identifier> value, 43
authorization identifiers. See also

identifiers
associating privileges with,

131–132
with comma (,), 137–138
description of, 32
role names, 125
user identifiers, 124

AUTHORIZATION keyword, 42
authorization stack, creating, 127
authorization users, determining, 128
averages, creating views of, 115
AVG function

in queries, 148–149
using, 232
in views, 115

AVG_PRICE column, returning, 165

B
base tables. See also tables

created local temporary, 51
creating, 51
declared local temporary, 51
description of, 35, 50
global temporary, 51
naming, 52
persistent, 50
specifying parts of, 52
types of, 104

BEFORE keyword with triggers, 333
BEGIN block

with compound statements,
313–314

with loops, 318
BEGIN...END statement

with conditional statements, 314
with delete triggers, 344
with insert triggers, 337
with triggers, 334, 340
using, 313–314

BETWEEN operator with
constraints, 97

BETWEEN predicate, 199–200, 207
BIGINT data types, mapping to XML

schema types, 442
binary strings, 55, 57
BindCol() function in CLI, 426
binding styles. See execution methods
BindParameter() function in CLI, 425
bit strings, 55–56
BOOLEAN data types

mapping to XML schema
types, 442

using, 61
brackets ([]) with MATCH clause, 88
bytes

size of, 55
storing, 57

C
C program

AllocHandle() function in, 422
BindParameter() function in,

425
calling modules in, 418
declaring host variables in,

409–410
embedding statements in, 409
SQL statements in, 408

CALL statement
with conditional statements, 315
with loops, 317
with procedures, 305–306,

308–310, 312, 320
call-level interface (CLI)

allocation handles in, 421–423
ExecDirect() function in,

423–424, 428
Execute() function in, 424–425
executing SQL statements in,

423–424
host variables in, 424–425
overview of, 419–420
Prepare() function in, 424
retrieving data in, 426
using, 427–429, 513

www.it-ebooks.info

http://www.it-ebooks.info/

 Index 521

candidate key
defined, 7
with PRIMARY KEY

constraint, 80
Cartesian product table, producing, 255
CASCADE CONSTRAINTS option, 93
CASCADE option

with procedures, 311
with REVOKE, 136
with schemas, 43–44
with tables, 68–69

CASCADE referential action, 90
CASE value expression, 241–244, 249
CAST value expression, 244–245,

249, 410
catalogs. See also schemas

components of, 33
description of, 32
hierarchical structure of, 33–34
object relationships in, 34
versus schemas, 34
schemas in, 34–35

CATEGORY column, values in,
160, 163

CD_ARTIST function
defining, 322
returning values from, 323

CD_ARTISTS table, querying, 281
CD_DISCOUNTS view

columns in, 113
displaying, 108–109

CD_IN_STOCK view, querying, 171
CD_INVENTORY schema, creating, 45
CD_INVENTORY table

declaring cursors on, 360–363
granting access to, 134
inserting values into, 177–182
querying, 181–182

CD_LABELS table
adding company to, 188
creating, 67
using constraints with, 93

CD_PUBLISHERS view, creating,
119

CD_STOCK table
creating delete trigger on, 343
querying, 279–280

CD_TITLES table, creating, 85
CD_TRACKING table

querying, 241
value expressions in, 238

CDs in stock, determining, 247–248
CDS_IN_STOCK view, creating, 119
CHARACTER data types

descriptions of, 56
mapping to XML schema

types, 442
<character set or path> clause, 43

character sets, 36
character strings. See also string value

functions
comparing, 230
types of, 55

CHECK constraints
adding, 99
assertions as, 97–98
defining, 95–97, 500
domains as, 98

child versus parent nodes, 5–6
class keyword with <::> separator, 133
clauses

optional use of, 88
processing in order, 165, 228

CLI (call-level interface)
allocation handles in, 421–423
ExecDirect() function in,

423–424, 428
Execute() function in, 424–425
executing SQL statements in,

423–424
host variables in, 424–425
overview of, 419–420
Prepare() function in, 424
retrieving data in, 426
using, 427–429, 513

CLI method, 20
CLI model, implementations of, 419
client modules. See SQL client

modules
CLOSE statement with cursors,

354, 363
COBOL, SQL statements in, 408
Codd, E.F., 5, 7, 15
code, separating into lines, 96–97
code samples

altering and deleting tables,
499

CHECK constraints, 500
CLI (call-level interface), 513
creating SQL tables, 498
cursors, 510–511
embedded SQL statements,

512
functions, 504–505
modifying SQL data, 502
NOT NULL constraints,

499–500
predicates in SQL statements,

503
querying INVENTORY

database, 501–502
querying multiple tables, 505
referential constraints,

499–500
roles and privileges, 501
SQL-invoked functions, 508

SQL-invoked procedures,
507–508

SQL/XML functions, 513–514
subqueries, 505–507
subqueries in predicates,

503–504
transactions, 511
triggers, 508–509
UNIQUE constraints, 499–500
value expressions, 504–505
views, 500

collations, 36
colon (:)

with host variables, 408–409
with statement label, 317

column CHECK constraint,
creating, 95

column constraints
adding, 85
creating, 78
defined, 74–75
FOREIGN KEY constraints

as, 84–85
column data types, specifying, 54–55
column default values, specifying,

64–65
<column definition> placeholder, 68
column definitions

adding PRIMARY KEY
constraints to, 81

without defaults, 69
interval data types in, 61
with NOT NULL, 76
with strings, 56

column names
adding after privileges, 134
with comparison operators,

195
order in ORDER BY clause,

168
providing for derived columns,

149
providing for views, 110
sharing, 261–263
specifying in INSERT INTO,

177
column values

adding together, 231–232
combining, 240–241
counting, 227–228
deleting, 187

columns. See also <derived column>
placeholder; view columns

adding, 239
averaging values in, 148–149
calculating, 240
combining into constraints, 79
creating and deleting, 70–71

www.it-ebooks.info

http://www.it-ebooks.info/

 522 SQL: A Beginner’s Guide

columns (Continued)
defining, 52–53
in foreign keys, 86–87
in HAVING clause, 165
for INSERT INTO, 178–179
in INSERT INTO, 180
listing values for, 96
naming for views, 110–111
in NULL predicate, 202
in query results, 148
querying, 149–151, 153
in result sets, 411
returning from tables, 361
specifying for columns, 95–97
specifying with GROUP BY,

162
unique values in, 77–79
using comma (,) with, 53
using RESTRICT option with,

68
values for, 95–97
viewing, 105
in views, 116

comma (,)
with authorization identifiers,

137–138
with CALL statement, 308
with columns, 53
with INSERT INTO clause, 177
with table references, 149

comma-separated join
versus cross join, 259
guidelines for, 257
implementing, 254
performing, 272
using, 258–259

comments, adding in XML, 436
COMMIT statement

defined, 380
terminating transactions with,

395
with transactions, 395–396
using, 52, 381

COMPACT_DISC_STOCK table
with HAVING clause, 165
using, 160–161

COMPACT_DISC_TYPES table
constraints in, 93–94
creating, 70
querying, 294

COMPACT_DISCS table
adding CD to, 188
with CHECK constraint, 99
with constraints, 93
creating, 66
granting privileges on,

130–140

inserting rows into, 188
querying, 171

comparison operators
with ANY and SOME,

217–218
with subqueries, 284
symbols and examples of, 195

comparison predicates (>)
combining, 197, 207
with constraints, 95
defining subqueries with, 292
description of, 194

compound statements, creating,
312–313

condition join
description of, 263
as inner and outer join, 264
using, 273

conditional control statements
conditions in, 316
using, 314–315

conditions
and diagnostics size, 387
inverse of, 200, 212, 214

connection environment, establishing
in CLI, 427

connection handle in CLI, 421–423
connectivity, verifying, 26
consistent quality, applying to

transactions, 379
CONSTRAINT keyword, 86
constraints. See also integrity

constraints
CHECK, 95–97
combining columns into, 79
data model for, 91–94
data types as, 6
deferring in transactions,

390–393
defined, 68
defining, 52
description of, 36
domain, 98
FOREIGN KEY, 83–87
NOT NULL, 76–77, 93
PRIMARY KEY, 79–82
and relationships, 91
UNIQUE, 77–79, 93

constructed data types, 54
CONTENT type modifier in SQL/

XML, 438
CONTINUE action with

WHENEVER, 413
control statements. See also SQL

statements
compound, 312–313
conditional, 314–315

defined, 312
looping, 316–318

correlated subqueries. See also queries
defined, 213
versus joins, 286
using, 284–285

correlation names
with triggers, 334–335
using, 257–258

COUNT function, 227–228, 247
CREATE DATABASE statement, 44
CREATE FUNCTION statement,

303, 322
CREATE INDEX statement,

variations of, 70
CREATE PROCEDURE statement

defining parameters in, 308
with output parameters, 321
using, 302–303, 305

CREATE ROLE statement
syntax, 130
using, 131

CREATE SCHEMA statement
syntax, 42–43
using, 34

CREATE TABLE statement
for base tables, 51
executing, 53
syntax, 51–52
using, 43, 50, 65

CREATE TRIGGER statement
using, 334, 336, 338–339
varying semantics of, 337

CREATE TYPE statement, 64
CREATE VIEW statement

for averages, 115
WITH CHECK OPTION

clause, 116–117
using, 110–111, 113

created local temporary tables, 51
cross join, creating, 259, 273
CUBE operator with GROUP BY,

163–164
curly brackets ({}),51
CURRENT OF option with UPDATE,

369, 374
CURRENT_* value functions,

236–237
CURRENT_ROLE value, 246
CURRENT_USER value

description of, 246
with sessions, 128

cursor declaration, creating, 360–363
cursor holdability, overview of, 358
cursor ordering, overview of, 359

www.it-ebooks.info

http://www.it-ebooks.info/

 Index 523

cursor returnability, overview of,
358–359

cursor scrollability
defining, 361
overview of, 357

cursor sensitivity, options for, 357
cursor updatability

defining, 362, 373
overview of, 359–360

cursors
accessing tables with, 353–354
declaring, 354–356, 371–372
declaring and accessing, 373
declaring in modules, 417
defining, 369
features of, 364
opening and closing, 354, 363,

369
overview of, 353–355
as pointers, 353, 411
with positioned DELETE,

370–371
with positioned UPDATE,

368–370
read-only, 372–373
retrieving data from, 363–367
with SELECT statements, 368
statements used with, 354
using, 510–511

D
data

comparing with predicates,
194–198

deleting from referenced
columns, 89–91

deleting with subqueries, 291
inserting, 288–289
joining with views, 108
modifying, 188–190, 502
modifying with procedures,

309–310
modifying with views, 108
in nodes, 5–6
protecting between tables, 83
in record types, 6
retrieving, 411–412
retrieving in CLI, 426
storage in tuples, 6
summarizing, 164
updating, 182–186, 290
updating from referenced

columns, 89–91
using DELETE statement

with, 69

data access methods, choosing, 420
Data Control Language (DCL), 19
Data Definition Language (DDL), 18
data integrity

defined, 5
ensuring, 13

Data Manipulation Language (DML),
19

data models
with constraints, 91–94
defined, 13
for INVENTORY database,

91–92
data phenomena

dirty reads, 383–384
nonrepeatable reads, 384
phantom reads, 384–385

data types
assigning, 62
Boolean, 61
changing values of, 244–245
constructed, 54
datetime, 58–59
versus domains, 6
inheritance by view columns,

105
interval, 60–61
numeric, 57–58
predefined, 54, 62
specifying for columns, 54–55
in SQL/XML, 437–439
for strings, 55–57
user-defined, 55, 63–64
using, 62–63

database models
hierarchical, 4–5
network, 5
relational, 5

database objects. See also objects;
schema objects

accessing, 128–130
granting privileges on, 130
organization of, 44

databases
adding views to, 119–120
concept of, 37–39
connecting to, 25–26
creating, 44–45
defined, 4
dropping views from, 117

date, retrieving, 237
DATE data types

description of, 59
mapping to XML schema

types, 442
datetime data types

descriptions of, 58–59
versus interval, 60

datetime value functions, availability
of, 236

datetime values, conversion of, 245
day-time interval, 60
DCL (Data Control Language), 19
DDL (Data Definition Language), 18
DDL statements

SQL keywords for, 18
using in transactions, 390

DECIMAL data type, 58
DECIMAL data types, mapping to

XML schema types, 442
DECLARE CURSOR statement

cursor holdability part of, 358
cursor ordering part of, 359
cursor returnability part of,

358–359
cursor scrollability part of, 357
cursor sensitivity part of, 357
cursor updatability part of,

359–360
using, 354–356, 361

DECLARE statement with variables,
311–312

declared local temporary tables, 51
DEFAULT CHARACTER SET

keywords, 43
default collation, 36
DEFAULT keyword with columns,

64–65
DEFERRED keyword with

constraints, 392
DELETE FROM clause, 186
DELETE privilege with schema

objects, 129
DELETE statement

adding WHERE clause to, 198
for cursors, 359, 370–371
for data, 69, 291
versus DROP TABLE, 187
for procedures, 310
for rows, 190
for triggers, 343–344
using, 186–187

delete triggers. See also triggers
creating, 343–344, 346
dropping, 347

deleting
columns, 71
data from referenced columns,

89–91
data from tables, 69
roles, 130–131, 140
schema objects, 43
schemas, 34, 43–44
tables, 69–71, 499

delimited identifiers, conventions for,
40–41

www.it-ebooks.info

http://www.it-ebooks.info/

 524 SQL: A Beginner’s Guide

denormalizing data, 11
<derived column> placeholder,

148–149. See also columns
derived tables. See also tables

description of, 50
versus persistent base tables, 104

DESC keyword
with ON_HAND column, 167
with ORDER BY, 166

determinant, defined, 9. See also
unique identifier

diagnostics size, specifying for
transactions, 387–388

direct invocation method
advantage of, 405
with cursors, 372
defined, 352
support for, 22, 25
using, 19–20, 404

dirty reads, occurrence of, 383–384, 387
DISC_ARTISTS table, querying,

286–288
DISC_INVENTORY table, querying,

286–288
DISC_TYPES table, querying,

286–288
DISTINCT keyword

with COUNT function, 228
with joins, 260
performance considerations, 161
with SELECT clause,

147–148, 151–152
distinct versus structured types, 63
division (/) operator, example of, 239
DML (Data Manipulation Language),

19
DML statements in transactions, 390
DOCUMENT type modifier in

SQL/XML, 438
domain constraints

creating, 98
defined, 74
limitation of, 75

domain data types, mapping to XML
schema types, 442

domains
creating, 98
defined, 6
description of, 35, 37

DOUBLE PRECISION data types
description of, 58
mapping to XML schema

types, 442
DRG Records

adding to CD_LABELS
table, 188

deleting from CD_LABELS
table, 190

DROP [COLUMN] clause, 68
DROP FUNCTION statement, 311,

324
DROP PROCEDURE statement, 311,

319
DROP ROLE statement, 131, 140
DROP SCHEMA statement, 34, 43–44
DROP TABLE statement

versus DELETE, 69, 187
for triggers, 347
using, 50, 119

DROP TRIGGER statement, 335,
341, 347

DROP VIEW statement, 117
duplicate values, preventing, 79
durable quality, applying to

transactions, 379

E
ELSE clause with CASE, 242
ELSE IF clause in conditional

statements, 316
ELSE keyword in conditional

statements, 314–316
ELSEIF clause in conditional

statements, 316
embedded SELECT statement, 415–416.

See also SELECT statements
embedded SQL

creating statements in,
407–408

description of, 20, 352
statements, 512
support for, 406–407
using, 414–416

EMP_COMM view
columns in, 115
removing, 117

EMPLOYEE_COMMISSIONS table
creating, 114–115
extracting data from, 116

EMPLOYEES table, self-joining,
260–261

END IF keyword with loops, 317
END keyword

with CASE, 242
with compound statements,

313–314
END LOOP keyword, 316–317
endpoints in ranges, 97
entity, defined, 6
environment handle

in CLI, 421–422
establishing in CLI, 427

equal to (=) operator
with equi-joins, 256
example of, 195
with WHERE clause, 196

equi-join
creating, 256
defining in condition join,

263, 272
error handling, providing, 413–415
EXCEPT operator, effect of, 272
EXEC SQL

example of, 409–410
meaning of, 355, 408

ExecDirect() function, 423–424
Execute() function in CLI, 424–425,

428
EXECUTE privilege with schema

objects, 130
execution context, applying to

triggers, 331–332
execution methods

CLI (call-level interface), 20
direct invocation, 19
embedded SQL, 20
module binding, 20

EXISTS predicate
description of, 213
with subqueries, 215, 220, 281
using, 284–285, 292

EXIT keyword with loops, 316
Extensible Markup Language (XML)

adding comments in, 436
overview of, 434–437

F
false, evaluating rows to, 157
<fetch orientation> placeholder, 364
FETCH statement

and cursor scrollability, 357
with cursors, 354–355, 361,

364–367, 373
first normal form, 8–9
FIRST option with FETCH statement,

365
[FK], meaning of, 91
flags, null values as, 76
FLOAT data types

description of, 58
mapping to XML schema

types, 442
floating-point number, defined, 57
FOR EACH clause

with delete triggers, 344
with insert triggers, 337
with triggers, 333, 335, 340

www.it-ebooks.info

http://www.it-ebooks.info/

 Index 525

FOR keyword with cursors, 356
FOR parameter with SUBSTRING,

234–235
FOR READ ONLY clause with

cursors, 361
FOR UPDATE clause with cursors,

362–363
FOREIGN KEY constraints

adding as column constraints, 85
guidelines for, 84
MATCH clause of, 88–89
versus primary keys, 87–88
<referential triggered action>

clause of, 89–91
foreign keys

in COMPACT_DISC_TYPES
table, 94

in COMPACT_DISCS table, 93
creating as table constraints, 86
for joining tables, 108
multiple columns in, 86–87
representing as [FK], 91

forests in XML, 437
Fortran SQL statements in, 408
FROM clause

evaluation of, 147
in REVOKE statement, 136
with SELECT clause, 149,

152–153
with views, 110–111

FROM parameter with SUBSTRING,
234–235

FULL option with MATCH clause, 89
full outer join

defining, 268–269
description of, 266
versus UNION operator, 271

fully qualified names, 41–42
functional dependence, defined, 9
functions. See also set functions; user-

defined functions; value functions
calling in CLI (call-level

interface), 419
capabilities of, 36
with CLI routines, 419
concept of, 301
creating, 303, 322
defined, 63, 226
dropping, 324
invoking, 322–323
versus procedures, 301–302,

321
and SQL-invoked routines, 300
syntax, 301–303
using, 247–249, 504–505
using in SQL/XML, 439–440

G
GET_CD_ARTISTS procedure

calling, 320
dropping, 319

getdate function, 237
global temporary tables overview, 51
GOTO action with WHENEVER,

413–414
GRANT clause, options for, 132
GRANT OPERATION FOR clause,

135
GRANT OPTION FOR clause

for revoking privileges,
135, 137

for revoking roles, 138
GRANT statement

versus FROM clause, 136
example of, 134
with objects, 130
with roles, 137
using, 132

GRANTED BY clause
with REVOKE statement, 135
using, 132, 138

greater than (>) operator, 195, 197
greater than or equal to (>=) operator,

195, 198–199
GROUP BY clause

with HAVING clause, 166
performance considerations,

161
with query results, 159–164
with set functions, 230–231,

247
with WHERE clause, 162

group search conditions, specifying,
164–166

grouping elements, 51
<grouping specification> placeholder,

159–160
GUI interface, 22

H
HAVING clause

adding to SELECT statement,
171–172

with GROUP BY, 166
including columns in, 165
subqueries in, 279
using, 165–166
versus WHERE, 164–165

hierarchical data model, 4–5
host language, embedded SQL in,

407–408

host variables. See also variables
binding query results to, 428
in CLI (call-level interface),

424–425
creating, 414–415
declaration of, 422
defined, 364
indicators, 412
as parameter, 368
in SQL statements, 408–410

hyphens (--)with INSERT
statements, 170

I
identifiers. See also authorization

identifiers
case of, 41
conventions for, 40
qualification of, 41–42

IF statement with loops, 317
impedance mismatch

defined, 352–353
elimination of, 405
occurrence of, 364
using cursors for, 411

IN keyword
avoiding use of, 322
using, 212

IN predicate
defining lists with, 210–211
description of, 209
with subqueries, 284
subquery in, 211–212
updating data with, 290
using, 220, 279–280

IN_STOCK values
averaging, 185
basing rows on, 156–157
returning, 158–159

indexing, support for, 70
indicator host variables, declaring,

412, 415
INFORMATION_SCHEMA, contents

of, 34
inner joins

creating, 264–266, 273
versus outer join, 264

input parameters. See also output
parameters; parameters

adding to procedures, 307–310
using, 307

INSENSITIVE option with cursors,
357, 362, 373

INSERT INTO clause
specifying columns in, 180
using, 176–177

www.it-ebooks.info

http://www.it-ebooks.info/

 526 SQL: A Beginner’s Guide

INSERT privileges
granting on COMPACT_

DISCS table, 130–140
granting to roles, 134
revoking, 137
with schema objects, 129

INSERT statements
with datetime functions,

237–238
with delete triggers, 344
executing, 180
with insert triggers, 337–338
with procedures, 310
with SELECT statement,

181–182
syntax, 176
using, 169–170, 178, 288–289
VALUES clause in, 177

INSERT trigger, defining, 336
insert triggers, creating, 336–338, 345.

See also triggers
INSERT_LOG trigger, creating,

336–337
INT data type

basing domain on, 98
with procedures, 312

INTEGER data types
description of, 58
mapping to XML schema

types, 442
integers, generation of, 36
integrity constraints. See also

constraints
categories of, 74–75
defined, 74

interactive SQL. See direct invocation
method

INTERSECT operator versus UNION,
272

interval data types
mapping to XML schema

types, 442
using, 60–61

INTO clause
with embedded SELECT,

415–416
with indicator variables, 412
with singleton SELECT, 411

INVENTORY database
connecting to, 66, 70
creating, 45
creating roles in, 139–140
data model for, 92
querying, 169–172, 501–502
re-creating, 514–518
tables in, 71

INVENTORY schema, creating, 43

INVENTORY table, columns in,
156–157

IS FALSE operator, 156
IS keyword

with cursors, 356
with NULL predicate, 201

IS TRUE operator, 156
isolated quality, applying to

transactions, 379
ISOLATION LEVEL keyword, 388
isolation levels

data anomalies for, 387
and dirty reads, 383–384
READ COMMITTED, 386, 388
READ UNCOMMITTED,

385–386, 388
REPEATABLE READ, 386
SERIALIZABLE, 386–388, 399
setting for transactions,

382–383

J
JOIN keyword, 264
joins

avoiding duplicate rows in, 260
comma-separated, 254,

257–259, 272
condition join, 263–264, 273
versus correlated subqueries,

286
creating with multiple tables,

258–259
cross-join, 259
equi-join, 256
full outer join, 266, 268–269,

273
inner join, 264–266, 273
named column join, 263
natural, 262–263
outer join, 266–269
self-join, 260–261
theta-join, 257
types of, 263
with views, 108

K
keys in normalization, 7
keywords

AUTHORIZATION, 42
with DDL statements, 18
DEFAULT CHARACTER

SET, 43

defined, 40
nonreserved, 494–496
reserved, 492–494

L
LAMP (Linux, Apache, MySQL,

PHP), 25
LANGUAGE clause, 417
LAST option with FETCH statement,

365
LEAVE keyword with loops, 316
left outer join

creating, 267–268
description of, 266

less than (<) operator, 195, 197
less than or equal to (<=) operator,

195, 198–199
LIKE predicates

combining, 206
NOT keyword in, 205
in SELECT statements, 205
symbols used in, 203–204
using, 208
in WHERE clause, 204

lines, separating code into, 96–97
Linux, Apache, MySQL,

PHP (LAMP), 25
lists, defining with IN predicate,

210–211
literal, defined, 62, 64–65
LOCAL keyword with SET

TRANSACTION, 381–382
local variables, adding to procedures,

311–313
LOCALTIME value function, 236
LOCALTIMESTAMP value function,

236
LOOP statement

using, 316–318
versus WHILE statement,

317–318
looping statements, creating, 316–318
loops, naming, 317
LOWER string value function,

235–236

M
MANAGERS role, creating, 138
many-to-many relationship

defined, 11
example of, 12

markup language, defined, 434

www.it-ebooks.info

http://www.it-ebooks.info/

 Index 527

MATCH clause with FOREIGN KEY
constraints, 88–89

MAX function, 229–231
metadata, defined, 4
methods

defined, 63
with SQL-invoked routines, 301

MIN function, 229–231, 247
minimum cardinality, defined, 13. See

also tuples
<mode> placeholder with SET

TRANSACTION, 382
module binding method, 20
MODULE statement, 418
modules. See also SQL client modules

declaring cursors in, 417
declaring temporary tables

in, 417
defined, 37, 51, 301

MRKT role
creating, 139
dropping, 140
granting SALES_STAFF role

to, 140
revoking SALES_STAFF role

from, 140
multiplication (*) operator, 239
MUMPS, SQL statements in, 408
MUSIC_TYPE column, null value in,

178–179
MUSIC_TYPES table

creating, 67
using constraints with, 93

MySQL command-line interface
case-sensitivity of, 41
using, 22, 24, 26

MySQL Community Server,
downloading, 25

N
named column join, creating, 263
NAMES ARE clause, 417
namespace, defined, 33
national character strings, 55–56
natural join, creating, 262–263
nested subqueries, 286–288, 293
network data model, 5
NEW ROW option, omitting from

triggers, 335
NEW TABLE option, omitting from

triggers, 335
NEW_AGE_CDS procedure

creating, 305
description of, 306

NEXT option with FETCH statement,
364, 367

NO ACTION referential action, 90
NO SCROLL option with cursors, 357
nodes, data in, 5–6
nonprepeatable reads, 384–385, 387
nonreserved keywords

list of, 494–496
use of, 40

normalizing data, 14. See also
relational data model

choosing unique identifier, 7
first normal form, 8–9
second normal form, 9
third normal form, 9–11

normalizing data language, defined, 15
not equal to (<>) operator, 195–196
NOT FOUND condition, defined, 413
NOT keyword

adding to LIKE predicates, 205
adding to NULL predicate, 208
with BETWEEN predicate,

200
with IN predicate, 212
including in predicates, 208
with NULL predicate, 202
with predicates, 158, 195
using, 156

NOT NULL constraints
adding, 76–77, 93, 499–500
with column definitions, 79,

82–83
effect of, 200
with UNIQUE, 79
using, 412

NULL keyword with INSERT, 177
NULL predicate

adding NOT keyword to, 208
using, 200–203

null values
in columns, 69
comparisons with, 197
as flags, 76
handling, 412
and NOT NULL constraints,

76–77
permitting, 79
in PRICE column, 162–163
returning, 200–203
role names as, 126, 128
specifying for INSERT INTO,

178–179
using, 61

nullability default, overriding, 76–77
NUMERIC data types

descriptions of, 57–58
mapping to XML schema

types, 442

rules for, 64
using, 64

numeric data values, generation of, 36
numeric value expressions

combining, 240
using, 238–241, 248–249

O
object identifiers, defined, 40
<object name> placeholder with ON

clause, 132–133
<object type> placeholder with ON

clause, 132–133
object-oriented programming,

defined, 17
object-relational language, SQL as, 17
objects. See also database objects;

schema objects
in catalogs, 34
granting access to, 19
identifiers for, 40
naming, 41
owning, 132

octet, defined, 55
ODBC API, development of, 419–420
OLD ROW option

omitting from triggers, 335
with triggers, 343

OLD TABLE option with triggers, 343
ON clause

adding join condition after, 265
defining condition join in, 263
placeholders for, 132–133
with REVOKE statement, 135
with triggers, 333, 339

ON DELETE clause, 90
ON UPDATE clause, 90
ON_HAND values

in ascending order, 169
using HAVING clause with,

165–166
one-to-many relationship

defined, 11
example of, 12

one-to-one relationship
defined, 11
example of, 11
implementing, 12

OPEN keyword with cursors, 363
OPEN statement cursors, 354, 364
OR keyword with predicates, 153–155,

158, 198, 200, 208, 219
Oracle, advantage of, 22–23
Oracle DBMS, architecture of, 39
Oracle Express, downloading, 25

www.it-ebooks.info

http://www.it-ebooks.info/

 528 SQL: A Beginner’s Guide

ORDER BY clause
with cursors, 359, 361–362
evaluation of, 147
performance considerations, 161
in SELECT statements,

166–169
using, 178
with XML, 435

OUT keyword with parameters, 321
outer joins

creating, 266–269
versus inner joins, 264
types of, 266–269

output parameters. See also input
parameters; parameters

adding to procedures, 320–321
description of, 307

P
parameters. See also input parameters;

output parameters
declarations for, 307
declaring for modules, 418
defining in CREATE

PROCEDURE, 308
host variables as, 368
as literals, 62
with procedures, 319
separating in SUBSTRING, 234
with SQL-invoked routines,

300
types of, 307

parent versus child nodes, 5–6
parentheses (())

with AND and OR keywords,
155

with CALL statement, 308
with COUNT function, 227
organizing in code, 96–97
with predicates, 158–159

Part 14. See SQL/XML
PARTIAL option with MATCH

clause, 89
Pascal, SQL statements in, 408
percentage sign (%) with LIKE,

203–205
PERFORMER_TYPE table,

rows in, 152
PERFORMERS table

accessing with cursors,
353–354

columns in, 150
persistent base tables

versus derived tables, 104
overview of, 50

phantom reads, occurrence of, 384,
386–387

PKG008 package, triggers in, 331
placeholders, separating, 90
PL/I, SQL statements in, 408
positioned DELETE statement,

370–371
positioned UPDATE statement,

368–370
precision

applying to numbers, 57
specifying for intervals, 61

predefined data types, 54, 62
predicates. See also quantified

comparison predicates; search
conditions

ALL, 221
ANY, 221
BETWEEN, 199–200, 207
with CHECK constraints,

95–97
combining, 159, 195, 198
for comparing data, 194–198
with DELETE statement, 187
evaluation in WHERE clause,

194
evaluation of, 155
EXISTS, 213–214, 220,

281, 292
IN, 209–213, 220, 279–280
including in WHERE clause,

157
inverse conditions for, 195
LIKE, 203–206
NULL, 200–201, 208
with parentheses (()), 158–159
with <search condition>

placeholder, 153–154
in SQL statements, 503
subqueries in, 209, 220–221
for UPDATE statement, 184

Prepare() function in CLI, 424
PRICE column

null value in, 162–163
specifying in ORDER BY, 167

primary key. See unique identifier
PRIMARY KEY constraints

restrictions for, 79–80
as table constraints, 85
versus UNIQUE constraints,

80–82
with UNIQUE constraints,

81–82
primary keys

for CD_LABELS table, 93
versus FOREIGN KEY

constraints, 87–88
for MUSIC_TYPES table, 93

PRIOR option with FETCH statement,
364

<privilege list> placeholder with
GRANT clause, 132

privileges
adding column names to, 134
associating with authorization

identifiers, 131–132
defining for schema objects,

128–129
granting, 130
granting on objects, 131–132
granting to roles, 134
managing, 139–140, 501
revoking, 130, 135–137,

139–140
role names, 126
types for schema objects,

129–130
procedural language, defined, 15
procedures. See also SQL-invoked

routines
adding input parameters to,

307–310
adding local variables to,

311–313
adding output parameters to,

320–321
capabilities of, 36
concept of, 301
creating, 302–303, 319–320
creating and replacing, 310
defined, 62
dropping, 311, 319
executing with CALL

statement, 312
externally invoked, 62
versus functions, 301–302, 321
invoking, 308
with loops, 317
with modules, 417
multiple parameters in, 308
parameters for, 319
and SQL-invoked routines, 300
syntax, 301–303
using, 303–305
using to modify data, 309–310

programming languages statements in,
407–408

programs, embedding statements in,
406–407

PSM-96 publication, 300
PUBLIC authorization identifiers

description of, 125–126
granting privileges to, 139–140
granting SELECT privileges

to, 134–135

www.it-ebooks.info

http://www.it-ebooks.info/

 Index 529

revoking privileges for, 136
specifying for granting roles,

138
PUBLIC option with TO clause, 133

Q
qualified names, 41–42
quantified comparison predicates. See

also predicates
ALL, 218–219
ANY, 216–218
description of, 216
SOME, 216–218
using, 219, 282–283

queries. See also correlated subqueries
for columns in query results,

170–171
storing in view definitions,

104–105
query complexity, hiding with views,

105–107
<query expression> placeholder with

views, 109–110
query expressions

components of, 114
SELECT statements as, 146
with views, 110–111

query results. See also result sets
binding to host variables, 428
converting to XML, 435–436
grouping, 159–164
including columns in, 148
order of returning, 163
ordering, 172
organizing with ORDER BY

clause, 169
query specification, defined, 114. See

also SELECT statements
querying multiple tables, 505
question mark (?) placeholder, 425

R
ranges, including endpoints in, 97
RDBMSs

connecting to, 25–26
examples of, 4
using, 21

READ COMMITTED isolation level,
386–388

READ ONLY option, 382, 386,
388–389

READ UNCOMMITTED isolation
level, 385–389, 398–399

READ WRITE option, 382, 386
read-only cursor, creating, 372–373
REAL data types

description of, 58
mapping to XML schema

types, 442
record types, data in, 6
records of data, representing, 6
recursive relationship

defined, 83
resolving with self-join,

260–261
REFERENCES keyword

with column constraints, 85
with schema objects, 130

REFERENCING clause
with delete triggers, 343–344
support for, 340
with triggers, 334–335,

345–346
with update triggers, 339

referential constraints
adding, 499–500
examples of, 75
FOREIGN KEY, 83–87

referential integrity, defined, 83
<referential triggered action> with

FOREIGN KEY, 89–91
relational data model, 4. See also

normalizing data
entities in, 6
overview of, 5
relations in, 5–6

relational design, 11
Relational Software, 16
relations

duplicate values in, 8
example of, 6
normalizing, 8
relationships between, 13
terminology, 7

relationship types
many-to-many, 11
one-to-many, 11
one-to-one, 11

relationships
and constraints, 91
identifying, 14
minimum cardinality of, 13
between objects in catalogs, 34

RELATIVE option with FETCH
statement, 365–367

RELEASE SAVEPOINT statement
defined, 380
using, 394

REPEATABLE READ isolation level,
386–387

reserved keywords
list of, 492–494
use of, 40

RESTRICT option
with columns, 68
with procedures, 311
with REVOKE, 136
with schemas, 43
with tables, 69

RESTRICT referential action, 90
result sets. See also query results

defined, 352
returning with cursors, 353
rows and columns in, 411

RETAIL_PRICES table, querying, 282
RETURN statement with functions,

303, 322
RETURNS clause with functions,

303, 322
REVOKE statement

FROM clause in, 136
with objects, 130, 137
with roles, 138–139
syntax, 135

right outer join, 266
role names

defined, 126
designating, 131
determining, 128
revoking privileges for, 137
and user identifier for session,

126–128
roles

creating and deleting, 131
granting, 137, 140
granting to user identifiers, 138
managing, 139–140, 501
revoking, 138–140

ROLLBACK statement
defined, 380
terminating transactions with,

395
with transactions, 396–397,

399–400
using, 381

ROLLUP keyword with GROUP BY,
160, 163–164

routine body, variables in, 311–312
<routine body> placeholder, 303
routine mapping, 32
ROUTINE_ROLE, authorizing, 127
row data types, mapping to XML

schema types, 442

www.it-ebooks.info

http://www.it-ebooks.info/

 530 SQL: A Beginner’s Guide

ROW option
with FOR EACH clause, 333
for triggers, 340

rows
counting, 227–228
deleting, 187, 190
deleting for triggers, 346
evaluating to true, 155
evaluation of, 213–214
grouping, 160
inserting into COMPACT_

DISCS table, 188
inserting into tables, 178
limiting return of, 256–257
matching with WHERE

clause, 119
in query results, 153
querying, 149–150
in result sets, 411
returning with subqueries, 213,

278–283
tuples as, 6
updating, 293–294
updating for triggers, 346

S
SALARY type, creating, 64
SALES role, granting privileges

to, 134
SALES_DATES table, value functions

on, 233
SALES_PRICES table, querying, 282
SALES_STAFF role

creating, 139
dropping, 140
granting privileges to, 130–140
granting to MRKT role, 140
revoking from MRKT role, 140

SAVEPOINT statement, defined, 380
savepoints. See also TO SAVEPOINT

clause
creating in transactions,

392–394, 400
releasing, 394

scale, applying to numbers, 57
SCHEMA clause, 417
<schema elements> clause, 43
schema object identifiers, qualification

of, 41–42
schema objects. See also database

objects; objects; views
access privileges for, 128–129
base tables, 35
character sets, 36
collations, 36

constraints, 36
deleting, 43
domains, 35
sequence generators, 36
SQL server module, 36
SQL-invoked routines, 36
transliterations, 36
triggers, 36
triggers as, 330–331
UDTs (user-defined types), 36
views, 35

schemas. See also catalogs
versus catalogs, 34
creating, 34, 42–45
deleting, 34, 43–44
features of, 34–35
INFORMATION_SCHEMA,

34
INVENTORY, 43
naming, 42
SELECT statements in,

304–305
treatment of, 34

SCROLL option with cursors, 357,
361–362, 373

scrollable cursor, defining, 361
<search condition> placeholder

with CHECK constraint, 95–96
using, 153

search conditions. See also predicates
combining, 159
defining for LIKE predicate,

203–204
defining with WHERE clause,

152–159
forming from predicates, 198
operators for, 156

SECOND with intervals, 61
second normal form, 9
security privileges. See privileges
security-model components

authorization identifiers, 124
PUBLIC identifiers, 125–126
role names, 125
sessions, 126–128
user identifiers, 124

SELECT clause
with ALL keyword, 147–148
with FROM clause, 149,

152–153
with DISTINCT keyword,

147–148
with numeric value

expressions, 239
subqueries in, 279, 283
with views, 112
with WHERE clause, 153–154

<select list> placeholder with query
results, 148

SELECT privileges
granting on COMPACT_

DISCS table, 130–140
granting on views, 139
granting to PUBLIC

identifiers, 134–135
granting to roles, 134
revoking, 136, 140
with schema objects, 129

SELECT statements. See also
embedded SELECT statement;
query specification

ALL predicate in, 218–219
ANY predicate in, 217
with CD_DISCOUNTS

view, 113
FROM clause in, 112
clauses required for, 146
combining results of, 269–271
COUNT function in, 227–228
with cursors, 368
with EXISTS predicate, 213
GROUP BY clause in,

159–164
HAVING clause in, 171–172
IN predicate in, 211–212
inserting values from, 180–182
joining tables in, 259
LIKE predicates in, 205
ORDER BY clause in,

166–169
order of clauses for, 147
order of processing clauses

in, 165
processing order of, 228, 258
as query expressions, 146
singleton, 411
storing in schemas, 304–305
SUBSTRING in, 234
syntax, 26, 146
table expression for, 147
triggers in, 338
updating values from, 185–186
UPPER function in, 235–236
views in, 110–111
WHERE clause in, 112–113,

152–159, 171, 182
self-join, creating, 260–261
semicolon (;) with compound

statements, 313
SENSITIVE option with cursors, 357
SEQUEL trademark, ownership of, 15
sequence generators, 36
SEQUENCE type modifier in

SQL/XML, 438

www.it-ebooks.info

http://www.it-ebooks.info/

 Index 531

SERIALIZABLE isolation level,
386–388, 399

session, defined, 51
SESSION_USER value, 246
sessions, overview of, 126–128
SET clause

combining with WHERE
clause, 186

specifying expressions in, 184
subqueries in, 290, 294
with UPDATE, 183, 186

<set clause expression> placeholder,
183

SET CONSTRAINTS statement
defined, 380
with transactions, 390–392

SET DEFAULT referential action, 90
set functions. See also functions

AVG, 232
COUNT, 227–228
defined, 226
with GROUP BY clause,

230–231
MAX, 229–231
MIN, 229–231
in statements, 229
SUM, 231–232
using, 247–248

SET NULL referential action, 90
SET statement

with loops, 317–318
with output parameters, 321
with variables, 311–312

SET TRANSACTION statement
creating, 388
defined, 380
limited use of, 381
versus START

TRANSACTION, 389
using, 381–382

similar values, returning, 203–206
SIMPLE option with MATCH

clause, 89
single quote (‘) with INSERT INTO,

177–178
singleton SELECT statement, 411
site, description of, 32
slash (/) in XML, 436
SMALLINT data types

description of, 58
mapping to XML schema

types, 442
SOME predicate, 216–218, 282
special values, 245–247. See also

values
SQL (Structured Query Language)

evolution of, 15–18
as nonprocedural language, 15

as object-relational language,
17

versus Oracle and SQL Server,
21

as sublanguage, 15
SQL agent, 31
SQL call-level interface. See CLI

(call-level interface)
SQL catalogs. See catalogs
SQL character sets, mapping to, 443
SQL client modules. See also modules

declaring parameters for, 418
defining, 418–419
description of, 32
overview of, 417–418
syntax, 417

SQL collection data types, mapping to
XML schema types, 442

SQL data. See data
SQL data types. See data types
SQL distinct data types, mapping to

XML schema types, 442
SQL environment

accessing, 25–26
components of, 30–31
name objects in, 40–41

SQL identifiers, mapping to, 443
SQL implementations

description of, 31
differences in, 404–405

SQL objects. See objects
SQL Server

advantage of, 22–23
using, 26

SQL Server Express, downloading, 25
SQL server module, 36
SQL session, defined, 51
SQL standard, parts of, 16
SQL statements. See also control

statements
beginning, 42
classifying, 19–20
DCL (Data Control Language),

19
DDL (Data Definition

Language), 18
deciding on alternatives

for, 215
DML (Data Manipulation

Language), 19
embedding, 406–407,

414–416, 512
executing, 19–20, 423–424, 428
host variables in, 408–410
including set functions in, 229
passing data to, 410
versus product

implementations, 21–24

SQL tables. See tables
SQL values, representing in XML,

441. See also values
SQL-86 standard, release of, 16
SQL:2006 standard

conformance to, 17–18
conforming with, 20
terminology, 4
viewing information about, 18

SQLConnect() function, 423
SQLEXCEPTION condition, defined,

413–414
SQL-invoked functions. See also

functions
creating, 321–325, 508
versus procedures, 301

SQL-invoked procedures
creating, 318–320, 507–508
defined, 17
invoking, 305–306
modifying, 310–311
storing SELECT statements

as, 305
SQL-invoked routines. See also

procedures
description of, 36
overview of, 300–301
types of, 301

SQL/PSM publication, 300
SQLSTATE parameter with modules,

417–418
SQLWARNING condition, defined, 413
SQL/XML

basis of, 434–436
data type, 437–439
functions, 439–440, 444,

513–514
mapping rules for, 441–443
vendor support for, 439

sqlxml prefix with XMLSCHEMA
type, 438

START TRANSACTION statement
defined, 380
limited use of, 381
using, 381, 389, 398–399

statement handle
creating in CLI, 427
using in CLI, 421, 423

statement label with loops, 317
STATEMENT option with FOR

EACH clause, 333–334
statements. See SQL statements
STATIC DISPATCH clause with

functions, 303
storage in tuples, defining, 6
stored procedures. See SQL-invoked

procedures
string data types, 55–57

www.it-ebooks.info

http://www.it-ebooks.info/

 532 SQL: A Beginner’s Guide

string value functions. See also
character strings

SUBSTRING, 233–235, 248
UPPER, 248
UPPER and LOWER, 235–236

Structured Query Language (SQL).
See SQL (Structured Query
Language)

structured versus distinct types, 63
subqueries

defining with comparison
predicates, 292

to delete data, 291
description of, 278
with EXISTS predicate, 281
in HAVING clause, 279
including in SELECT clause,

283
for inserting data, 288–289
nesting, 286–288, 293
in IN predicate, 211–212
with IN predicate, 279–280
in predicates, 209, 220–221,

503–504
requirement of, 280
returning one value with,

283–284
returning rows with, 213,

278–283
in SELECT clause, 279
in SET clause, 290, 294
in UPDATE statement, 290
in UPDATE statements, 293
using, 291–295, 505–507
in WHERE clause, 279

SUBSTR function, 234
SUBSTRING value function,

233–235, 248
subtraction (−) operator, 239
SUM function

with GROUP BY, 160
using, 231–232

surrogate key, defined, 7
SYSDATE value, 237
SYSTEM_USER value, 246

T
table constraints

foreign keys as, 84, 86
PRIMARY KEY constraints

as, 85
<table element> clause, 52
table expression with SELECT

statement, 147

TABLE keyword
with privileges, 137
views for, 133

table references, separating, 149
table-related constraints, types of, 74
tables. See also base tables; derived

tables; temporary tables
altering, 67–68
altering and deleting, 70–71, 499
components of, 35
creating, 50–53, 66–68, 498
deleting, 69
determining updateability

of, 116
dropping for constraints

example, 92
joining, 254, 257–259,

264–265, 269–271, 304
joining with shared column

names, 261–263
naming, 52
querying, 272–273, 505
support for, 37
types of, 50

temporary tables. See also tables
base tables as, 50–51
declaring in modules, 417
designating, 52
emptying, 52
purpose of, 54

THEN keyword with conditional
statements, 314–315

theta-join, defined, 257
third normal form, 9–11
time, retrieving, 237
TIME data types

descriptions of, 59
mapping to XML schema

types, 442
TIMESTAMP data types

descriptions of, 59
mapping to XML schema

types, 442
TITLE_TYPES table, modifying,

288–289
TO clause

with GRANT clause, 137
options for, 133

TO SAVEPOINT clause, 397. See also
savepoints

totals, viewing, 162
transactions

committing, 395–396
creating, 388
creating savepoints in,

392–394
DDL statements in, 390

deferring constraints in,
390–393

defined, 379
diagnostics size for, 387–388
guidelines for, 398
isolation levels for, 382–387
modes for, 382
and nonrepeatable reads,

384–385
performance considerations,

397
and phantom reads, 384–386
READ ONLY option for, 382
READ WRITE option for, 382
rolling back, 396–397, 399–400
starting, 389
statements related to, 380–381
terminating, 395
using, 398–400, 511

transition tables with triggers, 332
transliterations, 36
TRIGGER privilege with schema

objects, 130
triggered statements, limiting

execution of, 340
triggers. See also delete triggers; insert

triggers; update triggers
correlation names for, 334–335
creating, 345–348, 508–509
defined, 17
description of, 36
dropping, 335, 341, 347
execution context for, 331–332
firing at same time, 342
invoking, 342
overview of, 330–331
as schema objects, 330–331
syntax, 333
testing, 346
types of, 335

true, evaluating rows to, 155
TRUNCATE statement, 69
tuples. See also minimum cardinality

storage of data in, 6
terminology, 7
violation of first normal form, 8

<type modifier> in SQL/XML, 438
types. See data types

U
UDTs (user-defined types),

creating, 63–64
description of, 36, 55
support for, 301
using, 55

www.it-ebooks.info

http://www.it-ebooks.info/

 Index 533

updateable views
with CHECK OPTION with,

117
creating, 114–116

UNDER privilege with schema
objects, 130

underscores (_)
with LIKE predicate, 203–204
using, 41

Unicode, mapping to, 441, 443
UNION operator

versus full outer join, 271
using, 269–271

UNIQUE constraints
adding, 77–79, 93, 499–500
with candidate keys, 80
examples of, 75
versus PRIMARY KEY, 80–82
with PRIMARY KEY

constraints, 81–82
unique identifier, choosing, 7. See also

determinant
UPDATE privileges

granting on COMPACT_
DISCS table, 130–140

granting to roles, 134
revoking, 137
with schema objects, 129

UPDATE statement
conditional statements in, 315
creating, 185
cursors in, 359–360, 368–370,

373–374
impact on triggers, 332
loops in, 317–318
procedures in, 310
SET clause in, 183
subqueries in, 290, 293
syntax, 182
triggers in, 338–341
using, 290
WHERE clause in,

183–186, 198
update triggers. See also triggers

creating, 338–341, 345–346
dropping, 347

updateable views. See also views
with CHECK OPTION

with, 117
creating, 114–116

updating data in referenced columns,
89–91

UPPER string value function,
235–236, 248

USAGE privilege with schema
objects, 130

user identifiers
defined, 124
designating, 131

granting roles to, 138
and role name for session,

126–128
user mapping, 32
USER value, 246
user-defined functions. See also

functions
creating, 321–325, 508
versus procedures, 301

user-defined types (UDTs)
creating, 63–64
description of, 36, 55
support for, 301
using, 55

users, determining values of, 128
USING clause with joins, 263

V
value expressions

CASE, 241–243, 249
CAST, 244–245, 249
numeric, 238–241, 248
using, 247–249, 504–505

value functions. See also functions
description of, 232–233
for strings, 233–236
SUBSTRING, 233–235, 248
UPPER, 248
UPPER and LOWER, 235–236
using in SQL/XML, 439–440

VALUE keyword with domain
constraints, 98

values. See also special values; SQL
values

adding together, 160
assigning to variables, 311
inserting from SELECT

statement, 180–182
listing for columns, 95–97
referencing with triggers,

334–335
renaming with CASE, 242
returning, 203–206
returning with MIN and MAX,

229–231
updating, 189
updating from SELECT

statement, 185–186
VALUES clause

alternative to, 180–182
with INSERT, 177–178
specifying values in, 180

variables. See also host variables
adding to procedures, 311–313
assigning values to, 311
declaring for cursors, 372
passing data from, 410

vendor extensions, defined, 17
<view column names>, 109–110
view columns, assigning names to,

105. See also columns
view definitions

SELECT statement in, 153
storing SELECT statements

in, 304
viewed tables, 50
views. See also schema objects;

updateable views
adding, 500
adding to databases, 119–120
advantage of, 104–105
altering, 118
of averages, 115
basing on multiple tables,

105–107, 118
calling with SELECT

statements, 304
capabilities of, 105
with columns, 105
creating, 112, 118
defined, 34, 104
description of, 35
displaying columns in, 116
dropping from databases,

117, 119
granting SELECT privileges

on, 139
hiding query complexity with,

105–106
in INFORMATION_

SCHEMA, 34
inserts into, 176
joining data with, 108
limitations of, 305
line breaks in, 110–111
for modifying data, 108
naming, 109–111
with query expressions, 110–111
spacing in, 110–111
specifying operations in, 108
syntax, 109

W
web sites

MySQL Community Server, 25
Oracle Express download, 25
SQL Server Express, 25

WHEN clause
with delete triggers, 344
with triggers, 333–334,

339–341
WHENEVER statements

embedding, 413–414
in error handling, 415

www.it-ebooks.info

http://www.it-ebooks.info/

 534 SQL: A Beginner’s Guide

WHEN/THEN clause with CASE, 242
WHERE clause

AND and OR in, 155
capabilities of, 194
with WITH CHECK OPTION,

111–113, 117
with FROM clause, 147
combining SET clause with, 186
defining, 156–159
defining search conditions

with, 152–159
in DELETE statement, 198
with DELETE statement,

186–187
equal to (=) operator in, 196
with equi-join, 256
with EXISTS predicate, 215
with GROUP BY, 162
versus HAVING, 164–165
LIKE predicate in, 204
to match rows, 119
for positioned DELETE,

370–371
for positioned UPDATE,

368–369
predicates in, 157, 194
in SELECT statement, 113

with SELECT statement,
153–154, 156, 171, 182

with set functions, 230
subqueries in, 278
with triggers, 339, 341
in UPDATE statement,

183–186, 198
WHILE statement with loops,

317–318
WITH ADMIN clause with roles,

131, 138
WITH CHECK OPTION clause,

116–117
WITH GRANT OPTION clause,

133–135
WITH HOLD cursor, defining, 358
WITHOUT HOLD cursor,

defining, 358

X
XML (Extensible Markup Language)

adding comments in, 436
overview of, 434–437

XML attributes, 436
XML data type, 57

XML documents
example of, 434
mapping to, 441, 443

XML elements, 436
XML names, mapping to, 441
XML schema data types, mapping to,

441–442
XML types, mapping to XML schema

types, 442
XML values, representing in SQL, 441
XMLELEMENT function, 439
XMLFOREST function, 439
XMLSCHEMA types, 438
Xs prefix with XMLSCHEMA

type, 438

Y
year-month interval, 60

Z
ZONE data types, mapping to XML

schema types, 442

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright © 2009 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Acknowledgments:
	Introduction:
	Part I: Relational Databases and SQL:
	1 Introduction to Relational Databases and SQL:
	Understand Relational Databases:
	Learn About SQL:
	2 Working with the SQL Environment:
	Understand the SQL Environment:
	Understand SQL Catalogs:
	Name Objects in an SQL Environment:
	Create a Schema:
	Create a Database:
	3 Creating and Altering Tables:
	Create SQL Tables:
	Specify Column Data Types:
	Create User-Defined Types:
	Specify Column Default Values:
	Delete SQL Tables:
	4 Enforcing Data Integrity:
	Understand Integrity Constraints:
	Use NOT NULL Constraints:
	Add UNIQUE Constraints:
	Add PRIMARY KEY Constraints:
	Add FOREIGN KEY Constraints:
	Define CHECK Constraints:
	5 Creating SQL Views:
	Add Views to the Database:
	Create Updateable Views:
	Drop Views from the Database:
	6 Managing Database Security:
	Understand the SQL Security Model:
	Create and Delete Roles:
	Grant and Revoke Privileges:
	Grant and Revoke Roles:
	Part II: Data Access and Modification:
	7 Querying SQL Data:
	Use a SELECT Statement to Retrieve Data:
	Use the WHERE Clause to Define Search Conditions:
	Use the GROUP BY Clause to Group Query Results:
	Use the HAVING Clause to Specify Group Search Conditions:
	Use the ORDER BY Clause to Sort Query Results:
	8 Modifying SQL Data:
	Insert SQL Data:
	Update SQL Data:
	Delete SQL Data:
	9 Using Predicates:
	Compare SQL Data:
	Return Null Values:
	Return Similar Values:
	Reference Additional Sources of Data:
	Quantify Comparison Predicates:
	10 Working with Functions and Value Expressions:
	Use Set Functions:
	Use Value Functions:
	Use Value Expressions:
	Use Special Values:
	11 Accessing Multiple Tables:
	Perform Basic Join Operations:
	Join Tables with Shared Column Names:
	Use the Condition Join:
	Perform Union Operations:
	12 Using Subqueries to Access and Modify Data:
	Create Subqueries That Return Multiple Rows:
	Create Subqueries That Return One Value:
	Work with Correlated Subqueries:
	Use Nested Subqueries:
	Use Subqueries to Modify Data:
	Part III: Advanced Data Access:
	13 Creating SQL-Invoked Routines:
	Understand SQL-Invoked Routines:
	Create SQL-Invoked Procedures:
	Add Input Parameters to Your Procedures:
	Add Local Variables to Your Procedures:
	Work with Control Statements:
	Add Output Parameters to Your Procedures:
	Create SQL-Invoked Functions:
	14 Creating SQL Triggers:
	Understand SQL Triggers:
	Create SQL Triggers:
	Create Insert Triggers:
	Create Update Triggers:
	Create Delete Triggers:
	15 Using SQL Cursors:
	Understand SQL Cursors:
	Declare a Cursor:
	Open and Close a Cursor:
	Retrieve Data from a Cursor:
	Use Positioned UPDATE and DELETE Statements:
	16 Managing SQL Transactions:
	Understand SQL Transactions:
	Set Transaction Properties:
	Start a Transaction:
	Set Constraint Deferability:
	Create Savepoints in a Transaction:
	Terminate a Transaction:
	17 Accessing SQL Data from Your Host Program:
	Invoke SQL Directly:
	Embed SQL Statements in Your Program:
	Create SQL Client Modules:
	Use an SQL Call-Level Interface:
	18 Working with XML Data:
	Learn the Basics of XML:
	Learn About SQL/XML:
	Part IV: Appendices:
	A: Answers to Self Test:
	B: SQL:2006 Keywords:
	SQL Reserved Keywords:
	SQL Nonreserved Keywords:
	C: SQL Code Used in Try This Exercises:
	SQL Code by Try This Exercise:
	The INVENTORY Database:
	Index:

